Advertisement

Influence of heteroelement on dipole and quadrupole moments of a series of three-membered rings containing a second, third, fourth, or fifth-row atom: a theoretical investigation

  • Angel H. Romero
Original Research
  • 53 Downloads

Abstract

The influence of heteroelements on the molecular dipole and traceless quadrupole moments of a series of twenty-two three-membered rings (1–22) was theoretically estimated employing levels of theory such as MP2, CCSD, and PBE1PBE in combination with standard Pople’s basis set. To an accurate evaluation of these properties, additional calculations on the optimized geometries were performed using the correlation-consistent cc-pVDZ and aug-cc-pVDZ basis sets on the three mentioned methods. In particular, the dipole and quadrupole moments from MP2 and CCSD approaches are comparable to each other for the studied molecules, while PBE1PBE calculations were significantly deviated compared to MP2 and CCSD levels. High level of theory and large basis sets seemed to be needed to obtain reliable electrical properties in the heterocycles containing heavy atoms. Results demonstrated that the dipole and quadrupole moments are strongly determined by the nature of the heteroatom into ring skeleton, and its magnitude depends on the polarity of C-heteroelement bond. Dipole moment of these molecules 1–22 showed a clear increase with the increase of electronegativity and the atomic size of heteroatom into ring skeleton. Then, high relative dipole moment was found for three-membered rings containing II, IIIA, VIA, and VIIA elements, which is associated to the high polarization of the C-heteroatom bond. A similar behavior was observed for the quadrupole moments of these three-membered rings.

Keywords

Three-membered heterocycles Dipole moment Quadrupole moment Level of theory Basis sets 

Notes

Acknowledgments

The author thanks to the Cátedra de Química (Facultad de Farmacia, Universidad Central de Venezuela, Caracas) and Ms. Evangelina Cordero for facilitating computers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2018_1190_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 34 kb)

References

  1. 1.
    Gray CG, Gubbins KE (1984) Theory of molecular fluids, vol 1. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Buckingham AD (1978) In: Pullman B (ed) Intermolecular interactions: from diatomics to biopolymers. Wiley, New York, p 1Google Scholar
  3. 3.
    Maitland GC, Rigby M, Smith EB, Wakeham WA (1981) Intermolecular forces. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Stone AJ (1996) The theory of intermolecular forces. Clarendon Press, OxfordGoogle Scholar
  5. 5.
    Buckingham AD (1967) Adv Chem Phys 12:107Google Scholar
  6. 6.
    Lykke KR, Neumark DM, Andersen T, Trapa VJ, Lineberger WC (1987) J Chem Phys 87:6842.  https://doi.org/10.1063/1.453379 CrossRefGoogle Scholar
  7. 7.
    Wang XB, Wang LS (1999) Nature 400:245CrossRefGoogle Scholar
  8. 8.
    Wang XB, Ding CF, Wang LS (1999) Chem Phys Lett 307:391.  https://doi.org/10.1016/S0009-2614(99)00543-6 CrossRefGoogle Scholar
  9. 9.
    Boltalina OV, Hvelplund P, Jorgensen TJD, Larsen MC, Larsson MO, Sharoitchenko DA (2000) Phys Rev A 62:023202.  https://doi.org/10.1103/PhysRevA.62.023202 CrossRefGoogle Scholar
  10. 10.
    Larsson MO, Hvelplund P, Larsen MC, Shen H, Cederquist H, Schmidt HT (1998) Int J Mass Spectrom Ion Process 177:51CrossRefGoogle Scholar
  11. 11.
    Garau C, Frontera A, Quinonero D, Ballester P, Costa A, Deya PM (2003) Chem Phys Chem 4:1344.  https://doi.org/10.1002/cphc.200300886 CrossRefPubMedGoogle Scholar
  12. 12.
    Ma JC, Dougherty DA (1997) Chem Rev 97:1303.  https://doi.org/10.1021/cr9603744 CrossRefPubMedGoogle Scholar
  13. 13.
    Abascal JLF, Vega C (2007) J Phys Chem 111:15811.  https://doi.org/10.1021/jp074418w CrossRefGoogle Scholar
  14. 14.
    Luhmer M, Bartik K, Dajaegere A, Bovy P, Reisse J (1994) Bull Soc Chim Fr 131:603.  https://doi.org/10.1002/cber.19931260419 CrossRefGoogle Scholar
  15. 15.
    Honig B, Nicholls A (1995) Science 268:1144.  https://doi.org/10.1126/science.7761829 CrossRefPubMedGoogle Scholar
  16. 16.
    Magnasco V, Costa C, Figari G (1989) Chem Phys Lett 160:469.  https://doi.org/10.1016/0009-2614(89)80049-1 CrossRefGoogle Scholar
  17. 17.
    Buckingham AD, Fowler PW (1988) J Mol Struct 189:203.  https://doi.org/10.1016/0022-2860(88)80225-4 CrossRefGoogle Scholar
  18. 18.
    Gordy W, Cook RL (1984) Microwave molecular spectra. Wiley, New YorkGoogle Scholar
  19. 19.
    McClellan AL (1989) Tables of experimental dipole moments, vol 3. Rahara Enterprises, El CerritoGoogle Scholar
  20. 20.
    DeLeon RL, Muenter JS (1984) J Chem Phys 80:3992.  https://doi.org/10.1063/1.447270 CrossRefGoogle Scholar
  21. 21.
    Gierszal S, Galica J, MisKuzminnska E (2003) Phys Scr 67:525.  https://doi.org/10.1238/Physica.Regular.069a00403 CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Poll JD, Wolniewicz L (1978) J Chern Phys 68:3053.  https://doi.org/10.1063/1.436171 CrossRefGoogle Scholar
  24. 24.
    Flygare WH, Benson RC (1971) Mol Phys 20:225.  https://doi.org/10.1080/00268977100100221 CrossRefGoogle Scholar
  25. 25.
    Cohen ER, Birnbaum G (1975) J Chem Phys 62:3807.  https://doi.org/10.1063/1.430932 CrossRefGoogle Scholar
  26. 26.
    Ritchie GLD (1997) In: Clary DC, Orr B (eds) Optical, electric and magnetic properties of molecules. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Buckingham AD (1959) J Chem Phys 30:1580.  https://doi.org/10.1063/1.1730242 CrossRefGoogle Scholar
  28. 28.
    Buckingham AD, Longuet-Higgins HC (1968) Mol Phys 14:63.  https://doi.org/10.1080/00268976800100051 CrossRefGoogle Scholar
  29. 29.
    Buckingham AD, Disch RL, Dunmur DA (1968) J Am Chem Soc 90:3104.  https://doi.org/10.1021/ja01014a022 CrossRefGoogle Scholar
  30. 30.
    Sutter DH, Flygare WH (1976) Top Curr Chem 63:89CrossRefGoogle Scholar
  31. 31.
    Spackman MA (1992) Chem Rev 92:1769.  https://doi.org/10.1021/cr00016a005 CrossRefGoogle Scholar
  32. 32.
    Aynacioglu AS, Heumann S, Von Oppen G (1990) Phys Rev Lett 64:1879.  https://doi.org/10.1103/PhysRevLett.64.1879 CrossRefPubMedGoogle Scholar
  33. 33.
    Lide DR (1998) Chapter 9) Handbook of chemistry and physics79th edn. CRC Press, New York, pp 42–50Google Scholar
  34. 34.
    Graham C, Imrie DA, Raab RE (1998) Mol Phys 93:49CrossRefGoogle Scholar
  35. 35.
    Russell AJ, Spackman MA (1997) Mol Phys 90:251CrossRefGoogle Scholar
  36. 36.
    Doerksen RJ, Thakkar AJ (1999) J Phys Chem A 103:10009CrossRefGoogle Scholar
  37. 37.
    Spoerel U, Dreizler H, Stahl W, Kraka E, Cremer D (1996) J Phys Chem 100:14298CrossRefGoogle Scholar
  38. 38.
    Heard GL, Boyd RJ (1997) Chem Phys Lett 277:252CrossRefGoogle Scholar
  39. 39.
    Palmer MH, McNab H, Reed D, Pollacchi A, Walker IC, Guest MF, Siggel MRF (1997) Chem Phys 214:191CrossRefGoogle Scholar
  40. 40.
    Palmer MH, McNab H, Walker IC, Guest MF, MacDonald M, Siggel MRF (1998) Chem Phys 228:39CrossRefGoogle Scholar
  41. 41.
    Dorothy J, Gearhart J, Harrison F, Hunt CK (2003) Int J Quantum Chem 95:697CrossRefGoogle Scholar
  42. 42.
    Batista ER, Xantheas SS, Jónsson H (1998) J Chem Phys 109:4546CrossRefGoogle Scholar
  43. 43.
    Mitxelena I, Piris M (2016) J Chem Phys 144:204108CrossRefGoogle Scholar
  44. 44.
    Glaser R, Wu Z, Lewis M (2000) J Mol Struct 556:131CrossRefGoogle Scholar
  45. 45.
    Bundgen P, Grein F, Thakkar AJ (1994) J Mol Struct 334:7CrossRefGoogle Scholar
  46. 46.
    Junquera-Hernández JM, Sánchez-Marín J, Maynau D (2002) Chem Phys Lett 359:343CrossRefGoogle Scholar
  47. 47.
    Piris M, Ugalde JM (2014) Int J Quantum Chem 114:1169CrossRefGoogle Scholar
  48. 48.
    Pernal K, Giesbertz KJH (2016) Top Curr Chem 368:125CrossRefGoogle Scholar
  49. 49.
    Kalugina YN, Cherepanov VN (2015) Atmos Ocean Opt 28:406CrossRefGoogle Scholar
  50. 50.
    Tanner D (1994) Chirale Aziridine-Herstellung und stereoselektive Transformationen. Angew Chem 106:625–646.  https://doi.org/10.1002/ange.19941060604 CrossRefGoogle Scholar
  51. 51.
    Osborn HMI, Sweeney J (1997) The asymmetric synthesis of aziridines. Tetrahedron Asymmetry 8:1693–1715.  https://doi.org/10.1016/S0957-4166(97)00177-8 CrossRefGoogle Scholar
  52. 52.
    Shi M, Liu JM, Wei Y, Shao LX (2012) Rapid generation of molecular complexity in the Lewis or Brønsted acid-mediated reactions of methylenecyclopropanes. Acc Chem Res 45:641–652CrossRefGoogle Scholar
  53. 53.
    Parsons AT, Smith AG, Neel AN, Johnson JS (2010) Dynamic kinetic asymmetric synthesis of substituted pyrrolidines from racemic cyclopropanes and aldimines: reaction development and mechanistic insights. J Am Chem Soc 132:9688–9692.  https://doi.org/10.1021/ja1032277 CrossRefPubMedGoogle Scholar
  54. 54.
    Maghsoodlou MT, Khorassani SMH, Heydari R, Charati FR, Hazeri N, Lashkari M, Rostamizadeh M, Marandi G, Sobolev A, Makha M (2009) Highly stereoselective construction of functionalized cyclopropanes from the reaction between acetylenic esters and C–H acids in the presence of triphenylarsine. Tetrahedron Lett 50:4439–4442.  https://doi.org/10.1016/j.tetlet.2009.05.051 CrossRefGoogle Scholar
  55. 55.
    Rappoport Z (ed) (1995) The chemistry of the cyclopropyl group. Willey, ChichesterGoogle Scholar
  56. 56.
    Weissberger A, Taylor EC (eds) (1985) Chemistry of heterocyclic compounds: small ring heterocycles, part 3: oxiranes, arene oxides, oxaziridines, dioxetanes, thietanes, thietes, thiazetes, and others, vol. 42. Wiley, New YorkGoogle Scholar
  57. 57.
    Majumdar KC, Chattopadhyay SK (eds) (2011) Heterocycles in natural product synthesis. Wiley, WeinheimGoogle Scholar
  58. 58.
    Bernal I, Levendis DC, Fuchs R, Reisner GM, Cassidy JM (1997) Crystal structures of phenyl-substituted cyclopropanes. IV. The crystal structure (at 21‡C and −100‡C) and the phenyl ring conformation in 4-cyclopropylacetanilide. Struct Chem 8:275–285.  https://doi.org/10.1007/BF02252971 CrossRefGoogle Scholar
  59. 59.
    Liu XH, Weng JQ, Tan CX (2013) J Chem ID 306361 1–6Google Scholar
  60. 60.
    Knauer L, Golz C, Strohmann C (2015) Crystal structure of 1-[(2,4,6-triisopropylphenyl)sulfonyl]aziridine. Acta Crystallogr E Crystallogr Commun 71:438–439.  https://doi.org/10.1107/S2056989015010221 CrossRefGoogle Scholar
  61. 61.
    Buijnsters PJJA, Van der Reijen FP, Feiters MC, De Gelder R, Sommerdijk NAJM, Nolte RJM, Zwanenburg B (1999) Synthesis and crystal structure of (+)-(2R,3R)-N, N′-bis-trityl-2,3-bis-aziridine. J Chem Crystallogr 29:179–183.  https://doi.org/10.1023/A:100951801035 CrossRefGoogle Scholar
  62. 62.
    Sankar T, Raju P, Mohanakrishnan AK, Naveen S, Lokanath NK, Gunasekaran K (2015) Crystal structure of 2,3-bis(5-bromo-4-fluoro-2-nitrophenyl) oxirane. Struct Chem Cryst Commun 1(1–3) http://structural-crystallography.imedpub.com/crystal-structure-of-23bis5bromo4fluoro2nitrophenyl-oxirane.php?aid=7262
  63. 63.
    Savithri MP, Yuvaraj PS, Reddy BSR, Rajac R, SubbiahPandic A (2015) Crystal structure of methyl 1-methyl-2-oxospiro[indoline-3,2′-oxirane]-3′-carboxylate. Acta Crystallogr E Crystallogr Commun 71:o274–o275.  https://doi.org/10.1107/S2056989015006398 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yudin AK (ed) (2006) Aziridines and epoxides in organic synthesis. Wiley, New YorkGoogle Scholar
  65. 65.
    Vansteenkiste P, Van Specybroeck V, Verniest G, De Kimpe N, Waroquier M (2007) J Phys Chem A 111:2797CrossRefGoogle Scholar
  66. 66.
    Romero A (2016) Mol Phys 114:3040CrossRefGoogle Scholar
  67. 67.
    Romero A, Squitieri E (2016) Mol Phys 114:2232CrossRefGoogle Scholar
  68. 68.
    Romero A (2016) A theoretical conformational study on the structural parameters involved in the ring strain of exo-unsaturated four-membered heterocycles, Y=CCH2CH2X. Mol Phys 114:3040–3054.  https://doi.org/10.1080/00268976.2016.1213912 CrossRefGoogle Scholar
  69. 69.
    Romero A, Squitieri E (2016) Effect of heterosubstituent and ring puckering angle on linear and nonlinear properties of exo-insaturated four-membered heterocycles, Y=CCH2CH2X: a comparative ab initio, DFT and semi-empirical study. Mol Phys 114:2232–2247CrossRefGoogle Scholar
  70. 70.
    Romero A, Squitieri E (2016) Potential use of small basis set on the calculations of electronic properties of some four-membered heterocycles: a conformational study. Mol Phys 115:261–277.  https://doi.org/10.1080/00268976.2016.1256506 CrossRefGoogle Scholar
  71. 71.
    Romero A (2017) Calculations of molecular multipole electric moments of a series of exo-insaturated four-membered heterocycles, Y= CCH2CH2X. Mol Phys 115:2528–2546.  https://doi.org/10.1080/00268976.2017.1333646 CrossRefGoogle Scholar
  72. 72.
    Besseau F, Lucon M, Laurence C, Berthelot M (1998) J Chem Soc Perkin Trans 2:101CrossRefGoogle Scholar
  73. 73.
    Besseau F, Laurence C, Berthelot M (1994) J Chem Soc Perkin Trans 2:48Google Scholar
  74. 74.
    WuitschiK G, Rogers-Evans M, Muller K, Fischer H, Wagner B, Schuler F, Polonchuk L, Carreira EM (2006) Angew Chem Int Ed 45:7736CrossRefGoogle Scholar
  75. 75.
    Burkhard JA, Wuitschik G, Rogers-Evans M, Muller K, Carreira EM (2010) Angew Chem Int Ed 49:9052CrossRefGoogle Scholar
  76. 76.
    Berthelot M, Besseau F, Laurence C (1998) Eur J Org Chem 101:925CrossRefGoogle Scholar
  77. 77.
    Romero AH (2018) Struct Chem.  https://doi.org/10.1007/s11224-018-1139-8
  78. 78.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03W, Revision D.01. Gaussian, Inc, PittsburghGoogle Scholar
  79. 79.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many electron systems. Phys Rev 46:618–622.  https://doi.org/10.1103/PhysRev.46.618 CrossRefGoogle Scholar
  80. 80.
    Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley, New YorkCrossRefGoogle Scholar
  81. 81.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170.  https://doi.org/10.1063/1.478522 CrossRefGoogle Scholar
  82. 82.
    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78:1396.  https://doi.org/10.1103/PhysRevLett.78.1396 CrossRefGoogle Scholar
  83. 83.
    Bartlett RJ (2010) The coupled-cluster revolution. Mol Phys 108:2905–2920.  https://doi.org/10.1080/00268976.2010.531773 CrossRefGoogle Scholar
  84. 84.
    Bartlett RJ, Musial M (2007) Coupled-cluster theory in quantum chemistry. Rev Mod Phys 79:291.  https://doi.org/10.1103/RevModPhys.79.291 CrossRefGoogle Scholar
  85. 85.
    Bartlett RJ (2005, ch. 42) In: Dykstra C et al (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, New York, pp 1191–1221CrossRefGoogle Scholar
  86. 86.
    Crawford TD, Schaefer HF (2000, ch. 2) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 14. VCH Publishers, New York, pp 33–136Google Scholar
  87. 87.
    Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76:1910.  https://doi.org/10.1063/1.443164 CrossRefGoogle Scholar
  88. 88.
    Peterson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Manzaris J (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89:2193.  https://doi.org/10.1063/1.455064 CrossRefGoogle Scholar
  89. 89.
    Peterson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys 94:6081.  https://doi.org/10.1063/1.460447 CrossRefGoogle Scholar
  90. 90.
    Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007.  https://doi.org/10.1063/1.456153 CrossRefGoogle Scholar
  91. 91.
    McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J Chem Phys 72:5639–5648.  https://doi.org/10.1063/1.438980 CrossRefGoogle Scholar
  92. 92.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654.  https://doi.org/10.1063/1.438955 CrossRefGoogle Scholar
  93. 93.
    Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–947.  https://doi.org/10.1021/ja00523a008 CrossRefGoogle Scholar
  94. 94.
    Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1982) Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J Am Chem Soc 104:2797–2803.  https://doi.org/10.1021/ja00374a017 CrossRefGoogle Scholar
  95. 95.
    Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195CrossRefGoogle Scholar
  96. 96.
    Hofinger S, Wendland M (2002) Int J Quantum Chem 86:199CrossRefGoogle Scholar
  97. 97.
    De Proft F, Tielens F, Geerlings P (2000) J Mol Struct (Theochem) 506:1–8CrossRefGoogle Scholar
  98. 98.
  99. 99.
    Kalugina YN, Thakkar AJ (2016) Chem Phys Lett 644:20CrossRefGoogle Scholar
  100. 100.
  101. 101.
    Hohm U (2006) J Chem Phys 124:124312CrossRefGoogle Scholar
  102. 102.
    Maroulis G, Pouchan C (1996) Theor Chim Acta 93:131CrossRefGoogle Scholar
  103. 103.
    Maroulis G (2003) J Mol Struct (Theochem) 633:177–197CrossRefGoogle Scholar
  104. 104.
    Bundgen P, Grein F, Thakkar AJ (1995) J Mol Struct (Theochem) 334:7–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cátedra de Química General, Facultad de FarmaciaUniversidad Central de VenezuelaCaracasVenezuela

Personalised recommendations