Structural Chemistry

, Volume 30, Issue 2, pp 425–434 | Cite as

Ammonium cyamelurates: synthesis and crystalline structures

  • A. S. Bushmeleva
  • V. A. Tafeenko
  • V. N. Zakharov
  • A. A. Lobova
  • Leonid A. AslanovEmail author
Original Research


Contradictory literature on the alkali-assisted exfoliation of the melon and searching for the best precursors for different heptazine derivative synthesis led us to the synthesis of two cyameluric acid salts, (NH4)2[C6N7O3H] (ECN3) and (NH4)2(H9O4)[C6N7O3] (ECN5). These salts were characterized by single-crystal X-ray diffractometry for the first time. Ammonium cations bind C6N7O3H2− anions (ECN3) by means of Coulombic compression and hydrogen bonds. In ECN5, stability of the columns consisting of C6N7O33− anion triads is provided by Coulombic compression and hydrogen bonds between anions, ammonium cations, and hydroxonium (H9O4+). The planar cyamelurate anions of one triad are located strictly above each other with the distance of 3.710(3) Å between the neighbor anions. Each triad is twisted relative to the adjacent one by an angle of 60° and is distant by 3.605(3) Å.


Melon Ammonium cyamelurate Structure Hydrogen bonds 



This work (XRD study) was supported in part by the M. V. Lomonosov Moscow State University Program of Development. The authors are grateful to V. V. Chernyshev for his kind assistance with the XRD experiment.

Compliance with ethical standards

We did not violate any ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chen DH (2017) SCRustainable water technologies. Boca Raton: Taylor & Francis, CRC PressGoogle Scholar
  2. 2.
    Yin S, Han J, Zhou T, Xu R (2015) Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications. Catal Sci Technol 5:5048–5061CrossRefGoogle Scholar
  3. 3.
    Deng Y, Tang L, Zeng G, Zhu Z, Yan M, Zhou Y, Wang J, Liu Y, Wang J (2017) Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism. Appl Catal B Environ 203:343–354CrossRefGoogle Scholar
  4. 4.
    Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123CrossRefGoogle Scholar
  5. 5.
    Biswas T, Mahalingam V (2017) g-C3N4 and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditions. New J Chem 41:14839–14842CrossRefGoogle Scholar
  6. 6.
    Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F (2015) Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. J Membr Sci 490:72–83CrossRefGoogle Scholar
  7. 7.
    Wang A, Wang C, Fu L, Wong-Ng W, Lan Y (2017) Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett 9:47CrossRefGoogle Scholar
  8. 8.
    Tian J, Liu Q, Asiri AM, Suna X, He Y (2015) Ultrathin graphitic C3N4 nanofibers: hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+. Sensors Actuators B 216:453–460CrossRefGoogle Scholar
  9. 9.
    Kessler FK, Zheng Y, Schwarz D, Merschjann C, Schnick W, Wang X, Bojdys MJ (2017) Functional carbon nitride materials – design strategies for electrochemical devices. Nat Rev Mater 2:17030CrossRefGoogle Scholar
  10. 10.
    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRefGoogle Scholar
  11. 11.
    Liang Q, Li Z, Huang Z-H, Kang F, Yang Q-H (2015) Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv Funct Mater 25:6885–6892CrossRefGoogle Scholar
  12. 12.
    Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M (2009) Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681CrossRefGoogle Scholar
  13. 13.
    Shi L, Wang F, Liang L, Chen K, Liu M, Zhu R, Sun J (2017) In site acid template induced facile synthesis of porous graphitic carbon nitride with enhanced visible-light photocatalytic activity. Catal Commun 89:129–132CrossRefGoogle Scholar
  14. 14.
    Liu G, Wang T, Zhang H, Meng X, Hao D, Chang K, Li P, Kako T, Ye J (2015) Nature-inspired environmental “phosphorylation” boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation. Angew Chem Int Ed 54:13561–13565CrossRefGoogle Scholar
  15. 15.
    Ding Z, Chen X, Antonietti M, Wang X (2011) Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. ChemSusChem 4:274–281Google Scholar
  16. 16.
    Zhang Y, Mori T, Ye J, Antonietti M (2010) Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J Am Chem Soc 132:6294–6295CrossRefGoogle Scholar
  17. 17.
    Liu G, Niu P, Sun C, Smith SC, Chen Z, Lu GQ, Cheng H-M (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648CrossRefGoogle Scholar
  18. 18.
    Han Q, Hu C, Zhao F, Zhang Z, Chen N, Qu L (2015) One-step preparation of iodine-doped graphitic carbon nitride nanosheets as efficient photocatalysts for visible light water splitting. J Mater Chem A 3:4612–4619CrossRefGoogle Scholar
  19. 19.
    Zhou L, Wang L, Zhang J, Lei J, Liu Y (2016) Well-dispersed Fe2O3 nanoparticles on g-C3N4 for efficient and stable photo-Fenton photocatalysis under visible-light irradiation. Eur J Inorg Chem 2016:5387–5392CrossRefGoogle Scholar
  20. 20.
    Qiu J, Feng Y, Zhang X, Zhang X, Jia M, Yao J (2017) Facile stir-dried preparation of g-C3N4/TiO2 homogeneous composites with enhanced photocatalytic activity. RSC Adv 7:10668–10674CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Mori T, Niu L, Ye J (2011) Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy Environ Sci 4:4517–4521CrossRefGoogle Scholar
  22. 22.
    Wang Y, Shi R, Lin J, Zhu Y (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922–2929CrossRefGoogle Scholar
  23. 23.
    Mori K, Itoh T, Kakudo H, Iwamoto T, Masui Y, Onaka M, Yamashita H (2015) Nickel-supported carbon nitride photocatalyst combined with organic dye for visible-light-driven hydrogen evolution from water. Phys Chem Chem Phys 17:24086–24091CrossRefGoogle Scholar
  24. 24.
    Sankir M, Sankir ND (2017) Hydrogen production technologies (Advances in hydrogen production and storage (AHPS)), 1 edn. Wiley-Scrivener, p 656Google Scholar
  25. 25.
    Han Q, Wang B, Gao J, Cheng Z, Zhao Y, Zhang Z, Qu L (2016) Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10:2745–2751CrossRefGoogle Scholar
  26. 26.
    Zou L-R, Huang G-F, Li D-F, Liu J-H, Pana A-L, Huang W-Q (2016) A facile and rapid route for synthesis of g-C3N4 nanosheets with high adsorption capacity and photocatalytic activity. RSC Adv 6:86688–86694CrossRefGoogle Scholar
  27. 27.
    Iqbal W, Qiu B, Lei J, Wang L, Zhang J, Anpo M (2017) One-step large-scale highly active g-C3N4 nanosheets for efficient sunlight-driven photocatalytic hydrogen production. Dalton Trans 46:10678–10684CrossRefGoogle Scholar
  28. 28.
    Dong X, Cheng F (2015) Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J Mater Chem A 3:23642–23652CrossRefGoogle Scholar
  29. 29.
    Stagi L, Chiriu D, Carbonaro CM, Corpino R, Ricci PC (2016) Structural and optical properties of carbon nitride polymorphs. Diam Relat Mater 68:84–92CrossRefGoogle Scholar
  30. 30.
    Zhao F, Cheng H, Hu Y, Song L, Zhang Z, Jiang L, Qu L (2014) Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing. Sci Rep 4:5882CrossRefGoogle Scholar
  31. 31.
    Xu J, Zhang L, Shi R, Zhu Y (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Mater Chem A 1:14766–14772CrossRefGoogle Scholar
  32. 32.
    Li G, Li L, Yuan H, Wang H, Zeng H, Shi J (2017) Alkali-assisted mild aqueous exfoliation for single-layered and structure-preserved graphitic carbon nitride nanosheets. J Colloid Interface Sci 495:19–26CrossRefGoogle Scholar
  33. 33.
    Holst JR (2009) Synthesis of inorganic heptazine-based materials. PhD thesis, University of Iowa,
  34. 34.
    Sattler A, Schnick W (2006) Kristallstruktur von Natrium-Dihydrogencyamelurat-Tetrahydrat Na[H2(C6N7)O3]·4H2O. Z Anorg Allg Chem 632:531–533CrossRefGoogle Scholar
  35. 35.
    Horvath-Bordon E, Kroke E, Svoboda I, Fueß H, Riedel R, Neeraj S, Cheetham AK (2004) Alkalicyamelurates, M3[C6N7O3]·xH2O, M = Li, Na, K, Rb, Cs: UV-luminescent and thermally very stable ionic tri-s-triazine derivatives. Dalton Trans (22):3900–3908Google Scholar
  36. 36.
    El-Gamel NEA, Seyfarth L, Wagler J, Ehrenberg H, Schwarz M, Senker J, Kroke E (2007) The tautomeric forms of cyameluric acid derivatives. Chem Eur J 13:1158–1173CrossRefGoogle Scholar
  37. 37.
    Braml NE, Schnick W (2013) New heptazine based materials with a divalent cation – Sr[H2C6N7O3]2·4H2O and Sr[HC6N7(NCN)3]·7H2O. Z Anorg Allg Chem 639:275–279CrossRefGoogle Scholar
  38. 38.
    Komatsu T (2001) The first synthesis and characterization of cyameluric high polymers. Macromol Chem Phys 202:19–25CrossRefGoogle Scholar
  39. 39.
    Sattler A, Budde MR, Schnick W (2009) Metal(II) Cyamelurates prepared from aqueous ammonia. Z Anorg Allg Chem 635:1933–1939CrossRefGoogle Scholar
  40. 40.
    Wagler J, El-Gamel NEA, Kroke E (2006) The structure and tautomerism of cyameluric acid. Z Naturforschung B 61:975–978CrossRefGoogle Scholar
  41. 41.
    Alkorta I, Jagerovic N, Elguero J (2004) Theoretical study of cyameluric acid and related compounds. ARKIVOC 4:130–136Google Scholar
  42. 42.
    Zhang W, Zhang Q, Dong F, Zhao Z (2013) The multiple effects of precursors on the properties of polymeric carbon nitride. Int J Photoenergy 2013:685038Google Scholar
  43. 43.
    Dyjak S, Kiciński W, Huczko A (2015) Thermite-driven melamine condensation to CxNyHz graphitic ternary polymers: towards an instant, large-scale synthesis of g-C3N4. J Mater Chem A 3:9621–9631CrossRefGoogle Scholar
  44. 44.
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122CrossRefGoogle Scholar
  45. 45.
    Brandenburg K (2000) DIAMOND, Release 2.1d. Crystal Impact GbR, BonnGoogle Scholar
  46. 46.
    Smolin EM, Rapoport L (1959) The chemistry of heterocyclic compounds: s-triazines and derivatives. Interscience Publishers INC, New YorkCrossRefGoogle Scholar
  47. 47.
    Dunitz JD, Gavezzotti A, Rizzato S (2014) “Coulombic compression”, a pervasive force in ionic solids. A study of anion stacking in croconate salts. Cryst Growth Des 14:357–366CrossRefGoogle Scholar
  48. 48.
    Tafeenko VA, Gurskiy SI (2016) Disorder for the sake of order. Cryst Growth Des 16:940–945CrossRefGoogle Scholar
  49. 49.
    Knight C, Voth GA (2012) The curious case of the hydrated proton. Acc Chem Res 45:101–109CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations