Structural Chemistry

, Volume 30, Issue 1, pp 175–184 | Cite as

Structure–activity relationship of polyamine conjugates for uptake via polyamine transport system

  • S. Mohamad Reza Nazifi
  • Hojjat Sadeghi-aliabadi
  • Afshin Fassihi
  • Lotfollah SaghaieEmail author
Review Article


High toxicity of anticancer drugs led to development of targeted drug delivery directly to the specific organs. Polyamine transport system (PTS) of mammalian cells is one of the targets for a cell-selective drug delivery of polyamine–drug conjugates into specific organs. Even without having a 3D structure for mammalian PTS, synthesis of polyamine derivatives and evaluation of their cytotoxic effects are potential practical approaches to find optimal polyamine moieties to be transported from the PTSs. Chinese hamster ovary (CHO) and its mutant cell line (CHO-MG) are two important cells for evaluation of polyamine transportation by polyamine transporters (PAT). If a polyamine conjugate ligand demonstrates a high IC50 ratio on CHO-MG/CHO cells, this indicates a high selectivity of such compound toward PAT. This study discussed the structural requirements (charge, linker, vector, cargo) of polyamine conjugates in order to be transported into the cells by the mean of PTS.


Polyamine conjugates Polyamine transport system (PTS) Membrane transporter Chinese hamster ovary (CHO) CHO-MG 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gerner EW, Meyskens Jr FL (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4(10):781CrossRefGoogle Scholar
  2. 2.
    Cohen SS (1998) Guide to the polyamines, 1st edn. Oxford University Press, LondonGoogle Scholar
  3. 3.
    Marton LJ, Pegg AE (1995) Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35(1):55–91CrossRefGoogle Scholar
  4. 4.
    TABOR H, Tabor CW (1964) Spermidine, spermine, and related amines. Pharmacol Rev 16(3):245–300PubMedGoogle Scholar
  5. 5.
    Bachrach U (2010) The early history of polyamine research. Plant Physiol Biochem 48(7):490–495CrossRefGoogle Scholar
  6. 6.
    Sakai TT, Torget R, Freda CE, Cohen SS (1975) The binding of polyamines and of ethidium bromide to tRNA. Nucleic Acids Res 2(7):1005–1022CrossRefGoogle Scholar
  7. 7.
    Feuerstein BG, Williams LD, Basu HS, Marton LJ (1991) Implications and concepts of polyamine-nucleic acid interactions. J Cell Biochem 46(1):37–47CrossRefGoogle Scholar
  8. 8.
    Wang J-Y, Casero RA (2006) Polyamine cell signaling: physiology, pharmacology, and cancer research, 1st edn. Springer-Verlag New York, LLCGoogle Scholar
  9. 9.
    Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci 95(19):11140–11145CrossRefGoogle Scholar
  10. 10.
    Kurata HT, Marton LJ, Nichols CG (2006) The polyamine binding site in inward rectifier K+ channels. J Gen Physiol 127(5):467–480CrossRefGoogle Scholar
  11. 11.
    Poulin R, Casero R, Soulet D (2012) Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 42(2–3):711–723CrossRefGoogle Scholar
  12. 12.
    Shantz LM (2004) Transcriptional and translational control of ornithine decarboxylase during Ras transformation. Biochem J 377(1):257–264CrossRefGoogle Scholar
  13. 13.
    Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281(21):14529–14532CrossRefGoogle Scholar
  14. 14.
    Nowotarski SL, Shantz LM (2010) Cytoplasmic accumulation of the RNA-binding protein HuR stabilizes the ornithine decarboxylase transcript in a murine nonmelanoma skin cancer model. J Biol Chem 285(41):31885–31894CrossRefGoogle Scholar
  15. 15.
    Ikeguchi Y, Bewley MC, Pegg AE (2006) Aminopropyltransferases: function, structure and genetics. J Biochem 139(1):1–9CrossRefGoogle Scholar
  16. 16.
    Korhonen V-P, Halmekytö M, Kauppinen L, Myöhänen S, Wahlfors J, Keinänen T, Hyvönen T, Alhonen L, Eloranta T, Jänne J (1995) Molecular cloning of a cDNA encoding human spermine synthase. DNA Cell Biol 14(10):841–847CrossRefGoogle Scholar
  17. 17.
    Wahlfors J, Alhonen L, Kauppinen L, Hyvönen T, Jänne J, Eloranta TO (1990) Human spermidine synthase: cloning and primary structure. DNA Cell Biol 9(2):103–110CrossRefGoogle Scholar
  18. 18.
    Casero RA, Pegg AE (1993) Spermidine/spermine N1-acetyltransferase—the turning point in polyamine metabolism. FASEB J 7(8):653–661CrossRefGoogle Scholar
  19. 19.
    Casero RA, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421(3):323–338CrossRefGoogle Scholar
  20. 20.
    Xie X, Gillies RJ, Gerner EW (1997) Characterization of a diamine exporter in Chinese hamster ovary cells and identification of specific polyamine substrates. J Biol Chem 272(33):20484–20489CrossRefGoogle Scholar
  21. 21.
    Vujcic S, Liang P, Diegelman P, Kramer DL, Porter CW (2003) Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion. Biochem J 370(1):19–28CrossRefGoogle Scholar
  22. 22.
    Wu T, Yankovskaya V, McIntire WS (2003) Cloning, sequencing, and heterologous expression of the murine peroxisomal flavoprotein, N1-acetylated polyamine oxidase. J Biol Chem 278(23):20514–20525CrossRefGoogle Scholar
  23. 23.
    Soulet D, Gagnon B, Rivest S, Audette M, Poulin R (2004) A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J Biol Chem 279(47):49355–49366CrossRefGoogle Scholar
  24. 24.
    Belting M, Persson S, Fransson L-Å (1999) Proteoglycan involvement in polyamine uptake. Biochem J 338(2):317–323CrossRefGoogle Scholar
  25. 25.
    Belting M, Mani K, Jönsson M, Cheng F, Sandgren S, Jonsson S, Ding K, Delcros J-G, Fransson L-Å (2003) Glypican-1 is a vehicle for polyamine uptake in mammalian cells a pivotal role for nitrosothiol-derived nitric oxide. J Biol Chem 278(47):47181–47189CrossRefGoogle Scholar
  26. 26.
    Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376(1):1–14CrossRefGoogle Scholar
  27. 27.
    Palmer AJ, Wallace HM (2010) The polyamine transport system as a target for anticancer drug development. Amino Acids 38(2):415–422CrossRefGoogle Scholar
  28. 28.
    Byers TL, Pegg AE (1989) Properties and physiological function of the polyamine transport system. Am J Phys Cell Phys 257(3):C545–C553CrossRefGoogle Scholar
  29. 29.
    Delcros J-G, Tomasi S, Carrington S, Martin B, Renault J, Blagbrough IS, Uriac P (2002) Effect of spermine conjugation on the cytotoxicity and cellular transport of acridine. J Med Chem 45(23):5098–5111CrossRefGoogle Scholar
  30. 30.
    Mandel JL, Flintoff WF (1978) Isolation of mutant mammalian cells altered in polyamine transport. J Cell Physiol 97(3):335–343CrossRefGoogle Scholar
  31. 31.
    Corcé V, Renaud SP, Cannie I, Julienne K, Gouin SG, Loréal O, Gaboriau F, Deniaud D (2014) Synthesis and biological properties of Quilamines II, new iron chelators with antiproliferative activities. Bioconjug Chem 25(2):320–334CrossRefGoogle Scholar
  32. 32.
    Bergeron RJ, McManis JS, Weimar WR, Schreier K, Gao F, Wu Q, Ortiz-Ocasio J, Luchetta GR, Porter C, Vinson JT (1995) The role of charge in polyamine analog recognition. J Med Chem 38(13):2278–2285CrossRefGoogle Scholar
  33. 33.
    Bergeron RJ, McManis JS, Liu CZ, Feng Y, Weimar WR, Luchetta GR, Wu Q, Ortiz-Ocasio J, Vinson JT (1994) Antiproliferative properties of polyamine analogs: a structure-activity study. J Med Chem 37(21):3464–3476CrossRefGoogle Scholar
  34. 34.
    Bergeron RJ, Neims AH, McManis JS, Hawthorne TR, Vinson JR, Bortell R, Ingeno MJ (1988) Synthetic polyamine analogs as antineoplastics. J Med Chem 31(6):1183–1190CrossRefGoogle Scholar
  35. 35.
    Bergeron RJ, McManis JS, Franklin AM, Yao H, Weimar WR (2003) Polyamine–Iron chelator conjugate. J Med Chem 46(25):5478–5483CrossRefGoogle Scholar
  36. 36.
    Nick H, Acklin P, Lattmann R, Buehlmayer P, Hauffe S, Schupp J, Alberti D (2003) Development of tridentate iron chelators: from desferrithiocin to ICL670. Curr Med Chem 10(12):1065–1076CrossRefGoogle Scholar
  37. 37.
    Bergeron RJ, Singh S, Bharti N, Jiang Y (2010) Design, synthesis, and testing of polyamine vectored iron chelators. Synthesis 2010(21):3631–3636CrossRefGoogle Scholar
  38. 38.
    Bergeron RJ, Bharti N, Wiegand J, McManis JS, Yao H, Prokai L (2005) Polyamine-vectored iron chelators: the role of charge. J Med Chem 48(12):4120–4137CrossRefGoogle Scholar
  39. 39.
    Wang C, Delcros J-G, Biggerstaff J, Phanstiel IV O (2003) Molecular requirements for targeting the polyamine transport system. Synthesis and biological evaluation of polyamine–anthracene conjugates. J Med Chem 46(13):2672–2682CrossRefGoogle Scholar
  40. 40.
    Wang C, Delcros J-G, Biggerstaff J, Phanstiel IV O (2003) Synthesis and biological evaluation of N-(anthracen-9-ylmethyl)triamines as molecular recognition elements for the polyamine transporter. J Med Chem 46(13):2663–2671CrossRefGoogle Scholar
  41. 41.
    Gardner RA, Delcros J-G, Konate F, Breitbeil F, Martin B, Sigman M, Huang M, Phanstiel IV O (2004) N-substituent effects in the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem 47(24):6055–6069CrossRefGoogle Scholar
  42. 42.
    Padariya M, Kalathiya U, Baginski M (2015) Structural and dynamic changes adopted by EmrE, multidrug transporter protein—studies by molecular dynamics simulation. Biochim Biophys Acta Biomembr 1848(10):2065–2074CrossRefGoogle Scholar
  43. 43.
    Breitbeil III F, Kaur N, Delcros J-G, Martin B, Abboud KA, Phanstiel IV O (2006) Modeling the preferred shapes of polyamine transporter ligands and dihydromotuporamine-C mimics: shovel versus hoe. J Med Chem 49(8):2407–2416CrossRefGoogle Scholar
  44. 44.
    Wang C, Delcros J-G, Cannon L, Konate F, Carias H, Biggerstaff J, Gardner RA, Phanstiel IV O (2003) Defining the molecular requirements for the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem 46(24):5129–5138CrossRefGoogle Scholar
  45. 45.
    Kaur N, Delcros J-G, Imran J, Khaled A, Chehtane M, Tschammer N, Martin B, Phanstiel Iv O (2008) A comparison of chloroambucil- and xylene-containing polyamines leads to improved ligands for accessing the polyamine transport system. J Med Chem 51(5):1393–1401CrossRefGoogle Scholar
  46. 46.
    Kaur N, Delcros J-G, Archer J, Weagraff NZ, Martin B, Phanstiel Iv O (2008) Designing the polyamine pharmacophore: influence of N-substituents on the transport behavior of polyamine conjugates. J Med Chem 51(8):2551–2560CrossRefGoogle Scholar
  47. 47.
    Muth A, Kamel J, Kaur N, Shicora AC, Ayene IS, Gilmour SK, Phanstiel IV O (2013) Development of polyamine transport ligands with improved metabolic stability and selectivity against specific human cancers. J Med Chem 56(14):5819–5828CrossRefGoogle Scholar
  48. 48.
    Phanstiel O, Kaur N, Delcros J-G (2007) Structure-activity investigations of polyamine-anthracene conjugates and their uptake via the polyamine transporter. Amino Acids 33(2):305–313CrossRefGoogle Scholar
  49. 49.
    Corcé V, Morin E, Guihéneuf S, Renault E, Renaud S, Cannie I, Tripier R, Lima LM, Julienne K, Gouin SG (2012) Polyaminoquinoline iron chelators for vectorization of antiproliferative agents: design, synthesis, and validation. Bioconjug Chem 23(9):1952–1968CrossRefGoogle Scholar
  50. 50.
    Kaur N, Delcros J-G, Martin B, Phanstiel IV O (2005) Synthesis and biological evaluation of dihydromotuporamine derivatives in cells containing active polyamine transporters. J Med Chem 48(11):3832–3839CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Mohamad Reza Nazifi
    • 1
  • Hojjat Sadeghi-aliabadi
    • 1
  • Afshin Fassihi
    • 1
  • Lotfollah Saghaie
    • 1
    Email author
  1. 1.Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations