Structural Chemistry

, Volume 30, Issue 1, pp 53–60 | Cite as

Electrostatic, sequential bond energies and structures of Li+·(N2)n complexes: computational study

  • Jamal N. DawoudEmail author
  • Mohammed I. Alomari
Original Research


The MP2 and CCSD calculations of the geometries and binding energies of the Li+·(N2)n (n = 1–4) complexes are obtained. The potential energy surface showed that these complexes exhibit one minimum state and one transition state. The mono- and di-ligated complexes exhibit linear configurations with a binding energy of 11.1 and 21.2 kcal mol−1, respectively. Trigonal planar and tetrahedral configurations are obtained for tri- and tetra-ligated complexes, respectively. The computed sequential bond dissociation energies (BDEs) of Li+·(N2)n (n = 1–4) complexes are also calculated in which the mono-ligated complex has the largest BDE value. The obtained trend is mainly dependent on the variation in the ion-quadrupole interaction of these ion complexes. These calculations predict that these complexes are of purely electrostatic nature.


Non-covalent interaction CCSD method Bond dissociation energy Lithium ion complexes N2 molecule 


Funding information

JND gratefully acknowledges the financial support of the Deanship of the Scientific Research of the Hashemite University (Jordan).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material


(WMV 942 kb)


  1. 1.
    Matsubara T, Hirao K (2003) Density functional study of the interaction of H2, N2, O2, CO and NO diatomic molecules with H, Li and F anions. Prediction of a new type of anion cluster. J Phys Chem A 107:2505–2515CrossRefGoogle Scholar
  2. 2.
    Mikosch H, Uzunova EL, Nikolov GS (2005) Interaction of molecular nitrogen and oxygen with extra-framework cations in zeolites with double six-membered rings of oxygen bridged silicon and aluminum atoms: a DFT study. J Phys Chem B 109:11119–11125CrossRefGoogle Scholar
  3. 3.
    Rogers MT, Armentrout PB (2000) Noncovalent metal-ligand bond energies as studied by threshold collision-induced dissociation. Mass Spectrom Rev 19:215–247CrossRefGoogle Scholar
  4. 4.
    Areán CO, Nachtigallová D, Nachtigall P, Garrone E, Delgado MR (2007) Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites-the interplay of infrared spectroscopy and theoretical calculations. Phys Chem Chem Phys 9:1421–1437CrossRefGoogle Scholar
  5. 5.
    Hadjiivanov K, Massiani P, Knözinger H (1999) Low temperature CO and 15N2 adsorption on alkali cation exchanged EMT zeolites: an FTIR study. Phys Chem Chem Phys 1:3831–3838CrossRefGoogle Scholar
  6. 6.
    Schuster P (1981) Intermolecular forces. An example of fruitful cooperation of theory and experiment. Angew Chem Int Ed 20:546–568CrossRefGoogle Scholar
  7. 7.
    Alomari MI, Dawoud JN (2010) Structure and potential energy surface of K+·CX2. J Mol Struct (THEOCHEM) 939:28–33CrossRefGoogle Scholar
  8. 8.
    Soldán P, Spirko V, Lee EPF, Wright TG (1999) Structure and potential energy surface of Na+·N2. J Chem Phys 111:3420–3425CrossRefGoogle Scholar
  9. 9.
    Bōttner R, Ross U, Toennies JP (1976) Measurements of rotational and vibrational quantum transition probabilities in the scattering of Li+ from N2 and CO at center of mass energies of 4.23 and 7.07 eV. J Chem Phys 65:733–746CrossRefGoogle Scholar
  10. 10.
    Kita S, Noda K, Inouye H (1975) Experimental determination of repulsive potentials between alkali ions (Li+, Na+, and K+) and N2 and CO molecules. Chem Phys 7:156–160CrossRefGoogle Scholar
  11. 11.
    Staemmler V (1975) Ab initio calculation of the potential energy surface of the system N2Li+. Chem Phys 7:17–29CrossRefGoogle Scholar
  12. 12.
    Del Bene JE, Frisch MJ, Raghavacharj K, Pople JA, Schleyer PR (1983) A molecular orbital study of some lithium ion complexes. J Phys Chem 87:73–78CrossRefGoogle Scholar
  13. 13.
    Bulanin KM, Bulychev VP, Ryazantsev MN (2008) Theoretical study of structural and energy parameters of the van der Waals complex of the Li+ cation with the N2 molecule. Opt Spectrosc 105:829–837CrossRefGoogle Scholar
  14. 14.
    Alkorta I, Elguero J (2008) Cation dinitrogen complexes [N2···X···N2]+, X+ = H+, Li+, Na+, Be2+, Mg2+. Solid Stat Nuc Mag Res 34:105–109CrossRefGoogle Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, PMW G, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.05. Gaussian, Inc, PittsburghGoogle Scholar
  16. 16.
    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  17. 17.
    Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  18. 18.
    Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen-bonded dimmers. J Chem Phys 105:11024–11031CrossRefGoogle Scholar
  19. 19.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies: some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  20. 20.
    Sizova OV (2006) The valence structure analysis for dirhodium(II) tetracarboxylato complexes with nitric oxide as axial ligand. J Mol Struct (THEOCHEM) 760:183–187CrossRefGoogle Scholar
  21. 21.
    Spears KG (1972) Ion-neutral bonding. J Chem Phys 57:1850–1858CrossRefGoogle Scholar
  22. 22.
    Laidler KJ, Meiser JH (1999) Physical chemistry, 3rd edition, Houghton Mifflin, USA, pp 825–826Google Scholar
  23. 23.
    Beegle LW, Kanik I, Matz L, Hill HH (2002) Effects of drift-gas polarizability on glycine peptides in ion mobility spectrometry. Int J Mass Spectrom 216:257–268CrossRefGoogle Scholar
  24. 24.
    Lawson DB, Harrison LF (1997) Distance dependence and spatial distribution of the molecular quadrupole moments of H2, N2, O2, and F2. J Phys Chem A 101:4781–4792CrossRefGoogle Scholar
  25. 25.
    Sallabi AK, Dawoud JN, Jack DB (2010) A Monte Carlo simulation study of nitrogen on LiF(001). Appl Surf Sci 256:2974–2978CrossRefGoogle Scholar
  26. 26.
    Sallabi AK, Jack DB (2000) Simulation of an order-disorder transition in N2/NaCl(001) monolayer. Phys Rev B 62:R4841–R4844CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceHashemite UniversityZarqaJordan
  2. 2.Department of Chemistry and Chemical Technology, Faculty of ScienceTafila Technical UniversityTafilaJordan

Personalised recommendations