Structural Chemistry

, Volume 30, Issue 1, pp 385–397 | Cite as

Insights into the key structural features of N1-ary-benzimidazols as HIV-1 NNRTIs using molecular docking, molecular dynamics, 3D-QSAR, and pharmacophore modeling

  • Wenjie Wang
  • Yafeng Tian
  • Youlan Wan
  • Shuangxi Gu
  • Xiulian Ju
  • Xiaogang Luo
  • Genyan LiuEmail author
Original Research


N1-ary-benzimidazol (NABZ) derivatives, an important class of HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs), have been considered as one of the most successful agents for treating with AIDS at present. However, their three-dimensional quantitative structure–activity relationship (3D-QSAR) and mechanism of action in the HIV-1 reverse transcriptase (RT) have not been well understood. In this paper, 38 NABZs were firstly docked into the binding pocket of the HIV-1 RT to elucidate their interaction mechanism, and molecular dynamics simulations were then carried out to confirm the reliability of the docking results. The docking-based 3D-QSAR models were generated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods to give insights into the key structural features of NABZs for their activity. Both models yield satisfactory statistical parameters of the internal and external validation, and the CoMSIA model (Q2 = 0.670, R2 = 0.987, and \( {r}_{\mathrm{pred}}^2 \) = 0.954) showed slightly better predictive ability than the CoMFA model (Q2 = 0.613, R2 = 0.985, and \( {r}_{\mathrm{pred}}^2 \) = 0.939). The graphical contours demonstrated that the sulfonyl linker was a significant bridge for binding to the HIV-1 RT. The constructed pharmacophore with eight key features further verified the docking and 3D-QSAR results, indicating that the hydrogen-bond acceptor groups at the C4-positon of the arylacetamide moiety were important for the anti-HIV-1 activity, in addition to 3,5-dimethylphenyl, benzimidazole, and arylacetamide moieties. These studies might provide significant insights into the key structural features for designing potent HIV-1 NNRTIs.


N1-ary-benzimidazols HIV-1 NNRTIs Molecular docking Molecular dynamics 3D-QSAR Pharmacophore 



We gratefully acknowledge the financial support from National Natural Science Foundation of China (Nos. 21807082, 21877087), Hubei Provincial Natural Science Foundation of China (No. 2017CFB121), Hubei Provincial Department of Education of China (No. Q20171503), Wuhan International Scientific and Technological Cooperation Project (No. 2017030209020257), and Graduate Innovative Fund of Wuhan Institute of Technology (No. CX2017141).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Pomerantz RJ, Horn DL (2003) Twenty years of therapy for HIV-1 infection. Nat Med 9(7):867–873CrossRefGoogle Scholar
  2. 2.
    Gallo RC, Montagnier L (2003) The discovery of HIV as the cause of AIDS. N Engl J Med 349(24):2283–2285CrossRefGoogle Scholar
  3. 3.
    de Silva TI, Cotten M, Rowlandjones SL (2008) HIV-2: the forgotten AIDS virus. Trends Microbiol 16(12):588–595CrossRefGoogle Scholar
  4. 4.
    Gallo RC (2006) A reflection on HIV/AIDS research after 25 years. Retrovirology 3(1):72CrossRefGoogle Scholar
  5. 5.
    Das K, Arnold E (2013) HIV-1 reverse transcriptase and antiviral drug resistance. Curr Opin Virol 3(2):119–128CrossRefGoogle Scholar
  6. 6.
    Reynolds C, De CK, Pelly SC, Van WO, Bode ML (2012) In search of a treatment for HIV―current therapies and the role of non-nucleoside reverse transcriptase inhibitors (NNRTIs). Chem Soc Rev 43(42):4657CrossRefGoogle Scholar
  7. 7.
    Das K, Martinez SE, Bauman JD, Arnold E (2012) HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat Struct Mol Biol 19(2):253–259CrossRefGoogle Scholar
  8. 8.
    Flexner C (2007) HIV drug development: the next 25 years. Nat Rev Drug Discov 6(12):959CrossRefGoogle Scholar
  9. 9.
    Gu S, Lu H, Liu G, Ju X, Zhu Y (2018) Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors. Eur J Med Chem 158:371–392CrossRefGoogle Scholar
  10. 10.
    Sluiscremer N, Tachedjian G (2008) Mechanisms of inhibition of HIV replication by nonnucleoside reverse transcriptase inhibitors. Virus Res 134(1–2):147CrossRefGoogle Scholar
  11. 11.
    Zhan P, Chen X, Li D, Fang Z, De Clercq E, Liu X (2013) HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design. Med Res Rev 33(S1):E1–E72CrossRefGoogle Scholar
  12. 12.
    Rawal RK, Murugesan V, Katti SB (2012) Structure-activity relationship studies on clinically relevant HIV-1 NNRTIs. Curr Med Chem 19(31):5364–5380CrossRefGoogle Scholar
  13. 13.
    Béthune MPD (2010) Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989–2009). Antivir Res 85(1):75–90CrossRefGoogle Scholar
  14. 14.
    Mehellou Y, De Clercq E (2010) Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J Med Chem 53(2):521CrossRefGoogle Scholar
  15. 15.
    Croxtall JD (2012) Etravirine: a review of its use in the management of treatment-experienced patients with HIV-1 infection. Drugs 72(6):847CrossRefGoogle Scholar
  16. 16.
    Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK (2000) Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Structure 8(10):1089–1094CrossRefGoogle Scholar
  17. 17.
    Lansdon EB, Brendza KM, Hung M, Wang R, Mukund S, Jin D, Birkus G, Kutty N, Liu X (2010) Crystal structures of HIV-1 reverse transcriptase with etravirine (TMC125) and rilpivirine (TMC278): implications for drug design. J Med Chem 53(10):4295–4299CrossRefGoogle Scholar
  18. 18.
    Richman DD, Morton SC, Wrin T, Hellmann N, Berry S, Shapiro MF, Bozzette SA (2004) The prevalence of antiretroviral drug resistance in the United States. Aids 18(10):1393–1401CrossRefGoogle Scholar
  19. 19.
    Passeri GI, Trisciuzzi D, Alberga D, Siragusa L, Leonetti F, Mangiatordi GF, Nicolotti O (2018) Strategies of virtual screening in medicinal chemistry. IJQSPR 3(1):134–160Google Scholar
  20. 20.
    Monforte AM, Luca LD, Buemi MR, Agharbaoui FE, Pannecouque C, Ferro S (2017) Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. Bioorgan Med Chem 26(3):661CrossRefGoogle Scholar
  21. 21.
    Monforte AM, Ferro S, Luca LD, Surdo GL, Morreale F, Pannecouque C, Balzarini J, Chimirri A (2014) Design and synthesis of N1-aryl-benzimidazoles 2-substituted as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorgan Med Chem 22(4):1459–1467CrossRefGoogle Scholar
  22. 22.
    Ren J, Chamberlain PP, Stamp A, Short SA, Weaver KL, Romines KR, Hazen R, Freeman A, Ferris RG, Andrews CW (2008) Structural basis for the improved drug resistance profile of new generation benzophenone non-nucleoside HIV-1 reverse transcriptase inhibitors. J Med Chem 51(16):5000–5008CrossRefGoogle Scholar
  23. 23.
    Zhan P, Chen X, Li D, Fang Z, De Clercq E, Liu X (2013) HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and impliations for drug design. Med Res Rev 33(S1):E1–E72CrossRefGoogle Scholar
  24. 24.
    Peddi SR, Mohammed NA, Hussein AA, Sivan SK, Manga V (2018) Multiple-receptor conformation docking, dock pose clustering, and 3D QSAR-driven approaches exploring new HIV-1 RT inhibitors. Struct Chem 29(4):999–1012CrossRefGoogle Scholar
  25. 25.
    Ahmed N, Anwar S, Thet TH (2017) Docking based 3D-QSAR study of tricyclic guanidine analogues of batzelladine K as anti-malarial agents. Front Chem 5:36CrossRefGoogle Scholar
  26. 26.
    Van DSD, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701CrossRefGoogle Scholar
  27. 27.
    Lindorfflarsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8):1950–1958Google Scholar
  28. 28.
    Pearlman DA, Case DA, Caldwell JW, Ross WS, Iii TEC, Debolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(1–3):1–41CrossRefGoogle Scholar
  29. 29.
    Klebe G, Abraham U (1999) Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J Comput Aid Mol Des 13(1):1–10CrossRefGoogle Scholar
  30. 30.
    Gupta P, Roy N, Garg P (2009) Docking-based 3D-QSAR study of HIV-1 integrase inhibitors. Eur J Med Chem 44(11):4276–4287CrossRefGoogle Scholar
  31. 31.
    Roy K, Ambure P, Aher RB (2017) How important is to detect systematic error in predictions and understand statistical applicability domain of QSAR models? Chemometr Intell Lab 162:44–54CrossRefGoogle Scholar
  32. 32.
    Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring \( {\mathit{\mathsf{r}}}_{\mathsf{m}}^{\mathsf{2}} \) metrics for validation of QSPR models. Chemometr Intell Lab 107(1):194–205Google Scholar
  33. 33.
    Liu G, Wang W, Wan Y, Ju X, Gu S (2018) Application of 3D-QSAR, pharmacophore, and molecular docking in the molecular design of diarylpyrimidine derivatives as HIV-1 nonnucleoside reverse transcriptase inhibitors. Int J Mol Sci 19(5):1–16Google Scholar
  34. 34.
    Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?—arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250CrossRefGoogle Scholar
  35. 35.
    Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemometr Intell Lab 152:18–33CrossRefGoogle Scholar
  36. 36.
    Golbraikh A, Tropsha A (2002) Beware of q 2! J Mol Graph Model 20(4):269–276CrossRefGoogle Scholar
  37. 37.
    Richmond NJ, Abrams CA, Wolohan PRN, Abrahamian E, Willett P, Clark RD (2006) GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. J Comput Aid Mol Des 20(9):567–587CrossRefGoogle Scholar
  38. 38.
    Xie H, Chen L, Zhang J, Xie X, Qiu K, Fu J (2015) A combined pharmacophore modeling, 3D QSAR and virtual screening studies on imidazopyridines as B-Raf inhibitors. Int J Mol Sci 16(6):12307–12323CrossRefGoogle Scholar
  39. 39.
    Yusuf D, Davis AM, Kleywegt GJ, Schmitt S (2008) An alternative method for the evaluation of docking performance: RSR vs RMSD. J Chem Inf Model 48(7):1411–1422CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenjie Wang
    • 1
  • Yafeng Tian
    • 1
  • Youlan Wan
    • 1
  • Shuangxi Gu
    • 1
  • Xiulian Ju
    • 1
  • Xiaogang Luo
    • 1
  • Genyan Liu
    • 1
    Email author
  1. 1.Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & PharmacyWuhan Institute of TechnologyWuhanChina

Personalised recommendations