Strength of Materials

, Volume 51, Issue 5, pp 726–734 | Cite as

Characterization of Aluminum Foam Impact Response

  • O. V. ByakovaEmail author
  • G. V. Stepanov
  • A. O. Vlasov
  • V. E. Danylyuk
  • N. V. Semenov
  • O. M. Berezovs’kyi
  • S. V. Gnyloskurenko

The paper addresses the investigation of high-strain rate compressive behavior of Al foams subjected to impact at the intermediate striking velocity ranged from 40 to roughly about 80 m/s. Relatively ductile AlSiMg foam and high-strength AlZnMg foam, whose cell walls contain numerous brittle eutectic domains, are used in the experiments. Strain-rate sensitivity for different structural kinds of Al foams is determined by comparison of the plateau stress achieved at the dynamical and quasistatic compression. Difference in the dynamical response of these Al foams is revealed and clarified based on the strain rate and inertia effects under conditions of plastic cell collapse or brittle damage of the cell wall material induced by cracking of eutectic domains.


aluminum foam quasistatic and dynamic loading impact response strain-rate sensitivity 


  1. 1.
    M. F. Ashby, A. G. Evans, N. A. Fleck, et al., Metal Foams: A Design Guide, Butterworth-Heinemann, Oxford (2000).Google Scholar
  2. 2.
    J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Prog. Mater. Sci., 46, No. 6, 559–632 (2001).CrossRefGoogle Scholar
  3. 3.
    L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press (1997).Google Scholar
  4. 4.
    V. Crupi, G. Epasto, and E. Guglielmino, “Impact response of aluminum sandwiches for light-weight ship structures,” Metals, 1, 98–112 (2011).CrossRefGoogle Scholar
  5. 5.
    J. Banhart, “Light-metal foams-history of innovation and technological challenges,” Adv. Eng. Mater., 15, No. 3, 82–111 (2013).CrossRefGoogle Scholar
  6. 6.
    B. A. Gama, T. A. Bogetti, B. K. Fink, et al., “Aluminum foam integral armor: a new dimension of armor design,” Compos. Struct., 52, Nos. 3–4, 381–395 (2001).CrossRefGoogle Scholar
  7. 7.
    H. Tan and S. Qu, “Impact of cellular materials,” in: H. Altenbach, A. Öchsner (Eds.), Cellular and Porous Materials in Structures and Processes, Vol. 521, Springer, Vienna (2010), pp. 309–334.CrossRefGoogle Scholar
  8. 8.
    J. Wang, A. M. Waas, and H. Wang, “Experimental and numerical study on the low-velocity impact behaviour of foam-core sandwich panels,” Compos. Struct., 96, 298–311 (2013).CrossRefGoogle Scholar
  9. 9.
    L. Jing, Z. Wang, V. P. W. Shim, and L. Zhao, “An experimental study of the dynamic response of cylindrical sandwich shells with metallic foam cores subjected to blast loading” Int. J. Impact Eng., 71, 60–72 (2014).CrossRefGoogle Scholar
  10. 10.
    V. Crupi, E. Kara, G. Epasto, et al., “Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches,” Int. J. Impact Eng., 77, 97–107 (2015).CrossRefGoogle Scholar
  11. 11.
    P. Schaeffler, W. Rajner, D. Claar, et al., “Production, properties, and applications of Alulight® closed-cell aluminum foams,” in: Proc. of the Fifth Int. Workshop on Advanced Manufacturing Technologies (London, Canada 2005).Google Scholar
  12. 12.
    V. Crupi, G. Epasto, and E. Guglielmino, “Internal damage investigation of composites subjected to low-velocity impact,” Exp. Tech., 40, No. 2, 555–568 (2016).CrossRefGoogle Scholar
  13. 13.
    V. S. Deshpande and N. A. Fleck, “High strain rate compressive behaviour of aluminium alloy foams,” Int. J. Impact Eng., 24, 277–298 (2000).CrossRefGoogle Scholar
  14. 14.
    A. Paul and U. Ramamurty, “Strain rate sensitivity of a closed-cell aluminum foam,” Mater. Sci. Eng. A, 281, Nos. 1–2, 1–7 (2000).CrossRefGoogle Scholar
  15. 15.
    T. Miyoshi, T. Mukai, and K. Higashi, “Energy absorption in closed-cell Al-Zn-Mg-Ca-Ti foam,” Mater. Trans., 43, No. 7, 1778–1781 (2002).CrossRefGoogle Scholar
  16. 16.
    S. Ramachandra, P. S. Kumar, and U. Ramamurty, “Impact energy absorption in an Al foam at low velocities,” Scripta Mater., 49, No. 8, 741–745 (2003).CrossRefGoogle Scholar
  17. 17.
    J. U. Cho, S. J. Hong, S. K. Lee, and C. Cho, “Impact fracture behavior at the material of aluminum foam,” Mater. Sci. Eng. A, 539, 250–258 (2012).CrossRefGoogle Scholar
  18. 18.
    A. Byakova, I. Kartuzov, S. Gnyloskurenko, and T. Nakamura, “The role of foaming agent and processing route in mechanical performance of fabricated aluminum foams,” Adv. Mater. Sci. Eng., 2014, 9 pages (2014), Scholar
  19. 19.
    N. Movahedi and S. M. H. Mirbagheri, “Comparison of the energy absorption of closed-cell aluminum foa produce by various foaming agents,” Strength Mater., 48, No. 3, 444–449 (2016).CrossRefGoogle Scholar
  20. 20.
    A. V. Byakova, A. A. Vlasov, S. V. Gnyloskurenko, and I. Kartuzov, Method for Making the Blocks of Foamed Aluminum/Aluminum Alloys, UA Patent No. 104367 (2014).Google Scholar
  21. 21.
    T. Mukai, H. Kanahashi, T. Miyoshi, et al., “Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading,” Scripta Mater., 40, No. 8, 921–927 (1999).CrossRefGoogle Scholar
  22. 22.
    Y. Liu, J. Yu, Z. Zheng, and J. Li, “A numerical study on the rate sensitivity of cellular metals,” Int. J. Solids Struct., 46, Nos. 22–23, 3988–3998 (2009).CrossRefGoogle Scholar
  23. 23.
    P. Wang, S. Xu, Zh. Li, et al., “Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading,” Mater. Sci. Eng. A, 620, 253–261 (2014).CrossRefGoogle Scholar
  24. 24.
    P. Tan, S. Reid, J. Harrigan, et al., “Dynamic compressive strength properties of aluminium foams. Part I – experimental data and observations,” J. Mech. Phys. Solids, 53, No. 10, 2174–2205 (2005).CrossRefGoogle Scholar
  25. 25.
    L. L. Hu and Y. Liu, “Dynamic response of gradient foams,” Strength Mater., 46, No. 2, 296–300 (2014).CrossRefGoogle Scholar
  26. 26.
    G. V. Stepanov, Elastoplastic Deformation and Fracture of Materials under Pulse Loading [in Russian], Naukova Dumka, Kiev (1991).Google Scholar
  27. 27.
    B. Kriszt, B. Foroghi, and H. P. Degisher, “Behaviour of aluminium foam under uniaxial compression,” Mater. Sci. Tech., 16, 792–796 (2000).CrossRefGoogle Scholar
  28. 28.
    K. A. Dannemann and J. Lankford, “High strain rate compression of closed-cell aluminium foams,” Mater. Sci. Eng. A, 293, Nos. 1–2, 157–164 (2000).CrossRefGoogle Scholar
  29. 29.
    F. Yi, Z. Zhu, F. Zu, et al., “Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams,” Mater. Charact., 46, No. 5, 417–422 (2001).CrossRefGoogle Scholar
  30. 30.
    I. W. Hall, M. Guden, and C.-J. Yu, “Crushing of aluminum closed cell foams: density and strain rate effects,” Scripta Mater., 43, 515–521 (2000).CrossRefGoogle Scholar
  31. 31.
    C. S. Marchi, F. Cao, M. Kouzeli, and A. Mortensen, “Quasistatic and dynamic compression of aluminumoxide particle reinforced pure aluminum,” Mater. Sci. Eng. A, 337, Nos. 1–2, 202–211 (2002).CrossRefGoogle Scholar
  32. 32.
    T. Miyoshi, T. Mukai, and K. Hogashi, “Energy absorption in closed-cell Al-Zn-Mg-Ca-Ti foam,” in: Proc. of the 4th Int. Conf. on Porous Metals and Metal Foaming Technology, The Japan Institute of Metals (Kyoto, Japan, 2005).CrossRefGoogle Scholar
  33. 33.
    T. Mukai, “Energy absorption of cellular aluminum alloys at high strain rates,” in: Proc. of the 4th Int. Conf. on Porous Metals and Metal Foaming Technology, The Japan Institute of Metals (Kyoto, Japan, 2005).Google Scholar
  34. 34.
    J. Gibson, “Mechanical behavior of metallic foams,” Annu. Rev. Mater. Sci., 30, 191–227 (2000).CrossRefGoogle Scholar
  35. 35.
    J. W. Klintworth and W. J. Stronge, “Elasto-plastic yield limits and deformation laws for transverse by crushed honecombs,” Int. J. Mech. Sci., 30, Nos. 3–4, 273–292 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. V. Byakova
    • 1
    Email author
  • G. V. Stepanov
    • 2
  • A. O. Vlasov
    • 1
  • V. E. Danylyuk
    • 2
  • N. V. Semenov
    • 1
  • O. M. Berezovs’kyi
    • 2
  • S. V. Gnyloskurenko
    • 3
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Pisarenko Institute of Problems of StrengthNational Academy of Sciences of UkraineKyivUkraine
  3. 3.Physical-Technological Institute of Metals and AlloysNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations