Structural Chemistry

, Volume 30, Issue 1, pp 127–135 | Cite as

Theoretical study on the gas-phase reaction of acetaldehyde with methoxy radical

  • Yunju ZhangEmail author
  • Ruojing Song
  • Yuxi Sun
  • Rongshun Wang
Original Research


The reaction of acetaldehyde with methoxy radical has been investigated theoretically by means of quantum chemistry methods at the BMC-QCISD//B3LYP/6-311+G(d,p) level. The title reaction included three manners, namely, H-abstraction, C-addition-elimination, and C-addition-isomerization-elimination. Based on our calculated results, the formation of adduct IM1 is not a nucleophilic addition reaction, but a π addition reaction. Rice–Ramsperger–Kassel–Marcus-transition state theory calculations are carried out for the total and individual rate constants of the determinant channels over a wide range of temperatures and pressures. The major products for the title reaction are CH3CO and CH3OH. The calculated rate constant (8.73 × 10−15 cm3 molecule−1 s−1) agrees well with the experimental value (k1 = 8.30 × 10−15 cm3 molecule−1 s−1 and 4.23 × 10−15 cm3 molecule−1 s−1).


Acetaldehyde Methoxy radical PES RRKM 


Funding information

This work was supported by the Natural Science Foundations of China (No. 21707062), Scientific Research Starting Foundation of Mianyang Normal University (No. QD2016A007), and Sichuan Education Department Fund (No. 17ZB0207).

This work was also supported by Sichuan Education Department Fund (No. 12ZA080) and Mianyang Normal University for Excellent Plan Fund (No. QD2012A06) and supported by the Open Project Program of Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11224_2018_1181_MOESM1_ESM.docx (8.9 mb)
ESM 1 (DOCX 9133 kb)


  1. 1.
    Marenich AV, Boggs JE (2006) The molecular structure, spin-vibronic energy levels, and thermochemistry of CH3O. J Mol Struct 780-781:163–170CrossRefGoogle Scholar
  2. 2.
    Atkinson R (1990) Gas-phase tropospheric chemistry of organic compounds: a review. Atmos Environ Part A Gen Top 24A:1–41CrossRefGoogle Scholar
  3. 3.
    Guenther A (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892;Google Scholar
  4. 4.
    Hoekman SK (1992) Speciated measurements and calculated reactivities of vehicle exhaust emissions from conventional and reformulated gasolines. Environ Sci Technol 26:1206–1216CrossRefGoogle Scholar
  5. 5.
    Kesselmeier J, Bode K, Hofmann U, Müller H, Schäfer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V, Torres L (1997) Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos Environ 31:119–133CrossRefGoogle Scholar
  6. 6.
    Nondek L, Rodler DR, Birks JW (1992) Measurement of sub-ppbv concentrations of aldehydes in a forest atmosphere using a new HPLC technique. Environ. Sci. Technol. 26:1174–1178CrossRefGoogle Scholar
  7. 7.
    Weaver J, Meagher J, Shortridge R, Heicklen J (1975) The oxidation of acetyl radicals. J Photochem 4:341–360CrossRefGoogle Scholar
  8. 8.
    Kelly N, Heicklen J (1978) Rate coefficient for the reaction of CH3O with CH3OCHO at 25 °C. J Photochem 8:83–90CrossRefGoogle Scholar
  9. 9.
    Fittschen C, Delcroix B, Gomez N, Devolder P (1998) Rate constants for the reactions of CH3O with CH2O, CH3CHO and i-C4H10. J Chim Phys 95:2129–2142CrossRefGoogle Scholar
  10. 10.
    Henon E, Bohr F (2001) Theoretical study of the H-abstraction reaction of the CH3O radical with formaldehyde. Chem Phys Lett 342:659–666CrossRefGoogle Scholar
  11. 11.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc, Wallingford CT, 2009Google Scholar
  12. 12.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–5652CrossRefGoogle Scholar
  13. 13.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789CrossRefGoogle Scholar
  14. 14.
    Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506CrossRefGoogle Scholar
  15. 15.
    Gonzalez C, Bernhard Schlegel H (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  16. 16.
    Lynch BJ, Zhao Y, Truhlar DG (2005) The 6-31B(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods. J. Phys. Chem. A . 109:1643–1649Google Scholar
  17. 17.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  18. 18.
    Knowles PJ, Hampel C, Werner HJ (1993) Coupled cluster theory for high spin, open shell reference wave functions. J Chem Phys 99:5219–5227CrossRefGoogle Scholar
  19. 19.
    Lee TJ, Rice JE, Scuseria GE, Schaefer III HF (1989) Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization. Theor Chim Acta 75:81–98CrossRefGoogle Scholar
  20. 20.
    Lee TJ, Taylor PR (1989) A diagnostic for determining the quality of single-reference electron correlation methods. Int J Quantum Chem S23:199–207Google Scholar
  21. 21.
    Truhlar DG, Garrett BC (1980) Variational transition-state theory. Accounts Chem Res 13:440–448CrossRefGoogle Scholar
  22. 22.
    Garrett BC, Truhlar DG (1979) Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules. J Chem Phys 83:1052–1079CrossRefGoogle Scholar
  23. 23.
    Sun JY, Tang YZ, Jia XJ, Wang F, Sun H, Feng JD, Pan XM, Hao LZ, Wang RS (2010) Theoretical study for the reaction of CH3CN with O(3P). J Chem Phys 132:064301–064333CrossRefGoogle Scholar
  24. 24.
    Sun JY, Tang YZ, Jia XJ, Wang F, Sun H, Zhang YJ, Tang SW, Wang FD, Chang YF, Lu YJ, Pan XM, Zhang JP, Wang RS (2010) Computational study of oxygen atom (3P and 1D) reactions with CF3CN. Phys Chem Chem Phys 12:10846–10856CrossRefGoogle Scholar
  25. 25.
    Wang F, Sun H, Sun JY, Jia XJ, Zhang YJ, Tang YZ, Pan XM, Su ZM, Hao LZ, Wang RS (2010) Mechanistic and kinetic study of CH2O+O3 reaction. J Phys Chem A 114:3516–3522CrossRefGoogle Scholar
  26. 26.
    Klippenstein SJ (1992) Variational optimizations in the Rice-Ramsberger-Kassel-Marcus theory calculations for unimolecular dissociations with no reverse barrier. J Chem Phys 96:367–371CrossRefGoogle Scholar
  27. 27.
    Klippenstein SJ, Marcus RA (1987) High pressure rate constants for unimolecular dissociation/free radical recombination: determination of the quantum correction via quantum Monte Carlo path integration. J Chem Phys 87:3410–3417CrossRefGoogle Scholar
  28. 28.
    Wardlaw DM, Marcus RA (1984) RRKM reaction rate theory for transition states of any looseness. Chem Phys Lett 110:230–234CrossRefGoogle Scholar
  29. 29.
    NIST Computational Chemistry Comparison and Benchmark Database.
  30. 30.
    Donnelly RA, Parr RG (1978) Elementary properties of an energy functional of the first-order reduced density matrix. J Chem Phys 69:4431–4439CrossRefGoogle Scholar
  31. 31.
    Nalewajski RF, Parr RG (1982) Legendre transforms and Maxwell relations in density functional theory. J Chem Phys 77:399–407CrossRefGoogle Scholar
  32. 32.
    Anderson JSM, Melin J, Ayers PW (2007) Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 1. Theory and derivation of a general-purpose reactivity indicator. J Chem Theory Comput 3:358–374CrossRefGoogle Scholar
  33. 33.
    Parr R, How G (2009) I came about working in conceptual DFT. Chemical reactivity theory: A density functional theory viewGoogle Scholar
  34. 34.
    Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Yang W (2000) Perspective on “Density-functional theory for fractional particle number: derivative discontinuities of the energy”. Theor Chem Accounts 103:346–348CrossRefGoogle Scholar
  36. 36.
    Bersuker IB (2001) Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. Chem Rev 101:1067–1114CrossRefGoogle Scholar
  37. 37.
    Barckholtz TA, Miller TA (1998) Quantitative insights about molecules exhibiting Jahn-Teller and related effects. Int Rev Phys Chem 17:435–524CrossRefGoogle Scholar
  38. 38.
    Stein SE, Rabinovitch BS (1973) Accurate evaluation of internal energy level sums and densities including anharmonic oscillators and hindered rotors. J Chem Phys 58:2438–2445CrossRefGoogle Scholar
  39. 39.
    Astholz DC, Troe J, Wieters W (1979) Unimolecular processes in vibrationally highly excited cycloheptatrienes. I. Thermal isomerization in shock waves. J Chem Phys 70:5107–5116CrossRefGoogle Scholar
  40. 40.
    Smith IWM (1980) Kinetics and dynamics of elementary gas reactions; Butterworth, London, p118Google Scholar
  41. 41.
    Johnston HS, Heicklen J (1962) Tunnelling corrections for unsymmetrical Eckart potential energy barriers. J Phys Chem 66:532–533CrossRefGoogle Scholar
  42. 42.
    Eckart C (1930) The penetration of a potential barrier by electrons. Phys Rev 35:1303–1309CrossRefGoogle Scholar
  43. 43.
    Johnston HS, Heicklen J (1962) Tunnelling corrections for unsymmetrical Eckart potential energy barriers. J PhysChem 66:532–533Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yunju Zhang
    • 1
    • 2
    Email author
  • Ruojing Song
    • 1
  • Yuxi Sun
    • 1
    • 2
    • 4
  • Rongshun Wang
    • 3
  1. 1.Key Laboratory of Photoinduced Functional MaterialsMianyang Normal UniversityMianyangPeople’s Republic of China
  2. 2.Beijing Technology and Business UniversityBeijingPeople’s Republic of China
  3. 3.Institute of Functional Material Chemistry, Faculty of ChemistryNortheast Normal UniversityChangchunPeople’s Republic of China
  4. 4.Key Laboratory of Life-Organic AnalysisQufu Normal UniversityQufuPeople’s Republic of China

Personalised recommendations