Structural Chemistry

, Volume 30, Issue 1, pp 97–105 | Cite as

DFT study of arsine (AsH3) gas adsorption on pristine, Stone-Wales-defected, and Fe-doped single-walled carbon nanotubes

  • Javad Arasteh
  • Mohamad NasehEmail author
Original Research


To find the possible way of adsorption and detecting the toxic gas of AsH3, we have studied the interactions between AsH3 molecule and modified (5,5) single-walled carbon nanotubes by using the method of density functional theory (DFT). The interaction distances, adsorption energies, and geometry and electronic changes of structures were investigated to explore the sensitivity of variety of models of single-walled carbon nanotubes (SWCNTs) with Fe doping, Stone-Wales defects, and a combination of them toward AsH3 molecule. From calculated results, it was found that AsH3 molecule was more likely to be absorbed on Fe-doped CNTs with relatively higher adsorption energy and higher charge transfer and shorter interaction distance compared with that on the pristine and defected SWCNTs.


SWCNT Adsorption Stone-Wales defect Doping HOMO-LUMO gap 



The authors would like to thank the Islamic Azad University, Dezful Branch, for computational resources.

Funding information

This work was financially supported by the Islamic Azad University, Dezful Branch.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Furue R, Koveke EP, Sugimoto S, Shudo Y, Hayami S, Ohira S-I, Toda K (2017) Arsine gas sensor based on gold-modified reduced graphene oxide. Sensors Actuators B Chem 240:657–663. CrossRefGoogle Scholar
  2. 2.
    Pakulska D, Czerczak S (2014) Arsine A2 - Wexler, Philip. Encyclopedia of toxicology3rd edn. Academic Press, Oxford, pp 313–316. CrossRefGoogle Scholar
  3. 3.
    Steinmaus CM, Ferreccio C, Romo JA, Yuan Y, Cortes S, Marshall G, Moore LE, Balmes JR, Liaw J, Golden T (2013) Drinking water arsenic in northern Chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiology and Prevention Biomarkers:cebp 1190.2012Google Scholar
  4. 4.
    Saha J, Dikshit A, Bandyopadhyay M, Saha K (1999) A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29(3):281–313CrossRefGoogle Scholar
  5. 5.
    Meliker JR, Wahl RL, Cameron LL, Nriagu JO (2007) Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environ Health 6(1):4CrossRefGoogle Scholar
  6. 6.
    Mazumder DNG, Haque R, Ghosh N, De BK, Santra A, Chakraborti D, Smith AH (2000) Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India. Int J Epidemiol 29(6):1047–1052CrossRefGoogle Scholar
  7. 7.
    Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332CrossRefGoogle Scholar
  8. 8.
    Chung JS, Kalman DA, Moore LE, Kosnett MJ, Arroyo AP, Beeris M, Mazumder DG, Hernandez AL, Smith AH (2002) Family correlations of arsenic methylation patterns in children and parents exposed to high concentrations of arsenic in drinking water. Environ Health Perspect 110(7):729CrossRefGoogle Scholar
  9. 9.
    Chen Y, Parvez F, Gamble M, Islam T, Ahmed A, Argos M, Graziano JH, Ahsan H (2009) Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicol Appl Pharmacol 239(2):184–192CrossRefGoogle Scholar
  10. 10.
    Argos M, Parvez F, Chen Y, Hussain AI, Momotaj H, Howe GR, Graziano JH, Ahsan H (2007) Socioeconomic status and risk for arsenic-related skin lesions in Bangladesh. Am J Public Health 97(5):825–831CrossRefGoogle Scholar
  11. 11.
    Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Abdulla S, Mathew TL, Pullithadathil B (2015) Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sensors Actuators B Chem 221:1523–1534. CrossRefGoogle Scholar
  13. 13.
    Azam MA, Alias FM, Tack LW, Seman RNAR, Taib MFM (2017) Electronic properties and gas adsorption behaviour of pristine, silicon-, and boron-doped (8, 0) single-walled carbon nanotube: a first principles study. J Mol Graph Model 75:85–93. CrossRefPubMedGoogle Scholar
  14. 14.
    Buasaeng P, Rakrai W, Wanno B, Tabtimsai C (2017) DFT investigation of NH3, PH3, and AsH3 adsorptions on Sc-, Ti-, V-, and Cr-doped single-walled carbon nanotubes. Appl Surf Sci 400:506–514. CrossRefGoogle Scholar
  15. 15.
    Chimowa G, Tshabalala ZP, Akande AA, Bepete G, Mwakikunga B, Ray SS, Benecha EM (2017) Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling. Sensors Actuators B Chem 247:11–18. CrossRefGoogle Scholar
  16. 16.
    Dhall S, Sood K, Nathawat R (2017) Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles. Int J Hydrog Energy 42(12):8392–8398. CrossRefGoogle Scholar
  17. 17.
    Izakmehri Z, Ganji MD, Ardjmand M (2017) Adsorption of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on pristine, defected and Al-doped carbon nanotube: a dispersion corrected DFT study. Vacuum 136:51–59. CrossRefGoogle Scholar
  18. 18.
    Khorram R, Raissi H, Morsali A (2017) Assessment of solvent effects on the interaction of Carmustine drug with the pristine and COOH-functionalized single-walled carbon nanotubes: a DFT perspective. J Mol Liq 240:87–97. CrossRefGoogle Scholar
  19. 19.
    Kwon YJ, Na HG, Kang SY, Choi S-W, Kim SS, Kim HW (2016) Selective detection of low concentration toluene gas using Pt-decorated carbon nanotubes sensors. Sensors Actuators B Chem 227:157–168. CrossRefGoogle Scholar
  20. 20.
    Mittal M, Kumar A (2014) Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sensors Actuators B Chem 203:349–362. CrossRefGoogle Scholar
  21. 21.
    Mollania F, Raissi H (2017) Evaluation of solvent and ion effects upon leflunomide adsorption characteristics on (6,0) zigzag single-walled carbon nanotube and immobilized dihydroorotate dehydrogenase activity: a computational DFT and experimental study. J Mol Liq 231:528–541. CrossRefGoogle Scholar
  22. 22.
    Shahabi D, Tavakol H (2017) DFT, NBO and molecular docking studies of the adsorption of fluoxetine into and on the surface of simple and sulfur-doped carbon nanotubes. Appl Surf Sci 420:267–275. CrossRefGoogle Scholar
  23. 23.
    Saadat K, Tavakol H (2016) Study of noncovalent interactions of end-caped sulfur-doped carbon nanotubes using DFT, QTAIM, NBO and NCI calculations. Struct Chem 27(3):739–751. CrossRefGoogle Scholar
  24. 24.
    Hamadanian M, Khoshnevisan B, Fotooh FK (2011) Density functional study of super cell N-doped (10,0) zigzag single-walled carbon nanotubes as CO sensor. Struct Chem 22(6):1205–1211. CrossRefGoogle Scholar
  25. 25.
    Saikia N, Deka RC (2013) Density functional study on the adsorption of the drug isoniazid onto pristine and B-doped single wall carbon nanotubes. J Mol Model 19(1):215–226. CrossRefPubMedGoogle Scholar
  26. 26.
    Bian R, Zhao J, Fu H (2013) Silicon–doping in carbon nanotubes: formation energies, electronic structures, and chemical reactivity. J Mol Model 19(4):1667–1675. CrossRefPubMedGoogle Scholar
  27. 27.
    Azizi K, Karimpanah M (2013) Computational study of Al- or P-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Appl Surf Sci 285:102–109. CrossRefGoogle Scholar
  28. 28.
    Jijun Z, Alper B, Jie H, Jian Ping L (2002) Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13(2):195–200CrossRefGoogle Scholar
  29. 29.
    Park S, Park S, So H-M, Jeon E-K, Park D-W, Kim J-J, Kim BS, K-j K, Chang H, Lee J-O (2010) Computer-aided design and growth of single-walled carbon nanotubes on 4 in. wafers for electronic device applications. Carbon 48(8):2218–2224. CrossRefGoogle Scholar
  30. 30.
    Peng S, Cho K (2003) Ab initio study of doped carbon nanotube sensors. Nano Lett 3(4):513–517. CrossRefGoogle Scholar
  31. 31.
    Tabtimsai C, Keawwangchai S, Wanno B, Ruangpornvisuti V (2012) Gas adsorption on the Zn–, Pd– and Os–doped armchair (5,5) single–walled carbon nanotubes. J Mol Model 18(1):351–358. CrossRefPubMedGoogle Scholar
  32. 32.
    Yoosefian M, Barzgari Z, Yoosefian J (2014) Ab initio study of Pd-decorated single-walled carbon nanotube with C-vacancy as CO sensor. Struct Chem 25(1):9–19. CrossRefGoogle Scholar
  33. 33.
    Yoosefian M, Raissi H, Mola A (2015) The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehyde molecule detection: a DFT study. Sensors Actuators B Chem 212:55–62. CrossRefGoogle Scholar
  34. 34.
    Zhou Q, Wang C, Fu Z, Zhang H, Tang Y (2014) Adsorption of formaldehyde molecule on Al-doped vacancy-defected single-walled carbon nanotubes: a theoretical study. Comput Mater Sci 82:337–344. CrossRefGoogle Scholar
  35. 35.
    Zhou X, Tian WQ, Wang X-L (2010) Adsorption sensitivity of Pd-doped SWCNTs to small gas molecules. Sensors Actuators B Chem 151(1):56–64. CrossRefGoogle Scholar
  36. 36.
    Kunaseth M, Mudchimo T, Namuangruk S, Kungwan N, Promarak V, Jungsuttiwong S (2016) A DFT study of arsine adsorption on palladium doped graphene: effects of palladium cluster size. Appl Surf Sci 367:552–558. CrossRefGoogle Scholar
  37. 37.
    Stankovich S, Dikin D, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006). Nature 442:282CrossRefGoogle Scholar
  38. 38.
    Barbolina I, Novoselov K, Morozov S, Dubonos S, Missous M, Volkov A, Christian D, Grigorieva I, Geim A (2006) Submicron sensors of local electric field with single-electron resolution at room temperature. Appl Phys Lett 88(1):013901CrossRefGoogle Scholar
  39. 39.
    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652CrossRefGoogle Scholar
  40. 40.
    Di C, Wei D, Yu G, Liu Y, Guo Y, Zhu D (2008) Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 20(17):3289–3293CrossRefGoogle Scholar
  41. 41.
    Lee J, Ladd AJ (2005) Axial segregation of a settling suspension in a rotating cylinder. Phys Rev Lett 95(4):048001CrossRefGoogle Scholar
  42. 42.
    Duplock EJ, Scheffler M, Lindan PJ (2004) Hallmark of perfect graphene. Phys Rev Lett 92(22):225502CrossRefGoogle Scholar
  43. 43.
    Ribeiro FJ, Tangney P, Louie SG, Cohen ML (2005) Structural and electronic properties of carbon in hybrid diamond-graphite structures. Phys Rev B 72(21):214109CrossRefGoogle Scholar
  44. 44.
    Zanolli Z, Charlier J-C (2009) Defective carbon nanotubes for single-molecule sensing. Phys Rev B 80(15):155447CrossRefGoogle Scholar
  45. 45.
    Horner D, Redfern PC, Sternberg M, Zapol P, Curtiss LA (2007) Increased reactivity of single wall carbon nanotubes at carbon ad-dimer defect sites. Chem Phys Lett 450(1–3):71–75CrossRefGoogle Scholar
  46. 46.
    Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U, Speck J (2004) Effect of carbon doping on buffer leakage in AlGaN/GaN high electron mobility transistors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22(3):1145–1149CrossRefGoogle Scholar
  47. 47.
    Dinadayalane T, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) Reactivities of sites on (5, 5) single-walled carbon nanotubes with and without a Stone-Wales defect. J Chem Theory Comput 6(4):1351–1357CrossRefGoogle Scholar
  48. 48.
    O'Boyle NM, Tenderholt AL, Langner KM (2008) cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29(5):839–845. CrossRefPubMedGoogle Scholar
  49. 49.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., WallingfordGoogle Scholar
  50. 50.
    Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  51. 51.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  52. 52.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82(1):299–310CrossRefGoogle Scholar
  53. 53.
    Hay P, Wadt W (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements sodium to bismuth. J Chem Phys 82:284–298CrossRefGoogle Scholar
  54. 54.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Dezful BranchIslamic Azad UniversityDezfulIran

Personalised recommendations