Advertisement

Structural Chemistry

, Volume 30, Issue 1, pp 23–35 | Cite as

Theoretical and experimental analysis of the antioxidant features of substituted phenol and aniline model compounds

  • William Horton
  • Swarada Peerannawar
  • Béla TörökEmail author
  • Marianna TörökEmail author
Article
  • 96 Downloads

Abstract

Although natural polyphenols have attracted extended attention as antioxidants, there is only limited information available on their structure-activity relationship (SAR). In addition, while often having significant antioxidant activity, amino group-containing compounds have only been sporadically studied. Often, the complex structure makes studying the individual contribution of aromatic OH or NH2 groups on the activity of these antioxidants difficult. In this work, several substituted simple phenols and anilines were selected as model compounds. Both the experimental radical scavenging activity and major structural descriptors have been determined to gain more insights into the potential SAR. Physicochemical properties pertaining to energetic and structural parameters were determined and experimental data gathered from three antioxidant assays to identify fundamental features with reasonable effect on antioxidant activity. Density functional theory (DFT) calculations were carried out at the B3LYP/6-31G(d,p) level to determine the N–H and O–H bond distances, dipole moments, logP values, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) orbital energies, HOMO-LUMO gaps, radical spin densities, proton affinities, and ionization potentials. The compounds were screened for activity against the 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1picrylhydrazyl (DPPH), and peroxyl (ORAC assay) radicals. Based on the results, ABTS antioxidant activity was selected for further investigations to observe correlations with the calculated properties. The HOMO energies, bond-dissociation energy values, HOMO-LUMO gap energies, dipole moment, proton affinity, and the Hammett constants appear to show meaningful correlation with the experimental data.

Keywords

Phenols Anilines Antioxidant capacity Radical scavenging DFT calculations Structure-activity relationship 

Abbreviations

HOMO

highest occupied molecular orbital

LUMO

lowest unoccupied molecular orbital

ABTS

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

DPPH

2,2-diphenyl-1-picrylhydrazyl

ORAC

oxygen radical absorbance capacity

MS

multiple sclerosis

HAT

hydrogen atom transfer

SET

single-electron transfer

SPLET

sequential proton loss electron transfer

DMSO

dimethyl sulfoxide

μ (D)

dipole moment

BDE

bond-dissociation energy

IP

ionization potential

PA

proton affinity

σ

Hammett constant

Notes

Funding information

This study received financial support from the University of Massachusetts Boston.

References

  1. 1.
    Galkina OV (2003). J Neurochem 7:89–97CrossRefGoogle Scholar
  2. 2.
    Dröge W (2002). Physiol Rev 82:47–95CrossRefGoogle Scholar
  3. 3.
    Knight J (2000). Ann Clin Lab Sci 30:145–158PubMedGoogle Scholar
  4. 4.
    Bouayed J, Bohn T (2010). Oxidative Med Cell Longev 3:228–237CrossRefGoogle Scholar
  5. 5.
    Slimen B, Najar T, Abderrabba M (2017). J Agric Food Chem 65:675–689CrossRefGoogle Scholar
  6. 6.
    Horton W, Török M (2018) Natural and nature-inspired synthetic small molecule antioxidants in the context of green chemistry., in Green Chemistry: An inclusive Approach (Török, B., Dransfield, T., eds) Elsevier, Oxford, Cph 3.27 pp 963–979Google Scholar
  7. 7.
    Halake K, Birajdar M, Lee J (2016) J. Ind Eng Chem Res 35:1–7CrossRefGoogle Scholar
  8. 8.
    Ackerman S, Horton W (2018) Effects of environmental factors on DNA: damage and mutations, in Green Chemistry: An inclusive Approach (Török, B., Dransfield, T. eds) Elsevier, Oxford, Cph 2.4 pp 109–128Google Scholar
  9. 9.
    Delanty N, Dichter MA (1998). Acta Neurol Scand 98:145–153CrossRefGoogle Scholar
  10. 10.
    Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J, Nishigaki I (2014). Clin Chim Acta 436:332–347CrossRefGoogle Scholar
  11. 11.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007). Int J Biochem Cell Biol 39:44–84CrossRefGoogle Scholar
  12. 12.
    Halliwell B, Gutteridge J (1990). Methods Enzymol 186:1–85CrossRefGoogle Scholar
  13. 13.
    Lin M, Beal MF (2006). Nature 443:787–795CrossRefGoogle Scholar
  14. 14.
    Ames B, Shigenaga M, Hagen T (1993). Proc Natl Acad Sci U S A 90:7915–7922CrossRefGoogle Scholar
  15. 15.
    Reuter S, Gutpa S, Chaturvedi MM, Aggarwal BB (2010). Free Radic Biol Med 49:1603–1616CrossRefGoogle Scholar
  16. 16.
    Dai J, Mumper R (2010). Molecules 15:7313–7352CrossRefGoogle Scholar
  17. 17.
    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004). Am J Clin Nutr 79:727–747CrossRefGoogle Scholar
  18. 18.
    Shahidi F, Ambigaipalan P (2015). J Funct Foods 18:820–897CrossRefGoogle Scholar
  19. 19.
    Neto CC (2007). Mol Nutr Food Res 51:652–664CrossRefGoogle Scholar
  20. 20.
    Neto CC (2011). J Sci Food Agric 91:2303–2307CrossRefGoogle Scholar
  21. 21.
    Xia E, Deng G, Guo Y, Li H (2010). Int J Mol Sci 11:622–646CrossRefGoogle Scholar
  22. 22.
    Azeredo H (2009). Int J Food Sci Nutr 44:2365–2376Google Scholar
  23. 23.
    Butera D, Tesoriere L, Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Kohen R, Livrea MA (2002). J Agric Food Chem 50:6895–6901CrossRefGoogle Scholar
  24. 24.
    Gengatharan A, Dykes G, Choo W (2015). LWT - Food Sci Technol 64:645–649CrossRefGoogle Scholar
  25. 25.
    Swieca M, Gawlik-Dziki U, Dziki D, Baraniak B (2017). Food Chem 221:1451–1457CrossRefGoogle Scholar
  26. 26.
    Forman HJ, Davies KJ, Ursini F (2014). Free Radic Biol Med 66:24–35CrossRefGoogle Scholar
  27. 27.
    Kanner J, Harel S, Granit R (2001). J Agric Food Chem 49:5178–5185CrossRefGoogle Scholar
  28. 28.
    Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005). Am J Clin Nutr 81(suppl):230S–242SCrossRefGoogle Scholar
  29. 29.
    Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005). Am J Clin Nutr 81(suppl):243S–255SPubMedGoogle Scholar
  30. 30.
    Hollman P (2014). Arch Biochem Biophys 559:100–105CrossRefGoogle Scholar
  31. 31.
    Crozier A, Jaganath I, Clifford M (2009). Nat Prod Rep 26:965–1096CrossRefGoogle Scholar
  32. 32.
    Scalbert A, Williamson G (2000). J Nutr 130:2073S–2085SCrossRefGoogle Scholar
  33. 33.
    Walle T, Hsieh F, DeLegge M, Oatis J, Walle K (2004). Drug Metab Dispos 32:1377–1382CrossRefGoogle Scholar
  34. 34.
    Foti M, Amorati R (2009). J Pharm Pharmacol 61:1435–1448CrossRefGoogle Scholar
  35. 35.
    Sarmadi B, Ismail A (2010). Peptides 31:1949–1956CrossRefGoogle Scholar
  36. 36.
    Klein E, Lukeš V, Cibulková Z (2006) Polovková. J Mol Struct 758:149–159CrossRefGoogle Scholar
  37. 37.
    Bordwell FG, Zhang XM, Cheng JP (1993). J Org Chem 58:6410–6416CrossRefGoogle Scholar
  38. 38.
    Török B, Sood A, Bag S, Tulsan R, Ghosh S, Borkin D, Kennedy AR, Melanson M, Madden R, Zhou W, Levine 3rd H, Török M (2013). Biochemistry 52:1137–1148CrossRefGoogle Scholar
  39. 39.
    Valgimigli L, Pratt DA (2015). Acc Chem Res 48:966–975CrossRefGoogle Scholar
  40. 40.
    Ingold KU, Pratt DA (2014). Chem Rev 114:9022–9046CrossRefGoogle Scholar
  41. 41.
    Apak R, Özyürek M, Güçlü M, Çapanoğlu E (2016). J Agric Food Chem 64:997–1027CrossRefGoogle Scholar
  42. 42.
    Apak R, Özyürek M, Güçlü K, Çapanoğlu E (2016). J Agric Food Chem 64:1028–1045CrossRefGoogle Scholar
  43. 43.
    Lu JM, Lin P, Yao Q, Chen C (2010). J Cell Mol Med 14:840–860CrossRefGoogle Scholar
  44. 44.
    Peerannawar S, Horton W, Kokel A, Török F, Török M, Török B (2017). Struct Chem 28:391–402CrossRefGoogle Scholar
  45. 45.
    Becke AD (1988). Phys Rev A38:3098–3100CrossRefGoogle Scholar
  46. 46.
    Lee C, Yang W, Parr RG (1988). Phys Rev B37:785–789CrossRefGoogle Scholar
  47. 47.
    Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich M, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini, F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski WG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell, Montgomery, JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers EE, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi, M., Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CTGoogle Scholar
  48. 48.
    Hansch C, Leo A, Taft W (1991). Chem Rev 91:165–195CrossRefGoogle Scholar
  49. 49.
    Ali H, Abo-Shady A, Sharaf Eldeen H, Soror H, Shousha W, Abdel-Barry O, Saleh A (2013). Chem Cent J 7:53–62CrossRefGoogle Scholar
  50. 50.
    Ali HM, Ali IH (2015). Med Chem Res 24:987–998CrossRefGoogle Scholar
  51. 51.
    Rice-Evans C, Miller N, Paganga G (1996). Free Radic Biol Med 20:933–956CrossRefGoogle Scholar
  52. 52.
    Bendary E, Francis RR, Ali HMG, Sarwat MI, El Hady S (2013). Ann Agric Sci 58:173–181Google Scholar
  53. 53.
    Niki E (2010). Free Radic Biol Med 49:503–515CrossRefGoogle Scholar
  54. 54.
    Saqib M, Mahmood A, Akram R, Khalid B, Afzal S, Kamal GM (2015). J Pharm Appl Chem 1:65–71Google Scholar
  55. 55.
    Alaşalvar C, Soylu MS, Güder A, Albayrak Ç, Apaydin G, Dilek N (2014). Spectrochim Acta A: Mol Biomol Spectr 125:319–327CrossRefGoogle Scholar
  56. 56.
    Zhu Q, Zhang XM, Fry A (1997). Polym Degrad Stab 57:43–50CrossRefGoogle Scholar
  57. 57.
    Leopoldini M, Russo N, Toscano M (2011). Food Chem 125:288–306CrossRefGoogle Scholar
  58. 58.
    Mazzone G, Malaj N, Russo N, Toscano M (2013). Food Chem 141:2017–2024CrossRefGoogle Scholar
  59. 59.
    Xia EQ, Deng GF, Ge YJ, Li HB (2010). Int J Mol Sci 11:622–646CrossRefGoogle Scholar
  60. 60.
    Szeląg M, Mikulski D, Molski M (2012). J Mol Model 18:2907–2916CrossRefGoogle Scholar
  61. 61.
    Alabugin IV, Brescha S, dos Passos Gomes G (2015). J Phys Org Chem 28:147–162CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Massachusetts BostonBostonUSA

Personalised recommendations