Advertisement

Theoretical investigation of the gas-phase reaction of NiO+ with ethane

  • Zhao-Xuan Yuan
  • Yong-Cheng Wang
Original Research
  • 8 Downloads

Abstract

To explore the mechanisms for Ni-based oxide-catalyzed oxidative dehydrogenation (ODH) reactions, we investigate the reactions of C2H6 with NiO+ using density functional calculations. Two possible reaction pathways are identified, which lead to the formation of ethanol (path 1), ethylene and water (path 2). The proportion of products is discussed by Curtin-Hammett principle, and the result shows that path 2 is the main reaction channel and the water and ethylene are the main products. In order to get a deeper understanding of the titled reaction, numerous means of analysis methods including the atoms in molecules (AIM), electron localization function (ELF), natural bond orbital (NBO), and density of states (DOS) are used to study the properties of the chemical bonding evolution along the reaction pathways.

Keywords

Density functional theory Reaction mechanisms Bonding analysis Curtin-Hammett principle 

Notes

Funding information

We are grateful to the financial support from the National Natural Science Foundation of China (Grant No. 21263023) and support from the Supercomputing Center of Gansu Province.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11224_2018_1238_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1084 kb)

References

  1. 1.
    Li LC, Liu JL, Shang J, Wang X, Wong NB (2008). J Theor Comput Chem 6:323–330CrossRefGoogle Scholar
  2. 2.
    Deryan Hwang AMM (2007). J Phys Chem A 106:12072–12083CrossRefGoogle Scholar
  3. 3.
    Li FM, Yang HQ, Ju TY (2012). Comput Theor Chem 994:112–120CrossRefGoogle Scholar
  4. 4.
    Balcells D, Clot E, Eisenstein O (2010). Chem Rev 110:749–823CrossRefGoogle Scholar
  5. 5.
    Greene TM, Andrews L, Downs AJJ (1995). Am Chem Soc 117:8180–8187CrossRefGoogle Scholar
  6. 6.
    Kafafi ZH, Hauge RH, Margrave JL (1985). J Am Chem Soc 107:6134–6135CrossRefGoogle Scholar
  7. 7.
    Andrews L, Cho H-G (2006). Organometallics 25:4040–4053CrossRefGoogle Scholar
  8. 8.
    Wittborn AMC, Costas M, Blomberg MRA (1997). J Chem Phys 107:4318–4328CrossRefGoogle Scholar
  9. 9.
    Holthausen MC, Fiedler A, Helmut SA (1996). J Phys Chem 100:409–429CrossRefGoogle Scholar
  10. 10.
    Zhang DJ, Liu CB, Liu YJ (2010). Chinese J Chem 20:220–226CrossRefGoogle Scholar
  11. 11.
    Sahoo S, Reber AC, Khanna SN (2015). J Phys Chem A 119:12855CrossRefGoogle Scholar
  12. 12.
    Eller K, Schwarz H (1991). Chem Rev 91:1121–1177CrossRefGoogle Scholar
  13. 13.
    Roithvá J, Schröder D (2010). J Phys Chem A 110:1170–1211Google Scholar
  14. 14.
    And YS, Yoshizawa K (2000). J Am Chem Soc 122:12317–12326CrossRefGoogle Scholar
  15. 15.
    Yoshizawa K, Shiota Y, Yamabe T (2010). Chem Eur J 3:1160–1169CrossRefGoogle Scholar
  16. 16.
    Schröder DCD, Angew SH (1990). Chem Int Edit 29:1431–1433CrossRefGoogle Scholar
  17. 17.
    Sun XL, Huang XR, Li JL, Huo RP, Sun CC (2012). J Phys Chem A 116:1475–1485CrossRefGoogle Scholar
  18. 18.
    Schröder D, Schwarz H, Clemmer DE (1997). Int J Mass Spectrom 161:175–191CrossRefGoogle Scholar
  19. 19.
    Jackson TC, Jacobson DB, Freiser BSJ (1984). Am Chem Soc 106:1252–1257CrossRefGoogle Scholar
  20. 20.
    Schröder D, Angew SH (1990). Chem Int Ed Engl 29:1433–−1434CrossRefGoogle Scholar
  21. 21.
    Schröder D, Fiedler A, Hrusak J, Schwarz H (1992). J Am Chem Soc 114:1215–1222CrossRefGoogle Scholar
  22. 22.
    Ryan MF, Fiedler A, Schröder D, Schwarz H (1994). Organometallics 13:4072–4081CrossRefGoogle Scholar
  23. 23.
    Zhao L, Lu X, Li Y, Chen J, Guo WJ (2012). Phys Chem A 116:3282–−3289CrossRefGoogle Scholar
  24. 24.
    Schuurman Y, Ducarme V, Chen T, Li W, Mirodatos C, Martin GA (1997). Appl Catal A 163:227–235CrossRefGoogle Scholar
  25. 25.
    Chen T, Zi LW, Yu CY (1999). Acta Chim Sin 57:986–991Google Scholar
  26. 26.
    Skoufa Z, Heracleous E, Lemonidou AA (2015). J Catal 322:118–129CrossRefGoogle Scholar
  27. 27.
    Zhu H, Dong H, Laveille P (2014). Catal Today 228:58–64CrossRefGoogle Scholar
  28. 28.
    Solsona B, Concepción P, Hernández S (2012). Catal Today 180:51–58CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR,Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CTGoogle Scholar
  30. 30.
    Lee C, Yang W, Parr RG (1988). Phys Rev B: Condens Matter Mater Phys 37:785CrossRefGoogle Scholar
  31. 31.
    Beck JE, Dudley TJ (2017). J Phys Chem A 121:1715CrossRefGoogle Scholar
  32. 32.
    Gonzalez C, Schlegel HB (1989). J Chem Phys 90:2154CrossRefGoogle Scholar
  33. 33.
    Carlos Gonzalez, H. Bernhard Schlege. (1990) J Phys Chem 94:5523–5527Google Scholar
  34. 34.
    Lu T, Chen F (2012). J Comput Chem 33:580CrossRefGoogle Scholar
  35. 35.
    Becke AD, Edgecombe KE (1990). J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  36. 36.
    Wang XL, Wang YC, Li S, Zhang YW, Ma PP (2016). J Phys Chem A 120:5457–5463CrossRefGoogle Scholar
  37. 37.
    Bader R (1990) A quantum theory. Clarendon, OxfordGoogle Scholar
  38. 38.
    Zhao LM, Guo WY, Liu ZC, Li YY, Lu XQ (2011). Theor Chem Accounts 128:349–358CrossRefGoogle Scholar
  39. 39.
    Haupert LJ, Poutsma JC, Wenthold PG (2010). Cheminform 41:1480–1488CrossRefGoogle Scholar
  40. 40.
    Jin YZ, Wang YC, Ji DF (2013). Comput Theor Chem 1011:75–81CrossRefGoogle Scholar
  41. 41.
    Cremer D, Kraka E (1984). Angew Chem Int Ed Engl 23:627–628CrossRefGoogle Scholar
  42. 42.
    De Almeida K, Ramalho T, Neto J, Santiago R, Felicíssimo V, Duarte H (2013). Organometallics 32:989–999CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouPeople’s Republic of China

Personalised recommendations