Structural Chemistry

, Volume 29, Issue 6, pp 1697–1707 | Cite as

Light-dependent isomeric effects of polycyclic aromatic hydrocarbons on the predication of DNA cleavage factor efficiency

  • Shawnta D. Woods
  • Wojciech KolodziejczykEmail author
  • Karina Kapusta
  • Jerzy Leszczynski
  • Glake A. Hill
Original Research


PAHs, short for polycyclic aromatic hydrocarbons, are a ubiquitous group of chemically related, environmentally persistent organic compounds having diverse structures and varied toxicity. They have been shown to cause mutagenic and carcinogenic effects on organisms and are quite immunosuppressive. Time-dependent density functional theory (TD-DFT) offers a practical means of understanding the behavior of excitation energies for PAHs. Here, we examined the performance of the long-range corrected Coulomb-attenuating functional (CAM-B3LYP) in relation to four different basis sets, determining which basis set compliments the functional better in identifying the most reactive atomic site on six isomeric PAH compounds. Condensed Fukui function indices were used to compare the performance of applied basis sets in identifying the most reactive atomic site on six isomeric PAHs compounds, assessing which basis set would be more appropriate in determining the site where free-radical formation would occur after light irradiation. Dunning’s correlation consistent triple-zeta (cc-pVTZ) basis set was determined to have the best PAH characterization performance, concluding the need for application of a higher-level basis set with the long-range corrected Coulomb-attenuating functional. Although each compound was a structural isomer of the other, the reactive atomic sites varied for each molecule with the use of an applied basis set. It was concluded that structural shape has some influence on the calculation of PAH characteristics. Lastly, in order to predict DNA single-stranded cleavage factor for the compounds proposed here, we have used the quantitative structure-activity relationship (QSAR). The cleavage factor values for the set of aromatic molecules with similar structures have been collected from the literature for a total number of 22 compounds.


QSAR PAH, Cleavage factor DNA Polycyclic aromatic hydrocarbons 



The authors wish to thank the funding source for this research PREM-DMR-I205194 and NSF CREST-HRD-1547754 along with the Wroclaw Supercomputing and Networking Center and the Mississippi Center for Supercomputing Research, both for their generous allotment of computer time.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Baum E (1978) In: Gelboin H, Ts’O T (eds) Polycyclic aromatic hydrocarbons and cancer, vol 1. Academic Press, New York, pp 45–70Google Scholar
  2. 2.
    Connell DW, Hawker DW, Warne MJ, Vowles PP (1997) In: McCombs K, Starkweather AW (eds) Introduction into environmental chemistry. CRC Press LLC, Boca Raton, pp 205–217Google Scholar
  3. 3.
    Shaw GR, Connell DW (1994). Rev Environ Contam Toxic 135:1–62Google Scholar
  4. 4.
    IARC (1983) Polynuclear aromatic compounds part I: chemical, environmental and experimental data. International Agency for Research on Cancer, LyonGoogle Scholar
  5. 5.
    (1998) National Toxicology Program, P.H.S. US Department of Health and Human Services, 8th Report on Carcinogens, Integrated Laboratory Systems, Inc.: Research Triangle Park, pp.178–181Google Scholar
  6. 6.
    U.S. Department of Health and Human Services, P.H.S., ATSDR (1995) Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs) AtlantaGoogle Scholar
  7. 7.
    Angerer J, Mannschreck C, Gundel J (1997). Int Arch Occup Environ Health 70:365–377CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Angerer J, Mannschreck C, Gundel J (1997). Int Arch Occup Environ Health 69:323–331CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Jongeneelen FJ (1994). Toxicol Lett 72:205–211CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Dabestani R, Ivanov IN (1999). Photochem Photobiol 70:10–34Google Scholar
  11. 11.
    Connell DW, Hawker DW, Warne MJ, Vowles PP (1997) Polycyclic aromatic hydrocarbons (PAHs). In: McCombs K, Starkweather AW (eds) Introduction into environmental chemistry. CRC Press LLC, Boca Raton, pp 205–217Google Scholar
  12. 12.
    Dipple A (1985) Polycyclic aromatic hydrocarbons and carcinogenesis. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  13. 13.
    Warshawsky D (1999). Environ Health Perspect 107:317–320CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Talaska G, Underwood P, Maier A, Lewtas J, Rothman N (1996) Jaeger M. Environ Health Perspect 104:701–908Google Scholar
  15. 15.
    Yang BD (1988) Polycyclic aromatic hydrocarbon carcinogenesis: structure–activity relationships. Silverman, Ed. Vol. II. CRC Press, Boca Raton, pp 37–65Google Scholar
  16. 16.
    Lesko SA (1984) Chemical carcinogenesis: benzopyrene system. Methods Enzymol 105:539–550CrossRefGoogle Scholar
  17. 17.
    RamaKrishna NVS, Devanesan PD, Rogan EG, Cavalieri EL, Jeong H, Jankowiak R, Small GJ (1992). Chem Res Toxicol 5:220–226CrossRefGoogle Scholar
  18. 18.
    Penning TM, Burczynski ME, Hung CF, McCoull KD, Palackal NT, Tsuruda LS (1999). Chem Res Toxicol 12:1–18CrossRefGoogle Scholar
  19. 19.
    Kochevar IE, Dunn A (1990). Bioorg Photochem 1:273Google Scholar
  20. 20.
    Paillous N, Vicendo PJ (1993). Photochem Photobiol B 20:203CrossRefGoogle Scholar
  21. 21.
    Fernandez MJ, Grant KB, Herraiz F, Yang X, Lorente A (2001). Tetrahedron Lett 42:5701–5704CrossRefGoogle Scholar
  22. 22.
    Armitag B (1998). Chem Rev 98:1171CrossRefGoogle Scholar
  23. 23.
    Mezey PG, Zimpel Z, Warburton P, Walker PD, Irvine DG, Huang XD, Dixon DG, Greenberg BM (1998). Environ Toxicol Chem 17:1207–1215Google Scholar
  24. 24.
    Krylov SN, Huang XD, Zeiler LF, Dixon DG, Greenberg BM (1997). Environ Toxicol Chem 16:2283–2295Google Scholar
  25. 25.
    Huang XD, Krylov SN, Ren L, McKonkey BJ, Dixon DG, Greenberg BM (1997). Environ Toxicol Chem 16:2296–2303Google Scholar
  26. 26.
    Mekeyan OG, Ankley GT, Veith GD, Call DJ (1994). Chemosphere 28:567–582CrossRefGoogle Scholar
  27. 27.
    Veith GD, Mekenyan OG, Ankley GT, Call DJ (1995). Chemosphere 30:2129–2142CrossRefGoogle Scholar
  28. 28.
    Dong S, Fu PP, Shirsat RN, Hwang HM, Leszczynski J, Yu H (2002). Chem Res Toxicol 15:400–409CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; D. J. Fox. Gaussian 2009, 2009Google Scholar
  30. 30.
    Yanai T, Tew D, Handy N (2004). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  31. 31.
    McLean AD, Chandler GSJ (1980). Chem Phys 72(10):5639–5648Google Scholar
  32. 32.
    Krishnan R, Binkley JS, Seeger R, Pople JAJ (1980). Chem Phys 72(1):650–654Google Scholar
  33. 33.
    Voronkov E, Rossikhin V, Okovytyy S, Shatckih A, Bolshakov V, Leszczynski J (2012). Int J Quantum Chem 112:2444–2449CrossRefGoogle Scholar
  34. 34.
    Sene L, Converti A, Ribeiro-Secchi GA, Garcia-Simão RC (2010). Braz Arch Biol Technol 53:487–496CrossRefGoogle Scholar
  35. 35.
    Yu H (2002). J Environ Sci Heal Marcel Dekker 10:149–183CrossRefGoogle Scholar
  36. 36.
    Sarmah P, Deka RC (2009). J Comput Aided Mol Des 23:343–354. CrossRefPubMedGoogle Scholar
  37. 37.
    Karelson M, Lobanov VS, Katritzky AR (1996). Chem Rev 96:1027–1044. CrossRefPubMedGoogle Scholar
  38. 38.
    Verma RP, Hansch C (2011). Chem Rev 111:2865–2899. CrossRefPubMedGoogle Scholar
  39. 39.
    Kapusta K, Sizochenko N, Karabulut S, Okovytyy S, Voronkov E, Leszczynski J (2018). J Mol Model 24:59. CrossRefPubMedGoogle Scholar
  40. 40.
    Zabrodsky H, Peleg S, Avnir D (1992). J Am Chem Soc 114:7843–7851. CrossRefGoogle Scholar
  41. 41.
    (2017), KNIME
  42. 42.
    Jones DE, Ghandehari H, Facelli JC (2016). Comput Methods Prog Biomed 132:93–103. CrossRefGoogle Scholar
  43. 43.
    Atkeson C, Moore A, Schaal S (1997) Artifical Intelligence Review, II, pp 11–73Google Scholar
  44. 44.
    Iba W, Langley P (1992) Proc. ninth Int. work. Mach. Learn. Morgan Kaufmann Publishers Inc., San Francisco, pp 233–240 Google Scholar
  45. 45.
    DTC Lab Software Tool:
  46. 46.
    Roy K, Kar, Ambure P (2015). Chem Intell Lab Syst 145:22–29CrossRefGoogle Scholar
  47. 47.
    Gajewicz A (2018). Environ Sci Nano 5:408–421CrossRefGoogle Scholar
  48. 48.
    Richard RM, Herbert JM (2011). J Chem Theory Comput 7:1296–1306CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Roy RK (1999). Bunshi Kozo Sogo Toronkai Koen Yoshishu 1999:34–34Google Scholar
  50. 50.
    Nazari F, Zali FRJ (2007). Mol Struct (Theochem) 817:11–18CrossRefGoogle Scholar
  51. 51.
    Ayers PW, Morrison RC, Roy RKJ (2002). Chem Phys 116:8731–8734Google Scholar
  52. 52.
    Chen ZF, Qin QP, Qin JL, Zhou J, Li YL, Li N, Liu YC, Liang H (2015). J Med Chem 58:4771–4789CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interdisciplinary Center for Nanotoxicity, Department of Chemistry and BiochemistryJackson State UniversityJacksonUSA

Personalised recommendations