Advertisement

Structural Chemistry

, Volume 30, Issue 1, pp 317–326 | Cite as

Participation of furoxancarbonitrile oxide in [3+2] cycloaddition reaction toward C–N triple bond: a Molecular Electron Density Theory study of regioselectivity and mechanistic aspect

  • Seyed Javad HosseiniEmail author
  • Saeedreza Emamian
  • Luis R. Domingo
Original Research
  • 41 Downloads

Abstract

The [3+2] cycloaddition (32CA) reaction between furoxancarbonitrile oxide (FNO 2) and electron-deficient 2,2,2-trichloroacetonitrile (TCAN 3) in the presence of chloroform was studied within the Molecular Electron Density Theory (MEDT), at the DFT-B3LYP/6-311G(d,p) computational level. This zwitterionic-type (zw-type) 32CA reaction takes place in a highly chemo- and regioselective manner, yielding oxadiazole 4 as the sole product of the reaction, in excellent agreement with the experimental findings. The very low polar character of this zw-type 32CA reaction accounts for the high activation barrier found for this 32CA reaction. A topological analysis of the electron localization function (ELF) over some relevant points of the reaction path permits establishing that this zw-type 32CA reaction takes place along a non-concerted two-stage one-step molecular mechanism. The ELF topological analysis evidences that formation of the C1–N8 and O3–C7 single bonds take place through the sharing of the part of the electron density of the N8 nitrogen and that of the O3 lone pairs toward, respectively, the C1 and C7 pseudoradical centers created along the reaction path.

Keywords

Molecular Electron Density Theory (MEDT) [3 + 2] cycloaddition reactions Chemoselectivity Regioselectivity ELF topological analysis Nitrile N-oxides 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Emamian S (2010) Generation of a substituted 1,2,4-thiadiazole ring via the [3+2] cycloaddition reaction of benzonitrile sulfide toward trichloroacetonitrile. A DFT study of the regioselectivity and of the molecular mechanism. C R Chim 18:1277–1283CrossRefGoogle Scholar
  2. 2.
    Emamian S, Lu T, Moeinpour F (2015) Can the high reactivity of azomethine betaines in [3 + 2] cycloaddsition reactions be explained using singlet-diradical character descriptors?. What molecular mechanism is actually involved in these cycloadditions? RSC Adv 5:62248–62259CrossRefGoogle Scholar
  3. 3.
    Emamian S (2017) A molecular electron density theory study of [3+2] cycloaddition reaction between azomethine ylides and electron-deficient nitroalkenes. Chemistry Select 2:4193–4203Google Scholar
  4. 4.
    Gothelf KV, Jorgensen KA (1998) Asymmetric 1,3-dipolar cycloaddition reactions. Chem Rev 98:863–910CrossRefGoogle Scholar
  5. 5.
    Emamian S (2015) Understanding the regioselectivity and molecular mechanism in the synthesis of isoxazoles. Understanding the regioselectivity and molecular mechanism in the synthesis of isoxazoles containing pentafluorosulfanyl substitution via a [3+2] cycloaddition reaction: a DFT study. J Fluor Chem 178:165–172CrossRefGoogle Scholar
  6. 6.
    Ess DH, Houk KN (2008) Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. J Am Chem Soc 130:10187–10198CrossRefGoogle Scholar
  7. 7.
    Domingo LR, Ríos-Gutiérrez M, Duque-Noreña M, Chamorro E, Pérez P (2016) Understanding the carbenoid-type reactivity of nitrile ylides in [3+2] cycloaddition reactions towards electron-deficient ethylenes: a molecular electron density theory study. Theor Chem Accounts 135:160–172CrossRefGoogle Scholar
  8. 8.
    Emamian S (2016) How the mechanism of a [3 + 2] cycloaddition reaction involving a stabilized N-lithiated azomethine ylide toward a π-deficient alkene is changed to stepwise by solvent polarity? What is the origin of its regio- and endo stereospecificity? A DFT study using NBO, QTAIM, and NCI analyses. RSC Adv 6:75299–75314CrossRefGoogle Scholar
  9. 9.
    Domingo LR (2016) Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 21:1319–1324CrossRefGoogle Scholar
  10. 10.
    Domingo LR, Ríos-Gutérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21:748–770CrossRefGoogle Scholar
  11. 11.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5043CrossRefGoogle Scholar
  12. 12.
    Bader RWF (1990) Atoms in molecules: a quantum theory. Claredon Press, Oxford, U.KGoogle Scholar
  13. 13.
    Johnson ER, Keinan Mori-Sanchez SP, Contreras-Garćıa J, Cohen J, Yang AW (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  14. 14.
    Domingo LR, Ríos-Gutérrez M, Pérez P (2017) How does the global electron density transfer diminish activation energies in polar cycloaddition reactions? A molecular electron density theory study. Tetrahedron 73:1718–1724CrossRefGoogle Scholar
  15. 15.
    Domingo LR, Ríos-Gutérrez M (2017) A molecular electron density theory study of the reactivity of azomethine imine in [3+2] cycloaddition reactions. Molecules 22:750–770CrossRefGoogle Scholar
  16. 16.
    Kozikowski AP (1984) The isoxazoline route to the molecules of nature. Acc Chem Res 17:410–416CrossRefGoogle Scholar
  17. 17.
    Jäger V, Grund H (1976) Eliminative ring opening of 2-Isoxazolines: a new route to α,β-unsaturated ketones. Angew Chem Int Ed 15:50–51CrossRefGoogle Scholar
  18. 18.
    Curran DP (1978) Reduction of .DELTA.2-isoxazolines: a conceptually different approach to the formation of aldol adducts. J Am Chem Soc 104(1982):4024–4026Google Scholar
  19. 19.
    Jäger V, Buss V , Schwab W, Syntheses via isoxazolines III Diastereoselective synthesis of γ-amino-alcohols with 2 and 3 chiral centres. Tetrahedron Lett 19:3133–31360Google Scholar
  20. 20.
    Domingo LR, Emamian S, Salami M, Ríos-Gutiérrez M (2016) Understanding the molecular mechanism of [3+2] cycloaddition reaction of benzonitrile oxide toward an N-vinylpyrrole derivative with the aid of ELF topological analysis. J Phys Org Chem 29:368–376CrossRefGoogle Scholar
  21. 21.
    Ndassa IM, Adjieufack AAI, Mbadcam Ketcha J, Berski S, Ríos-Gutiérrez M, Domingo LR (2017) Understanding the reactivity and regioselectivity of [3+2] cycloaddition reactions between substituted nitrile oxides and methyl acrylate. A molecular electron density theory study. Int J Quantum Chem  https://doi.org/10.1002/qua.25451
  22. 22.
    Kadi AA, El-Brollosy NR, Al-Deeb OA, Habib EE, Ibrahim TM, El-Emam AA (2007) Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles. Eur J Med Chem 42:235–242CrossRefGoogle Scholar
  23. 23.
    Zhang H-Z, Kasibhatla S, Kuemmerle Kemnitzer JW, Ollis- Mason K, Qiu L, Crogan-Grundy C, Tseng B, Drewe J, Cai SX (2005) Discovery and structure−activity relationship of 3-aryl-5-aryl-1,2,4-oxadiazoles as a new series of apoptosis inducers and potential anticancer agents. J Med Chem 48:5215–4223CrossRefGoogle Scholar
  24. 24.
    Lee SH, Seo HJ, Lee SH, Jung ME, Park JH, Park HJ, Yoo J, Yun H, Na J, Kang SY, Song KS, Kim MA (2008) Biarylpyrazolyl oxadiazole as potent, selective, orally bioavailable cannabinoid-1 receptor antagonists for the treatment of obesity. J Med Chem 51:7216–7233CrossRefGoogle Scholar
  25. 25.
    Cottrell DM, Capers J, Salem MM, DeLuca-Fradley K, Croft SL, Werbovetz KA (2004) Antikinetoplastid activity of 3-aryl-5-thiocyanatomethyl-1, 2, 4-oxadiazoles. Bioorg Med Chem 12:2815–2824CrossRefGoogle Scholar
  26. 26.
    Boström J, Hogner A, Llinàs A, Wellner E, Plowright AT (2012) Oxadiazoles in medicinal chemistry. J Med Chem 55:817–1830CrossRefGoogle Scholar
  27. 27.
    Larin AA, Fershtat LL, Ananyev IV, Makhova NN (2017) Versatile approach to heteroarylfuroxan derivatives from oximinofuroxans via a one-pot, nitration/thermolysis/[3+ 2]-cycloaddition cascade. Tetrahedron Lett 42:3993–3997CrossRefGoogle Scholar
  28. 28.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  29. 29.
    Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  30. 30.
    González C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  31. 31.
    González C, Schlegel HB (1991) Improved algorithms for reaction path following: higher-order implicit algorithms. J Chem Phys 95:5853–5856CrossRefGoogle Scholar
  32. 32.
    Fukui F (1970) Formulation of the reaction coordinate. J Phys Chem 74:4161–4163CrossRefGoogle Scholar
  33. 33.
    Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094CrossRefGoogle Scholar
  34. 34.
    Simkin BY, Sheikhet I (1995) Quantum chemical and statistical theory of solutions-a computational approach. Ellis Horwod, LondonGoogle Scholar
  35. 35.
    Reed AE, Weinstock RB, Weinhold FF (1985) Natural population analysis. J Chem Phys 83:735–746CrossRefGoogle Scholar
  36. 36.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  37. 37.
    Domingo LR (2014) A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4:32415–32428CrossRefGoogle Scholar
  38. 38.
    Domingo LR, Pérez P, Sáez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494CrossRefGoogle Scholar
  39. 39.
    Noury S, Krokidis K, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–605CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani BV, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JF, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09 (Revision D.01). Gaussian, Inc., Wallingford CTGoogle Scholar
  41. 41.
    Adjieufack AI, Ndassa IM, Ketcha Mbadcam J, Ríos-Gutiérrez M, Domingo LR (2017) Steric interactions controlling the syn diastereofacial selectivity in the [3+2] cycloaddition reaction between acetonitrile axide and 7-oxanorborn-5-en-2-ones. A molecular electron density theory study. J Phys Org Chem 30:e3710CrossRefGoogle Scholar
  42. 42.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874CrossRefGoogle Scholar
  43. 43.
    Domingo LR, Aurell M, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common dienedienophile pairs in Diels-Alder reactions. Tetrahedron 58:4417–4442CrossRefGoogle Scholar
  44. 44.
    Jarmillo P, Domingo LR, Chamorro E, Pérez P (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J Mol Struct (THEOCHEM) 865:68–72CrossRefGoogle Scholar
  45. 45.
    Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2006) Which NICS aromaticity index for planar π rings is best? Org Lett 8:863–866CrossRefGoogle Scholar
  46. 46.
    Domingo LR, Saéz JA, Zaragozá RJ, Arnó M (2008) Understanding the participation of quadricyclane as nucleophile in polar 2 sigma+2 sigma+2 pi cycloadditions toward electrophilic pi molecules. J Organomet Chem 73:8791–8799CrossRefGoogle Scholar
  47. 47.
    Ríos-Gutiérrez M, Chafaa F, Nacereddine AK, Djerourou A, Domingo LR (2016) A DFT study of [3+2] cycloaddition reactions of an azomethine imine with N-vinyl pyrrole and N-vinyl tetrahydroindole. J Mol Graph Model 70:296–304CrossRefGoogle Scholar
  48. 48.
    Ríos-Gutiérrez M, Darù A, Tejero T, Domingo LR, Merino P (2017) A molecular electron density theory study of the [3 + 2] cycloaddition reaction of nitrones with ketenes. Org Biomol Chem 15:1618–1627CrossRefGoogle Scholar
  49. 49.
    Domingo LR, Pérez P, Ortega DE (2013) Why do five-membered heterocyclic compounds sometimes not participate in polar Diels-Alder reactions? J Organomet Chem 78:2462–2471CrossRefGoogle Scholar
  50. 50.
    Carey FA, Sundberg RJ (2000) Advanced organic chemistry. Part A: structure and mechanisms. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry Department, Shahrood BranchIslamic Azad UniversityShahroodIran
  2. 2.Department of Organic ChemistryUniversity of ValenciaValenciaSpain

Personalised recommendations