Advertisement

Structural Chemistry

, Volume 30, Issue 1, pp 137–150 | Cite as

Structural diversity of metallacycle intermediates for ethylene dimerization on heterogeneous NiMCM-41 catalyst: a quantum chemical perspective

  • Mehdi Ghambarian
  • Mohammad GhashghaeeEmail author
  • Zahra AziziEmail author
  • Mahboobeh Balar
Original Research
  • 62 Downloads

Abstract

Nanocluster models were investigated to explore the diversity of metallacycle intermediates for ethylene dimerization over NiMCM-41 at B3LYP/6-311+G* and M06/Def2-TZVP. The thermodynamic favorability of the formation of matallacycle with respect to the ring size of silica varied in the sequence of 6T < 3T < 2T < 5T < 4T in terms of Gibbs free energy (ranging from − 10.01 to 16.66 kcal/mol at B3LYP/6-311+G*). The reaction cycle faced lower barriers on 3T and 2T clusters, however. The formation of the intermediate and π complexation of 1-butene led to positive total charges on the hydrocarbon segment of the complex, being maximized on four-membered sites and minimized on two-membered ones. Further insights are also provided with QTAIM, frontier orbital, and FTIR analyses.

Keywords

Metallacycle Dimerization Nickel DFT Nanocluster Thermochemistry Ethylene Structure Thermodynamics Energetics Catalyst Butene Kinetics Energy barrier Free energy span MCM-41 Silica Oligomerization Petrochemistry NBO AIM Molecular orbital Olefin 

Notes

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2018_1184_MOESM1_ESM.pdf (109 kb)
ESM 1 (PDF 109 kb)

References

  1. 1.
    Ghashghaee M, Shirvani S (2018) Two-step thermal cracking of an extra-heavy fuel oil: experimental evaluation, characterization, and kinetics. Ind Eng Chem Res 57(22):7421–7430.  https://doi.org/10.1021/acs.iecr.8b00819 CrossRefGoogle Scholar
  2. 2.
    Karimzadeh R, Godini HR, Ghashghaee M (2009) Flowsheeting of steam cracking furnaces. Chem Eng Res Des 87:36–46.  https://doi.org/10.1016/j.cherd.2008.07.009 CrossRefGoogle Scholar
  3. 3.
    Karimzadeh R, Ghashghaee M, Nouri M (2010) Effect of solvent dearomatization and operating conditions in steam pyrolysis of a heavy feedstock. Energy Fuel 24(3):1899–1907CrossRefGoogle Scholar
  4. 4.
    Karimzadeh R, Ghashghaee M (2008) Design of a flexible pilot plant reactor for the steam cracking process. Chem Eng Technol 31(2):278–286.  https://doi.org/10.1002/ceat.200700326 CrossRefGoogle Scholar
  5. 5.
    Ghashghaee M, Karimzadeh R (2011) Multivariable optimization of thermal cracking severity. Chem Eng Res Des 89(7):1067–1077.  https://doi.org/10.1016/j.cherd.2010.12.002 CrossRefGoogle Scholar
  6. 6.
    Ghashghaee M, Karimzadeh R (2007) Dynamic modeling and simulation of steam cracking furnaces. Chem Eng Technol 30(7):835–843.  https://doi.org/10.1002/ceat.200700028 CrossRefGoogle Scholar
  7. 7.
    Shirvani S, Ghashghaee M (2018) Combined effect of nanoporous diluent and steam on catalytic upgrading of fuel oil to olefins and fuels over USY catalyst. Pet Sci Technol 36(11):750–755.  https://doi.org/10.1080/10916466.2018.1445104 CrossRefGoogle Scholar
  8. 8.
    Jafari Fesharaki M, Ghashghaee M, Karimzadeh R (2013) Comparison of four nanoporous catalysts in thermocatalytic upgrading of vacuum residue. J Anal Appl Pyrolysis 102:97–102CrossRefGoogle Scholar
  9. 9.
    Ghashghaee M, Shirvani S, Ghambarian M, Eidi A (2018) Two-stage thermocatalytic upgrading of fuel oil to olefins and fuels over a nanoporous hierarchical acidic catalyst. Pet Sci Technol.  https://doi.org/10.1080/10916466.10912018.11463257
  10. 10.
    Hajheidary M, Ghashghaee M, Karimzadeh R (2013) Olefins production from LPG via dehydrogenative cracking over three ZSM-5 catalysts. J Sci Ind Res 72(12):760–766Google Scholar
  11. 11.
    Ghashghaee M, Karimzadeh R (2013) Applicability of protolytic mechanism to steady-state heterogeneous dehydrogenation of ethane revisited. Microporous Mesoporous Mater 170:318–330.  https://doi.org/10.1016/j.micromeso.2012.12.005 CrossRefGoogle Scholar
  12. 12.
    Breuil P-AR, Magna L, Olivier-Bourbigou H (2015) Role of homogeneous catalysis in oligomerization of olefins: focus on selected examples based on group 4 to group 10 transition metal complexes. Catal Lett 145(1):173–192.  https://doi.org/10.1007/s10562-014-1451-x CrossRefGoogle Scholar
  13. 13.
    Ghashghaee M (2018) Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins. Rev Chem Eng 34(5):595–655.  https://doi.org/10.1515/revce-2017-0003
  14. 14.
    Balcar H, Čejka J (2013) Mesoporous molecular sieves as advanced supports for olefin metathesis catalysts. Coord Chem Rev 257(21–22):3107–3124.  https://doi.org/10.1016/j.ccr.2013.07.026 CrossRefGoogle Scholar
  15. 15.
    Martínez A, Arribas MA, Concepción P, Moussa S (2013) New bifunctional Ni–H-Beta catalysts for the heterogeneous oligomerization of ethylene. Appl Catal A Gen 467:509–518.  https://doi.org/10.1016/j.apcata.2013.08.021 CrossRefGoogle Scholar
  16. 16.
    Ghashghaee M, Farzaneh V (2018) Nanostructured hydrotalcite-supported RuBaK catalyst for direct conversion of ethylene to propylene. Russ J Appl Chem 91(6):970–974.  https://doi.org/10.1134/S1070427218060149
  17. 17.
    Andrei RD, Popa MI, Fajula F, Hulea V (2015) Heterogeneous oligomerization of ethylene over highly active and stable Ni-AlSBA-15 mesoporous catalysts. J Catal 323:76–84.  https://doi.org/10.1016/j.jcat.2014.12.027 CrossRefGoogle Scholar
  18. 18.
    Andrei RD, Mureseanu M, Popa MI, Cammarano C, Fajula F, Hulea V (2015) Ni-exchanged AlSBA-15 mesoporous materials as outstanding catalysts for ethylene oligomerization. Eur Phys J Spec Top 224(9):1831–1841.  https://doi.org/10.1140/epjst/e2015-02502-0 CrossRefGoogle Scholar
  19. 19.
    Zhang H, Li X, Zhang Y, Lin S, Li G, Chen L, Fang Y, Xin H, Li X (2014) Ethylene oligomerization over heterogeneous catalysts. Energ Environ Focus 3(3):246–256.  https://doi.org/10.1166/eef.2014.1107 CrossRefGoogle Scholar
  20. 20.
    Tanaka M, Itadani A, Kuroda Y, Iwamoto M (2012) Effect of pore size and nickel content of Ni-MCM-41 on catalytic activity for ethene dimerization and local structures of nickel ions. J Phys Chem C 116(9):5664–5672.  https://doi.org/10.1021/jp2103066 CrossRefGoogle Scholar
  21. 21.
    Iwamoto M (2011) One step formation of propene from ethene or ethanol through metathesis on nickel ion-loaded silica. Molecules 16(9):7844–7863CrossRefGoogle Scholar
  22. 22.
    Choo H, Kevan L (2001) Catalytic study of ethylene dimerization on Ni(II)-exchanged clinoptilolite. J Phys Chem B 105(27):6353–6360.  https://doi.org/10.1021/jp0106909 CrossRefGoogle Scholar
  23. 23.
    Nkosi B, Ng FTT, Rempel GL (1997) The oligomerization of butenes with partially alkali exchanged NiNaY zeolite catalysts. Appl Catal A Gen 158(1):225–241.  https://doi.org/10.1016/S0926-860X(96)00420-6 CrossRefGoogle Scholar
  24. 24.
    Sohn JR, Park JH (2001) Characterization of dealuminated NiY zeolite and effect of dealumination on catalytic activity for ethylene dimerization. Appl Catal A Gen 218(1–2):229–234.  https://doi.org/10.1016/S0926-860X(01)00649-4 CrossRefGoogle Scholar
  25. 25.
    Ng FTT, Creaser DC (1994) Ethylene dimerization over modified nickel exchanged Y-zeolite. Appl Catal A Gen 119(2):327–339.  https://doi.org/10.1016/0926-860X(94)85200-6 CrossRefGoogle Scholar
  26. 26.
    Ye J, Gagliardi L, Cramer CJ, Truhlar DG (2017) Single Ni atoms and Ni4 clusters have similar catalytic activity for ethylene dimerization. J Catal 354(Supplement C):278–286.  https://doi.org/10.1016/j.jcat.2017.08.011 CrossRefGoogle Scholar
  27. 27.
    Finiels A, Fajula F, Hulea V (2014) Nickel-based solid catalysts for ethylene oligomerization - a review. Catal Sci Technol 4(8):2412–2426.  https://doi.org/10.1039/c4cy00305e CrossRefGoogle Scholar
  28. 28.
    Hulea V, Fajula F (2004) Ni-exchanged AlMCM-41—an efficient bifunctional catalyst for ethylene oligomerization. J Catal 225(1):213–222.  https://doi.org/10.1016/j.jcat.2004.04.018 CrossRefGoogle Scholar
  29. 29.
    Martínez A, Arribas MA, Moussa S (2015) Development of bifunctional Ni-based catalysts for the heterogeneous oligomerization of ethylene to liquids. In: Kanellopoulos N (ed) Small-scale gas to liquid fuel synthesis. CRC Press, Boca Raton, pp 377–400.  https://doi.org/10.1201/b18075-14 CrossRefGoogle Scholar
  30. 30.
    Frey AS, Hinrichsen O (2012) Comparison of differently synthesized Ni(Al)MCM-48 catalysts in the ethene to propene reaction. Microporous Mesoporous Mater 164:164–171.  https://doi.org/10.1016/j.micromeso.2012.07.015 CrossRefGoogle Scholar
  31. 31.
    Alvarado Perea L, Wolff T, Veit P, Hilfert L, Edelmann FT, Hamel C, Seidel-Morgenstern A (2013) Alumino-mesostructured Ni catalysts for the direct conversion of ethene to propene. J Catal 305:154–168.  https://doi.org/10.1016/j.jcat.2013.05.007 CrossRefGoogle Scholar
  32. 32.
    Alvarado Perea L, Wolff T, Hamel C, Seidel-Morgenstern A (2014) Direct conversion of ethene to propene on Ni/AlMCM-41–study of the reaction mechanism. Jahrestreffen Deutscher Katalytiker, WeimarGoogle Scholar
  33. 33.
    Alvarado Perea L (2014) Direct conversion of ethene to propene on Ni-alumino-mesostructured catalysts: synthesis, characterization and catalytic testing. PhD, Otto-von-Guericke Universität, MagdeburgGoogle Scholar
  34. 34.
    Iwamoto M, Kosugi Y (2007) Highly selective conversion of ethene to propene and butenes on nickel ion-loaded mesoporous silica catalysts. J Phys Chem C 111(1):13–15CrossRefGoogle Scholar
  35. 35.
    Taoufik M, Le Roux E, Thivolle-Cazat J, Basset J-M (2007) Direct transformation of ethylene into propylene catalyzed by a tungsten hydride supported on alumina: trifunctional single-site catalysis. Angew Chem 119:7340–7343CrossRefGoogle Scholar
  36. 36.
    Taoufik M, Le Roux E, Thivolle-Cazat J, Basset J-M (2007) Direct transformation of ethylene into propylene catalyzed by a tungsten hydride supported on alumina: trifunctional single-site catalysis. Angew Chem Int Ed 46:7202–7205CrossRefGoogle Scholar
  37. 37.
    Iwamoto M (2008) Conversion of ethene to propene on nickel ion-loaded mesoporous silica prepared by the template ion exchange method. Catal Surv Jpn 12(1):28–37.  https://doi.org/10.1007/s10563-007-9036-y CrossRefGoogle Scholar
  38. 38.
    Lehmann T, Wolff T, Zahn VM, Veit P, Hamel C, Seidel-Morgenstern A (2011) Preparation of Ni-MCM-41 by equilibrium adsorption—catalytic evaluation for the direct conversion of ethene to propene. Catal Commun 12(5):368–374.  https://doi.org/10.1016/j.catcom.2010.10.018 CrossRefGoogle Scholar
  39. 39.
    Zahn VM, Wolff T, Lehmann T, Hamel C, Seidel-Morgenstern A (2010) Direct synthesis of propene using supported bifunctional nickel catalysts: preparation and potential. In: ISCRE 21-21st International Symposium on Chemical Reaction EngineeringGoogle Scholar
  40. 40.
    Lehmann T, Seidel-Morgenstern A (2012) Comment on “Effect of pore size and nickel content of Ni-MCM-41 on catalytic activity for ethene dimerization and local structures of nickel ions”. J Phys Chem C 116(42):22646–22648.  https://doi.org/10.1021/jp303935b CrossRefGoogle Scholar
  41. 41.
    Ikeda K, Kawamura Y, Yamamoto T, Iwamoto M (2008) Effectiveness of the template-ion exchange method for appearance of catalytic activity of Ni–MCM-41 for the ethene to propene reaction. Catal Commun 9(1):106–110.  https://doi.org/10.1016/j.catcom.2007.05.032 CrossRefGoogle Scholar
  42. 42.
    Andrei RD, Popa MI, Fajula F, Cammarano C, Khudhair AA, Bouchmella K, Mutin PH, Hulea V (2015) Ethylene to propylene by one-pot catalytic cascade reactions. ACS Catal 5(5):2774–2777.  https://doi.org/10.1021/acscatal.5b00383 CrossRefGoogle Scholar
  43. 43.
    Cai FX, Lepetit C, Kermarec M, Olivier D (1987) Dimerization of ethylene into 1-butene over supported tailor-made nickel catalysts. J Mol Catal 43(1):93–116.  https://doi.org/10.1016/0304-5102(87)87024-4 CrossRefGoogle Scholar
  44. 44.
    Bonneviot L, Olivier D, Che M (1983) Dimerization of olefins with nickel-surface complexes in X-type zeolite or on silica. J Mol Catal 21(1):415–430.  https://doi.org/10.1016/0304-5102(93)80138-K CrossRefGoogle Scholar
  45. 45.
    McGuinness DS (2011) Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond. Chem Rev 111(3):2321–2341.  https://doi.org/10.1021/cr100217q CrossRefPubMedGoogle Scholar
  46. 46.
    Speiser F, Braunstein P, Saussine L (2005) Catalytic ethylene dimerization and oligomerization: recent developments with nickel complexes containing P, N-chelating ligands. Acc Chem Res 38(10):784–793CrossRefGoogle Scholar
  47. 47.
    Brogaard RY, Olsbye U (2016) Ethene oligomerization in Ni-containing zeolites: theoretical discrimination of reaction mechanisms. ACS Catal 6(2):1205–1214.  https://doi.org/10.1021/acscatal.5b01957 CrossRefGoogle Scholar
  48. 48.
    Šponer JE, Sobalík Z, Leszczynski J, Wichterlová B (2001) Effect of metal coordination on the charge distribution over the cation binding sites of zeolites. A combined experimental and theoretical study. J Phys Chem B 105(35):8285–8290.  https://doi.org/10.1021/jp010098j CrossRefGoogle Scholar
  49. 49.
    Rice MJ, Chakraborty AK, Bell AT (2000) Site availability and competitive siting of divalent metal cations in ZSM-5. J Catal 194(2):278–285.  https://doi.org/10.1006/jcat.2000.2977 CrossRefGoogle Scholar
  50. 50.
    Rice MJ, Chakraborty AK, Bell AT (2000) Theoretical studies of the coordination and stability of divalent cations in ZSM-5. J Phys Chem B 104(43):9987–9992.  https://doi.org/10.1021/jp0009352 CrossRefGoogle Scholar
  51. 51.
    Neiman ML (2002) Interaction of cobalt and nickel with the hydroxylated silanol silica surface: a theoretical study. MSc, Lehigh UniversityGoogle Scholar
  52. 52.
    Balar M, Azizi Z, Ghashghaee M (2016) Theoretical identification of structural heterogeneities of divalent nickel active sites in NiMCM-41 nanoporous catalysts. J Nanostruct Chem 6(4):365–372.  https://doi.org/10.1007/s40097-016-0208-z CrossRefGoogle Scholar
  53. 53.
    Ghashghaee M, Shirvani S, Ghambarian M (2017) Kinetic models for hydroconversion of furfural over the ecofriendly Cu-MgO catalyst: an experimental and theoretical study. Appl Catal A Gen 545:134–147.  https://doi.org/10.1016/j.apcata.2017.07.040 CrossRefGoogle Scholar
  54. 54.
    Ghambarian M, Azizi Z, Ghashghaee M (2017) Cluster modeling and coordination structures of Cu+ ions in Al-incorporated Cu-MEL catalysts—a density functional theory study. J Mex Chem Soc 61(1):1–13.  https://doi.org/10.29356/jmcs.v61i1.122 CrossRefGoogle Scholar
  55. 55.
    Pidko EA, van Santen RA (2007) Activation of light alkanes over zinc species stabilized in ZSM-5 zeolite: a comprehensive DFT study. J Phys Chem C 111(6):2643–2655.  https://doi.org/10.1021/jp065911v CrossRefGoogle Scholar
  56. 56.
    Dědeček J, Sklenak S, Li C, Wichterlová B, Gábová V, Brus J, Sierka M, Sauer J (2009) Effect of Al−Si−Al and Al−Si−Si−Al pairs in the ZSM-5 zeolite framework on the 27Al NMR spectra. A combined high-resolution 27Al NMR and DFT/MM study. J Phys Chem C 113(4):1447–1458.  https://doi.org/10.1021/jp8068333 CrossRefGoogle Scholar
  57. 57.
    Lesthaeghe D, Van der Mynsbrugge J, Vandichel M, Waroquier M, Van Speybroeck V (2011) Full theoretical cycle for both ethene and propene formation during methanol-to-olefin conversion in H-ZSM-5. ChemCatChem 3(1):208–212.  https://doi.org/10.1002/cctc.201000286 CrossRefGoogle Scholar
  58. 58.
    Zhang B, Lu Y, He H, Wang J, Zhang C, Yu Y, Xue L (2011) Experimental and density functional theory study of the adsorption of N2O on ion-exchanged ZSM-5: part II. The adsorption of N2O on main-group ion-exchanged ZSM-5. J Environ Sci 23(4):681–686.  https://doi.org/10.1016/S1001-0742(10)60482-2 CrossRefGoogle Scholar
  59. 59.
    Ghashghaee M, Ghambarian M, Azizi Z (2016) Characterization of extra framework Zn2+ cationic sites in silicalite-2: a computational study. Struct Chem 27(2):467–475.  https://doi.org/10.1007/s11224-015-0575-y CrossRefGoogle Scholar
  60. 60.
    Ghambarian M, Ghashghaee M, Azizi Z (2017) Coordination and siting of Cu+ ion adsorbed into silicalite-2 porous structure: a density functional theory study. Phys Chem Res 5(1):135–152.  https://doi.org/10.22036/pcr.2017.39255 CrossRefGoogle Scholar
  61. 61.
    Ghambarian M, Azizi Z, Ghashghaee M (2016) Diversity of monomeric dioxo chromium species in Cr/silicalite-2 catalysts: a hybrid density functional study. Comput Mater Sci 118:147–154.  https://doi.org/10.1016/j.commatsci.2016.03.009 CrossRefGoogle Scholar
  62. 62.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100.  https://doi.org/10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  63. 63.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  64. 64.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  65. 65.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1–3):215–241.  https://doi.org/10.1007/s00214-007-0310-x CrossRefGoogle Scholar
  66. 66.
    Hariharan PC, Pople JA (1974) Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27(1):209–214.  https://doi.org/10.1080/00268977400100171 CrossRefGoogle Scholar
  67. 67.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77(7):3654–3665.  https://doi.org/10.1063/1.444267 CrossRefGoogle Scholar
  68. 68.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J Comput Chem 4(3):294–301.  https://doi.org/10.1002/jcc.540040303 CrossRefGoogle Scholar
  69. 69.
    Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80(7):3265–3269.  https://doi.org/10.1063/1.447079 CrossRefGoogle Scholar
  70. 70.
    Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8(9):1057–1065.  https://doi.org/10.1039/b515623h CrossRefPubMedGoogle Scholar
  71. 71.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305.  https://doi.org/10.1039/b508541a CrossRefPubMedGoogle Scholar
  72. 72.
    Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17(13):1571–1586.  https://doi.org/10.1002/(sici)1096-987x(199610)17:13<1571::aid-jcc9>3.0.co;2-p CrossRefGoogle Scholar
  73. 73.
    Ferullo RM, Garda GR, Belelli PG, Branda MM, Castellani NJ (2006) Deposition of small Cu, Ag and Au particles on reduced SiO2. J Mol Struct 769(1–3):217–223.  https://doi.org/10.1016/j.theochem.2006.03.048 CrossRefGoogle Scholar
  74. 74.
    Göltl F, Hafner J (2012) Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. III. Energetics and vibrational spectroscopy of adsorbates. J Chem Phys 136(6):064503-064501–064503-064531.  https://doi.org/10.1063/1.3676410 CrossRefGoogle Scholar
  75. 75.
    Chen K, Wang Z-C, Schlangen M, Wu Y-D, Zhang X, Schwarz H (2011) Thermal activation of methane and ethene by bare MO.+ (M=Ge, Sn, and Pb): a combined theoretical/experimental study. Chem Eur J 17(35):9619–9625.  https://doi.org/10.1002/chem.201101538 CrossRefPubMedGoogle Scholar
  76. 76.
    Ghashghaee M, Ghambarian M (2018) Methane adsorption and hydrogen atom abstraction at diatomic radical cation metal oxo clusters: first-principles calculations. Mol Simul 44(10):850–863.  https://doi.org/10.1080/08927022.2018.1465568 CrossRefGoogle Scholar
  77. 77.
    Firouzbakht M, Zhou S, González-Navarrete P, Schlangen M, Kaupp M, Schwarz H (2017) Metal-dependent strengthening and weakening of M−H and M−C bonds by an oxo ligand: thermal gas-phase activation of methane by [OMH]+ and [MH]+ (M=Mo, Ti). Chem Eur J.  https://doi.org/10.1002/chem.201701615
  78. 78.
    Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115(19):2315–2372.  https://doi.org/10.1080/00268976.2017.1333644 CrossRefGoogle Scholar
  79. 79.
    Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806.  https://doi.org/10.1063/1.462569 CrossRefGoogle Scholar
  80. 80.
    Glendening E, Badenhoop J, Reed A, Carpenter J, Weinhold F (1996) NBO 3.1. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  81. 81.
    Rodríguez JI, Bader RFW, Ayers PW, Michel C, Götz AW, Bo C (2009) A high performance grid-based algorithm for computing QTAIM properties. Chem Phys Lett 472(1–3):149–152.  https://doi.org/10.1016/j.cplett.2009.02.081 CrossRefGoogle Scholar
  82. 82.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928.  https://doi.org/10.1021/cr00005a013 CrossRefGoogle Scholar
  83. 83.
    Bader RFW (2005) The quantum mechanical basis of conceptual chemistry. Monatsh Chem 136(6):819–854.  https://doi.org/10.1007/s00706-005-0307-x CrossRefGoogle Scholar
  84. 84.
    Bader RFW (1975) Molecular fragments or chemical bonds. Acc Chem Res 8(1):34–40.  https://doi.org/10.1021/ar50085a005 CrossRefGoogle Scholar
  85. 85.
    Bader RFW (1994) Atoms in molecules: a quantum theory, vol 22. International Series of Monographs on Chemistry. Oxford University Press, OxfordGoogle Scholar
  86. 86.
    Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  87. 87.
    Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181(9):1477–1489.  https://doi.org/10.1016/j.cpc.2010.04.018 CrossRefGoogle Scholar
  88. 88.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592.  https://doi.org/10.1002/jcc.22885 CrossRefPubMedGoogle Scholar
  89. 89.
    Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr B 58(3 Part 1):389–397.  https://doi.org/10.1107/S0108768102003324 CrossRefPubMedGoogle Scholar
  90. 90.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41(2):466–470.  https://doi.org/10.1107/S0021889807067908 CrossRefGoogle Scholar
  91. 91.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39(3):453–457.  https://doi.org/10.1107/S002188980600731X CrossRefGoogle Scholar
  92. 92.
    Taylor R, Macrae CF (2001) Rules governing the crystal packing of mono- and dialcohols. Acta Crystallogr B 57(6):815–827.  https://doi.org/10.1107/S010876810101360X CrossRefPubMedGoogle Scholar
  93. 93.
    Van Hemelrijk D, Van den Enden L, Geise HJ, Sellers HL, Schaefer L (1980) Structure determination of 1-butene by gas electron diffraction, microwave spectroscopy, molecular mechanics, and molecular orbital constrained electron diffraction. J Am Chem Soc 102(7):2189–2195.  https://doi.org/10.1021/ja00527a007 CrossRefGoogle Scholar
  94. 94.
    Sierraalta A, Añez R, Brussin M-R (2002) Theoretical study of NO2 adsorption on a transition-metal zeolite model. J Catal 205(1):107–114.  https://doi.org/10.1006/jcat.2001.3425 CrossRefGoogle Scholar
  95. 95.
    Gatti C (2005) Chemical bonding in crystals: new directions. Z Krist 220:399–457.  https://doi.org/10.1524/zkri.220.5.399.65073 CrossRefGoogle Scholar
  96. 96.
    Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6(9):2872–2887.  https://doi.org/10.1021/ct100326h CrossRefPubMedGoogle Scholar
  97. 97.
    Kesharwani MK, Brauer B, Martin JML (2015) Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? J Phys Chem A 119(9):1701–1714.  https://doi.org/10.1021/jp508422u CrossRefPubMedGoogle Scholar
  98. 98.
    Arı H, Özpozan T, Büyükmumcu Z, Kabacalı Y, Saçmaci M (2016) Theoretical and vibrational spectroscopic approach to keto-enol tautomerism in methyl-2-(4-methoxybenzoyl)-3-(4-methoxyphenyl)-3-oxopropanoylcarbamate. J Mol Struct 1122:48–61.  https://doi.org/10.1016/j.molstruc.2016.05.060 CrossRefGoogle Scholar
  99. 99.
    Roberts JD, Caserio MC (1977) Chapter 10. Alkenes and alkynes I. Ionic and radical addition reactions. In: Basic principles of organic chemistry. 2nd edn. Benjamin, Inc.: Menlo ParkGoogle Scholar
  100. 100.
    Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20(4):722–725.  https://doi.org/10.1063/1.1700523 CrossRefGoogle Scholar
  101. 101.
    Parthasarathi R, Subramanian V, Chattaraj PK (2003) Effect of electric field on the global and local reactivity indices. Chem Phys Lett 382(1–2):48–56.  https://doi.org/10.1016/j.cplett.2003.09.160 CrossRefGoogle Scholar
  102. 102.
    Parr RG, Lv S, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924.  https://doi.org/10.1021/ja983494x CrossRefGoogle Scholar
  103. 103.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516.  https://doi.org/10.1021/ja00364a005 CrossRefGoogle Scholar
  104. 104.
    Datta D (1992) On Pearson’s HSAB Principle. Inorg Chem 31(13):2797–2800.  https://doi.org/10.1021/ic00039a025 CrossRefGoogle Scholar
  105. 105.
    Parr RG, Weitao Y (1989) Density-functional theory of atoms and molecules. International series of monographs on chemistry1st edn. Oxford University Press, New YorkGoogle Scholar
  106. 106.
    Sastre G, Corma A (2009) The confinement effect in zeolites. J Mol Catal A Chem 305(1–2):3–7.  https://doi.org/10.1016/j.molcata.2008.10.042 CrossRefGoogle Scholar
  107. 107.
    Derouane EG (1987) The energetics of sorption by molecular sieves: surface curvature effects. Chem Phys Lett 142(3,4):200–204CrossRefGoogle Scholar
  108. 108.
    Boekfa B, Pantu P, Probst M, Limtrakul J (2010) Adsorption and tautomerization reaction of acetone on acidic zeolites: the confinement effect in different types of zeolites. J Phys Chem C 114(35):15061–15067.  https://doi.org/10.1021/jp1058947 CrossRefGoogle Scholar
  109. 109.
    Derouane EG, Chang CD (2000) Confinement effects in the adsorption of simple bases by zeolites. Microporous Mesoporous Mater 35–36:425–433.  https://doi.org/10.1016/S1387-1811(99)00239-5 CrossRefGoogle Scholar
  110. 110.
    Zicovich-Wilson CM, Corma A, Viruela P (1994) Electronic confinement of molecules in microscopic pores. A new concept which contributes to the explanation of the catalytic activity of zeolites. J Phys Chem 98(42):10863–10870.  https://doi.org/10.1021/j100093a030 CrossRefGoogle Scholar
  111. 111.
    Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216(1–2):298–312.  https://doi.org/10.1016/S0021-9517(02)00132-X CrossRefGoogle Scholar
  112. 112.
    Kozuch S, Shaik S (2011) How to conceptualize catalytic cycles? The energetic span model. Acc Chem Res 44(2):101–110.  https://doi.org/10.1021/ar1000956 CrossRefPubMedGoogle Scholar
  113. 113.
    Kozuch S (2012) A refinement of everyday thinking: the energetic span model for kinetic assessment of catalytic cycles. Wiley Interdiscip Rev Comput Mol Sci 2(5):795–815.  https://doi.org/10.1002/wcms.1100 CrossRefGoogle Scholar
  114. 114.
    Carvajal MÀ, Kozuch S, Shaik S (2009) Factors controlling the selective hydroformylation of internal alkenes to linear aldehydes. 1. The isomerization step. Organometallics 28(13):3656–3665.  https://doi.org/10.1021/om801166x CrossRefGoogle Scholar
  115. 115.
    Meek SJ, Pitman CL, Miller AJM (2016) Deducing reaction mechanism: a guide for students, researchers, and instructors. J Chem Educ 93(2):275–286.  https://doi.org/10.1021/acs.jchemed.5b00160 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  3. 3.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran

Personalised recommendations