Structural Chemistry

, Volume 30, Issue 1, pp 409–417 | Cite as

Unraveling the concerted catalytic mechanism of the human immunodeficiency virus type 1 (HIV-1) protease: a hybrid QM/MM study

  • Monsurat M. Lawal
  • Zainab K. Sanusi
  • Thavendran Govender
  • Gideon F. Tolufashe
  • Glenn E. M. Maguire
  • Bahareh Honarparvar
  • Hendrik G. KrugerEmail author
Original Research


We give an account of a one-step concerted catalytic mechanism of HIV-1 protease (PR) hydrolysis of its natural substrate using a hybrid QM/MM method. The mechanism is a general acid–base model having both catalytic aspartate groups participating and a water molecule attacking the natural substrate synchronously. Three different pathways were investigated: a concerted acyclic transition state (TS) mechanistic route, a concerted 6-membered cyclic TS process involving one water molecule, and another 6-membered ring TS pathway involving two water molecules. Activation free energies of approximately 15.2 and 16.6 kcal mol−1 were obtained for both concerted acyclic and the other possible reaction pathway involving two water molecules in the active site, respectively. The activation free energies are comparable to experimentally derived data of 15.69 kcal mol−1. The outcome of the present work provides a plausible theoretical benchmark for the concerted enzymatic mechanism of HIV-1 PR and can be applied to related enzymatic processes.


HIV-1 protease Natural substrate QM/MM (Our own N-layered Integrated molecular Orbital and molecular Mechanics ONIOM) method Concerted transition states Catalytic mechanism 



We are grateful to the Centre for High Performance Computing ( for computational resources.

Funding information

The authors thank the College of Health Sciences, University of KwaZulu-Natal, Asphen Pharmacare, Medical Research Council, and the National Research Foundation (all in South Africa) for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11224_2018_1251_MOESM1_ESM.docx (3.1 mb)
ESM 1 (DOCX 3145 kb)


  1. 1.
    Schuman JS, Orellana J, Friedman AH, Teich SA (1987) Acquired immunodeficiency syndrome (AIDS). Surv Ophthalmol 31:384–410CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Potempa M, Lee S-K, Wolfenden R, Swanstrom R (2015) The triple threat of HIV-1 protease inhibitors. The future of HIV-1 therapeutics, springer, pp 203–241Google Scholar
  4. 4.
    Crawford S, Goff SP (1985) A deletion mutation in the 5′part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins. J Virol 53:899–907PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon R, Scolnick EM, Sigal IS (1988) Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci 85:4686–4690CrossRefGoogle Scholar
  6. 6.
    Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE (1988) Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331:280–283CrossRefGoogle Scholar
  7. 7.
    Ashorn P, McQuade TJ, Thaisrivongs S, Tomasselli AG, Tarpley WG, Moss B (1990) An inhibitor of the protease blocks maturation of human and simian immunodeficiency viruses and spread of infection. Proc Natl Acad Sci 87:7472–7476CrossRefGoogle Scholar
  8. 8.
    Debouck C, Gorniak JG, Strickler JE, Meek TD, Metcalf BW, Rosenberg M (1987) Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc Natl Acad Sci 84:8903–8906CrossRefGoogle Scholar
  9. 9.
    Darke PL, Nutt RF, Brady SF, Garsky VM, Ciccarone TM, Leu C-T, Lumma PK, Freidinger RM, Veber DF, Sigal IS (1988) HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins. Biochem Biophys Res Commun 156:297–303CrossRefGoogle Scholar
  10. 10.
    Lawal MM, Sanusi ZK, Govender T, Maguire GEM, Honarparvar B, Kruger HG (2018) From recognition to reaction mechanism: an overview on the interactions between HIV-1 protease and its natural targets. Curr Med ChemGoogle Scholar
  11. 11.
    Hyland LJ, Tomaszek Jr TA, Roberts GD, Carr SA, Magaard VW, Bryan HL, Fakhoury SA, Moore ML, Minnich MD, Culp J (1991) Human immunodeficiency virus-1 protease. 1. Initial velocity studies and kinetic characterization of reaction intermediates by 18O isotope exchange. Biochemistry 30:8441–8453CrossRefGoogle Scholar
  12. 12.
    Hyland LJ, Tomaszek Jr TA, Meek TD (1991) Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism. Biochemistry 30:8454–8463CrossRefGoogle Scholar
  13. 13.
    Jaskolski M, Tomasselli AG, Sawyer TK, Staples DG, Heinrikson RL, Schneider J, Kent SB, Wlodawer A (1991) Structure at 2.5-. ANG. Resolution of chemically synthesized human immunodeficiency virus type 1 protease complexed with a hydroxyethylene-based inhibitor. Biochemistry 30:1600–1609CrossRefGoogle Scholar
  14. 14.
    Krzeminska A, Moliner V, Swiderek K (2016) Dynamic and electrostatic effects on the reaction catalyzed by HIV-1 protease. J Am Chem Soc 138:16283–16298CrossRefGoogle Scholar
  15. 15.
    Ribeiro AJM, Santos-Martins D, Russo N, Rarnos MJ, Fernandes PA (2015) Enzymatic flexibility and reaction rate: a QM/MM study of HIV-1 protease. ACS Catal 5:5617–5626CrossRefGoogle Scholar
  16. 16.
    Mcgee TD, Edwards J, Roitberg AE (2014) pH-REMD simulations indicate that the catalytic aspartates of HIV-1 protease exist primarily in a monoprotonated state. J Phys Chem B 118:12577–12585CrossRefGoogle Scholar
  17. 17.
    Rodriguez EJ, Angeles TS, Meek TD (1993) Use of N-15 kinetic isotope effects to elucidate details of the chemical mechanism of human immunodeficiency virus-1 protease. Biochemistry 32:12380–12385CrossRefGoogle Scholar
  18. 18.
    Silva AM, Cachau RE, Sham HL, Erickson JW (1996) Inhibition and catalytic mechanism of HIV-1 aspartic protease. J Mol Biol 255:321–340CrossRefGoogle Scholar
  19. 19.
    Park H, Suh J, Lee S (2000) Ab initio studies on the catalytic mechanism of aspartic proteinases: nucleophilic versus general acid/general base mechanism. J Am Chem Soc 122:3901–3908CrossRefGoogle Scholar
  20. 20.
    Chatfield DC, Brooks BR (1995) HIV-1 protease cleavage mechanism elucidated with molecular-dynamics simulation. J Am Chem Soc 117:5561–5572CrossRefGoogle Scholar
  21. 21.
    Lee H, Darden TA, Pedersen LG (1996) An ab initio quantum mechanical model for the catalytic mechanism of HIV-1 protease. J Am Chem Soc 118:3946–3950CrossRefGoogle Scholar
  22. 22.
    Liu HY, MullerPlathe F, vanGunsteren WF (1996) A combined quantum/classical molecular dynamics study of the catalytic mechanism of HIV protease. J Mol Biol 261:454–469CrossRefGoogle Scholar
  23. 23.
    Okimoto N, Makiyama M, Hata M, Tsuda M (1997) Gag protein hydrolysis mechanism by HIV-1 protease - investigation by semiempirical molecular orbital method. J Chem Soc Jpn:260–266Google Scholar
  24. 24.
    Okimoto N, Tsukui T, Hata M, Hoshino T, Tsuda M (1999) Hydrolysis mechanism of the phenylalanine-proline peptide bond specific to HIV-1 protease: investigation by the ab initio molecular orbital method. J Am Chem Soc 121:7349–7354CrossRefGoogle Scholar
  25. 25.
    Trylska J, Bala P, Geller M, Grochowski P (2002) Molecular dynamics simulations of the first steps of the reaction catalyzed by HIV-1 protease. Biophys J 83:794–807CrossRefGoogle Scholar
  26. 26.
    Trylska J, Grochowski P, McCammon JA (2004) The role of hydrogen bonding in the enzymatic reaction catalyzed by HIV-1 protease. Protein Sci 13:513–528CrossRefGoogle Scholar
  27. 27.
    Piana S, Carloni P, Parrinello M (2002) Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease. J Mol Biol 319:567–583CrossRefGoogle Scholar
  28. 28.
    Feher A, Weber IT, Bagossi P, Boross P, Mahalingam B, Louis JM, Copeland TD, Torshin IY, Harrison RW, Tozser J (2002) Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites. Eur J Biochem 269:4114–4120CrossRefGoogle Scholar
  29. 29.
    Tozser J, Bagossi P, Weber IT, Copeland TD, Oroszlan S (1996) Comparative studies on the substrate specificity of avian myeloblastosis virus proteinase and lentiviral proteinases. J Biol Chem 271:6781–6788CrossRefGoogle Scholar
  30. 30.
    Maschera B, Darby G, Palu G, Wright LL, Tisdale M, Myers R, Blair ED, Furfine ES (1996) Human immunodeficiency virus - mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex. J Biol Chem 271:33231–33235CrossRefGoogle Scholar
  31. 31.
    Kipp DR, Silva RG, Schramm VL (2011) Mass-dependent bond vibrational dynamics influence catalysis by HIV-1 protease. J Am Chem Soc 133:19358–19361CrossRefGoogle Scholar
  32. 32.
    Boross P, Bagossi P, Copeland TD, Oroszlan S, Louis JM, Tozser J (1999) Effect of substrate residues on the P2 ′ preference of retroviral proteinases. Eur J Biochem 264:921–929CrossRefGoogle Scholar
  33. 33.
    Rodriguez EJ, Debouck C, Deckman IC, Abu-Soud H, Raushel FM, Meek TD (1993) Inhibitor binding to the Phe53Trp mutant of HIV-1 protease promotes conformational changes detectable by spectrofluorometry. Biochemistry 32:3557–3563CrossRefGoogle Scholar
  34. 34.
    Kruger HG (2002) Ab initio mechanistic study of the protection of alcohols and amines with anhydrides. J Mol Struct-Theochem 577:281–285CrossRefGoogle Scholar
  35. 35.
    Gokul V, Kruger HG, Govender T, Fourie L, Power TD (2004) An ab initio mechanistic understanding of the regioselective acetylation of 8,11-dihydroxy-pentacyclo[,6).0(3,10).0(5,9)] undecane-8,11-lactam. J Mol Struct-Theochem 672:119–125CrossRefGoogle Scholar
  36. 36.
    Kruger HG, Mdluli P, Power TD, Raasch T, Singh A (2006) Experimental and computational studies of the regioselective protection of hydantoins using anhydride. J Mol Struct-Theochem 771:165–170CrossRefGoogle Scholar
  37. 37.
    Makatini MM, Petzold K, Sriharsha SN, Ndlovu N, Soliman MES, Honarparvar B, Parboosing R, Naidoo A, Arvidsson PI, Sayed Y, Govender P, Maguire GEM, Kruger HG, Govender T (2011) Synthesis and structural studies of pentacycloundecane-based HIV-1 PR inhibitors: a hybrid 2D NMR and docking/QM/MM/MD approach. Eur J Med Chem 46:3976–3985CrossRefGoogle Scholar
  38. 38.
    Singh T, Kruger HG, Bisetty K, Power TD (2012) Theoretical study on the formation of a pentacyclo-undecane cage lactam. Comput Theor Chem 986:63–70CrossRefGoogle Scholar
  39. 39.
    Rauf SMA, Arvidsson PI, Albericio F, Govender T, Maguire GEM, Kruger HG, Honarparvar B (2015) The effect of N-methylation of amino acids (Ac-X-OMe) on solubility and conformation: a DFT study. Org Biomol Chem 13:9993–10006CrossRefGoogle Scholar
  40. 40.
    Lawal MM, Govender T, Maguire GE, Honarparvar B, Kruger HG (2016) Mechanistic investigation of the uncatalyzed esterification reaction of acetic acid and acid halides with methanol: a DFT study. J Mol Model 22:235CrossRefGoogle Scholar
  41. 41.
    Fakhar Z, Govender T, Lamichhane G, Maguire GE, Kruger HG, Honarparvar B (2017) Computational model for the acylation step of the β-lactam ring: potential application for l, d-transpeptidase 2 in mycobacterium tuberculosis. J Mol Struct 1128:94–102CrossRefGoogle Scholar
  42. 42.
    Prabu-Jeyabalan M, Nalivaika E, Schiffer CA (2002) Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes, Structure 10:369–381Google Scholar
  43. 43.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  44. 44.
    Louis JM, Dyda F, Nashed NT, Kimmel AR, Davies DR (1998) Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the HIV-1 protease. Biochemistry 37:2105–2110CrossRefGoogle Scholar
  45. 45.
    Kumar M, Kannan K, Hosur M, Bhavesh NS, Chatterjee A, Mittal R, Hosur R (2002) Effects of remote mutation on the autolysis of HIV-1 PR: X-ray and NMR investigations. Biochem Biophys Res Commun 294:395–401CrossRefGoogle Scholar
  46. 46.
    Fakhar Z, Govender T, Maguire GE, Lamichhane G, Walker RC, Kruger HG, Honarparvar B (2017) Differential flap dynamics in L, D-transpeptidase2 from Mycobacterium tuberculosis revealed by molecular dynamics. Mol BioSyst 13:1223–1234CrossRefGoogle Scholar
  47. 47.
    Svensson M, Humbel S, Froese RD, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: a multilayered integrated MO+ MM method for geometry optimizations and single point energy predictions. A test for Diels− Alder reactions and Pt (P (t-Bu) 3) 2+ H2 oxidative addition. J Phys Chem 100:19357–19363CrossRefGoogle Scholar
  48. 48.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRefGoogle Scholar
  49. 49.
    Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  50. 50.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984CrossRefGoogle Scholar
  51. 51.
    Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688CrossRefGoogle Scholar
  52. 52.
    Sanusi ZK, Govender T, Maguire GE, Maseko SB, Lin J, Kruger HG, Honarparvar B (2018) An insight to the molecular interactions of the FDA approved HIV PR drugs against L38L↑ N↑ L PR mutant. J Comput Aided Mol Des 32:459–471CrossRefGoogle Scholar
  53. 53.
    Sanusi Z, Govender T, Maguire G, Maseko S, Lin J, Kruger H, Honarparvar B (2017) Investigation of the binding free energies of FDA approved drugs against subtype B and C-SA HIV PR: ONIOM approach. J Mol Graph Model 76:77–85CrossRefGoogle Scholar
  54. 54.
    Ochterski JW (1999) Vibrational analysis in Gaussian, help@ gaussian. comGoogle Scholar
  55. 55.
    Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  56. 56.
    Dennington R, Keith T, Millam J (2009) In GaussView, in, Semichem Inc., Shawnee Mission KSGoogle Scholar
  57. 57.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, in, Gaussian, Inc., Wallingford, CT. USAGoogle Scholar
  58. 58.
    Bihani S, Das A, Prashar V, Ferrer JL, Hosur MV (2009) X-ray structure of HIV-1 protease in situ product complex. Proteins: Struct, Funct, Bioinf 74:594–602CrossRefGoogle Scholar
  59. 59.
    Liu Z, Wang Y, Yedidi RS, Dewdney TG, Reiter SJ, Brunzelle JS, Kovari IA, Kovari LC (2013) Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes. Biochem Biophys Res Commun 430:1022–1027CrossRefGoogle Scholar
  60. 60.
    Li Z, Lazaridis T (2003) Thermodynamic contributions of the ordered water molecule in HIV-1 protease. J Am Chem Soc 125:6636–6637CrossRefGoogle Scholar
  61. 61.
    Wang Y-X, Freedberg DI, Wingfield PT, Stahl SJ, Kaufman JD, Kiso Y, Bhat TN, Erickson JW, Torchia DA (1996) Bound water molecules at the interface between the HIV-1 protease and a potent inhibitor, KNI-272, determined by NMR. J Am Chem Soc 118:12287–12290CrossRefGoogle Scholar
  62. 62.
    Okimoto N, Tsukui T, Kitayama K, Hata M, Hoshino T, Tsuda M (2000) Molecular dynamics study of HIV-1 protease− substrate complex: roles of the water molecules at the loop structures of the active site. J Am Chem Soc 122:5613–5622CrossRefGoogle Scholar
  63. 63.
    Tozser J, Zahuczky G, Bagossi P, Louis JM, Copeland TD, Oroszlan S, Harrison RW, Weber IT (2000) Comparison of the substrate specificity of the human T-cell leukemia virus and human immunodeficiency virus proteinases. Eur J Biochem 267:6287–6295CrossRefGoogle Scholar
  64. 64.
    Shen CH, Tie YF, Yu XX, Wang YF, Kovalevsky AY, Harrison RW, Weber IT (2012) Capturing the reaction pathway in near-atomic-resolution crystal structures of HIV-1 protease. Biochemistry 51:7726–7732CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Catalysis and Peptide Research Unit, School of Health SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations