Advertisement

Structural Chemistry

, Volume 30, Issue 1, pp 37–51 | Cite as

The mechanistic study of reaction between N-benzoyl carbamates and aliphatic/aromatic amines for synthesis of substituted N-benzoyl urea derivatives: a DFT approach

  • Harjinder SinghEmail author
Original Research
  • 63 Downloads

Abstract

A thorough investigation on whether a stepwise or a concerted pathway is involved in the synthesis of substituted N-benzoyl urea derivatives by reaction of substituted N-benzoylcarbamates and aliphatic/aromatic amines using density functional theory (DFT) calculations at B3LYP/6–31 + G (d,p) level of theory has been reported. The study of effects of nature of leaving group present in N-benzoylcarbamate, structure of amines, and solvents on the reaction showed that the choice of reaction mechanism involved depends upon the nature of leaving group present on N-benzoylcarbamate. The effect of structure of amine on reaction mechanism depends upon the type of leaving group present on N-benzoylcarbamate. We have also observed that the reaction between aliphatic/aromatic amine with phenyl benzoylcarbamate is thermodynamically more favorable, while a reaction between phenyl/methyl benzoylcarbamates with methylamine is more preferred. The effect of polar solvent water and non-polar solvent toluene on reaction mechanism was also investigated to account the interactions of solvent molecules with polar transition states at the same level of theory.

Keywords

DFT Computational study N-benzoyl urea Mechanistic study Stepwise/concerted mechanism 

Notes

Compliance with ethical standards

Ethical statement

All ethical guidelines have been adhered.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bigi F, Maggi R, Sartori G (2000). Green Chem 2(4):140–148CrossRefGoogle Scholar
  2. 2.
    Wu C, Cheng H, Liu R, Wang Q, Hao Y, Yua Y, Zhao F (2010). Green Chem 12:1811CrossRefGoogle Scholar
  3. 3.
    Wang H, Lim ZY, Zhou Y, Ng M, Lu T, Lee K, Goh KC, Wang X, Wu X, Khng HH, Goh SK, Ong WC, Bonday Z, Sun ET (2010). Bioorg Med Chem Lett 20:3314CrossRefGoogle Scholar
  4. 4.
    Keche AP, Hatnapure GD, Tale RH, Rodge AH, Birajdar SS, Kamble VM (2012). Bioorg Med Chem Lett 22(10):3445–3448CrossRefGoogle Scholar
  5. 5.
    Vishnyakova TP, Golubeva IA, Glebova EV (1985). Russ Chem Rev (Engl Transl) 54(3):249–261CrossRefGoogle Scholar
  6. 6.
    Matsuda K (1994). Med Res Rev 14:271CrossRefGoogle Scholar
  7. 7.
    Getman DP, DeCrescenzo GA, Heintz RM, Reed KL, Talley JJ, Bryant ML, Clare M, Houseman KA, Marr JJ (1993). J Med Chem 36(2):288–291CrossRefGoogle Scholar
  8. 8.
    Takahashi S, Shudo K, Okamoto T, Yamada K, Isogai Y (1978). Phytochemistry 17(8):1201–1207CrossRefGoogle Scholar
  9. 9.
    Kocyigit-Kaymakcioglu B, Celen AO, Tabanca N, Ali A, Khan SI, Khan IA, Wedge DE (2013). Molecules 18(3):3562–3576CrossRefGoogle Scholar
  10. 10.
    Diaz DJ, Darko AK, McElwee-White L (2007) Eur J Org Chem 4453–4465Google Scholar
  11. 11.
    Barrett AG, Boorman TC, Crimmin MR, Hill MS, Kociok-Kohn G, Procopiou PA (2008). Chem Commun 41:5206–5208CrossRefGoogle Scholar
  12. 12.
    Liprot D, Alcaraz L, Roberts B (2010). Adv Synth Catal 352:2183CrossRefGoogle Scholar
  13. 13.
    Maki T, Ishihara K, Yamamoto H (2004) Synlett 1355-1358Google Scholar
  14. 14.
    Speziale AJ, Smith LR (1963). J Organomet Chem 28:1805–1811CrossRefGoogle Scholar
  15. 15.
    Wiley PF (1949). J Am Chem Soc 7:1310CrossRefGoogle Scholar
  16. 16.
    Stokes S, Martin NG (2012). Tetrahedron Lett 53:4802CrossRefGoogle Scholar
  17. 17.
    Menger FM, Glass LE (1974). J Organomet Chem 39:2469–2470CrossRefGoogle Scholar
  18. 18.
    Shawali AS, Harhash A, Sidky MM, Hassaneen HM, Elkaabi SS (1986). J Organomet Chem 51(18):3498–3501CrossRefGoogle Scholar
  19. 19.
    Koh HJ, Kim OS, Lee HW, Lee I (1997). J Phys Org Chem 10:725–730CrossRefGoogle Scholar
  20. 20.
    Oh HK, Park JE, Sung DD, Lee I (2004). J Organomet Chem 69(9):3150–3153CrossRefGoogle Scholar
  21. 21.
    Oh HK, Jin YC, Sung DD, Lee I (2005). Org Biomol Chem 3(7):1240–1244CrossRefGoogle Scholar
  22. 22.
    Sung K, Zhuang BR, Huang PM, Jhong SW (2008). J Organomet Chem 73(11):4027–4033CrossRefGoogle Scholar
  23. 23.
    Ilieva S, Nalbantova D, Hadjieva B, Galabov B (2013). J Organomet Chem 78(13):6440–6444CrossRefGoogle Scholar
  24. 24.
    Bergon M, Calmon JP (1981). Tetrahedron Lett 22(10):937–940CrossRefGoogle Scholar
  25. 25.
    Zhu X, Cui P, Zhang D, Liu C (2011). J Phys Chem A 115(29):8255–8263CrossRefGoogle Scholar
  26. 26.
    Yuan H, Zheng Y, Zhang J (2012). J Organomet Chem 77(19):8744–8749CrossRefGoogle Scholar
  27. 27.
    Bouacha S, Nacereddine AK, Djerourou A (2013). Tetrahedron Lett 54(31):4030–4033CrossRefGoogle Scholar
  28. 28.
    Kona J, Fabian WM, Zahradnik P (2001). J Chem Soc Perkin Trans 2:422–426CrossRefGoogle Scholar
  29. 29.
    Bagno A, Kantlehner W, Kress R, Saielli G, Stoyanov E (2006). J Organomet Chem 71(25):9331–9340CrossRefGoogle Scholar
  30. 30.
    Scales S, Johnson S, Hu Q, Do QQ, Richardson P, Wang F, Braganza J, Ren S, Wan Y, Zheng B, Faizi D (2013). Org Lett 15(9):2156–2159CrossRefGoogle Scholar
  31. 31.
    Becke AD (1993). J Chem Phys 98:5648CrossRefGoogle Scholar
  32. 32.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785CrossRefGoogle Scholar
  33. 33.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV (1983). J Comput Chem 4(3):294–301CrossRefGoogle Scholar
  34. 34.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982). J Chem Phys 77(7):3654–3665CrossRefGoogle Scholar
  35. 35.
    Gordon MS (1980). Chem Phys Lett 76:163CrossRefGoogle Scholar
  36. 36.
    Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford, 2009Google Scholar
  37. 37.
    Singh A, Goel N (2014). J Mol Model 20(6):2265CrossRefGoogle Scholar
  38. 38.
    Clemente FR, Houk KN (2004). Angew Chem 116(43):5890CrossRefGoogle Scholar
  39. 39.
    Singh A, Goel N (2016). J Phys Org Chem 29(10):544CrossRefGoogle Scholar
  40. 40.
    Nieto-Oberhuber C, Munoz MP, Bunuel E, Nevado C, Cardenas DJ, Echavarren AM (2004). Angew Chem Int Ed 43(18):2402–2406CrossRefGoogle Scholar
  41. 41.
    Anderson P, Petit A, Ho J, Mitoraj MP, Coote ML, Danovich D, Shaik S, Braïda B, Ess DH (2014). J Organomet Chem 79(21):9998–10001CrossRefGoogle Scholar
  42. 42.
    Fukui K (1981). Acc Chem Res 14:363CrossRefGoogle Scholar
  43. 43.
    Miertuš S, Scrocco E, Tomasi J (1981). Chem Phys 55(1):117–129CrossRefGoogle Scholar
  44. 44.
    Barone V, Cossi M, Tomasi J (1998). J Comput Chem 19:404CrossRefGoogle Scholar
  45. 45.
    Lu T, Chen F (2012). J Comput Chem 33:580CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.P.G. Department of ChemistryM.M. Modi CollegePatialaIndia

Personalised recommendations