Comparative Analysis of Processing Techniques’ Effect on the Strength of Carbon Black (N220)-Filled Poly (Lactic Acid) Composites

  • A. V. Rane
  • K. KannyEmail author
  • A. Mathew
  • T. P. Mohan
  • S. Thomas

Carbon black (CB)-filled polylactic acid (PLA) composites attract a significant interest due to their superior structural and functional performances. Properties of CB-filled PLA composites depend on physical and chemical interactions in them. In this study, interactions within CB (N220)-filled PLA composites as a function of processing method, filler concentration, and their effect on mechanical properties are investigated via mechanical tests. Strong interface interaction at intermediate concentration of 2.5 wt.% CB with PLA was confirmed through mechanical tests. Moreover, a 2.5 wt.% of CB-formed networks within PLA composites, which added the fracture resistance in the weaker phase, thereby improving their mechanical properties. Beyond 2.5 wt.%, a linked skeletal grid was formed, enhancing the fracture path in a weaker phase and deteriorating the mechanical properties. Experimental results on density and elastic modulus were compared with the theoretical model predictions. This study gives an insight on interactions controlling physical and mechanical properties related to various processing techniques and weight percent of CB in PLA composites.


carbon black (CB) polylactic acid (PLA) interaction dissolution–dispersion melt mixing mechanical properties 



The first author is thankful to CSIR and DST – South Africa for their CSIR – DST InterProgramme Bursary Award in area of composites. Authors also extend their thanks to Durban University of Technology, South Africa, and Mahatma Gandhi University, Kerala, India for their facilities to carry out this work. The first author also extends his thanks to Mr. T. A. Sajith of the University of Technology MARA (Malaysia) for the discussion on the mechanical properties of materials.


  1. 1.
    A. Tager, D. S. Sobolev, and N. Bobrov, Physical Chemistry of Polymers, Mir, Moscow (1978).Google Scholar
  2. 2.
    C. Gonçalves, I. C. Gonçalves, F. D. Magalhães, and A. M. Pinto, “Poly(lactic acid) composites containing carbon-based nanomaterials: a review,” Polymers-Basel, 9, No. 7, 269 (2017), Scholar
  3. 3.
    J. H. Chang, Y. U. An, and G. S. Sur, “Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology and gas permeability,” J. Polym. Sci. Pol. Phys., 41, No. 1, 94–103 (2003).CrossRefGoogle Scholar
  4. 4.
    K. Das, D. Ray, I. Banerjee, et al., “Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties,” J. Appl. Polym. Sci., 118, 143–151 (2010).CrossRefGoogle Scholar
  5. 5.
    N. Bitinis, A. Sanz, A. Nogales, et al., “Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering,” Soft Matter, 8, 8990–8997 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Nofar, A. Tabatabaei, and C. B. Park, “Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures,” Polymer, 54, 2382– 2391 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Keshtkar, M. Nofar, C. B. Park, and P. J. Carreau, “Extruded PLA/clay nanocomposite foams blown with supercritical CO2,” Polymer, 55, 4077–4090 (2014).CrossRefGoogle Scholar
  8. 8.
    B. Ayana, S. Suin, and B. B. Khatua, “Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay,” Carbohyd. Polym., 110, 430–439 (2014).Google Scholar
  9. 9.
    S. Singh, A. K. Ghosh, S. N. Maiti, et al., “Morphology and rheological behavior of polylactic acid/clay nanocomposites,” Polym. Eng. Sci., 52, 225–232 (2012).CrossRefGoogle Scholar
  10. 10.
    T. D. Hapuarachchi and T. Peijs, “Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fiber reinforced composites,” Compos. Part A-Appl. S., 41, 954–963 (2010).CrossRefGoogle Scholar
  11. 11.
    M. A. Busolo, P. Fernandez, M. J. Ocio, and J. M. Lagaron, “Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings,” Food Addit. Contam. A, 27, 1617–1626 (2010).CrossRefGoogle Scholar
  12. 12.
    Q. K. Meng, M. Hetzer, and D. De Kee, “PLA/clay/wood nanocomposites: Nanoclay effects on mechanical and thermal properties,” J. Compos. Mater., 45, 1145–1158 (2011).CrossRefGoogle Scholar
  13. 13.
    L. As’habi, S. H. Jafari, H. A. Khonakdar, et al., “Tuning the processability, morphology and biodegradability of clay incorporated PLA/LLDPE blends via selective localization of nanoclay induced by melt mixing sequence,” Express Polym. Lett., 7, 21–39 (2013).CrossRefGoogle Scholar
  14. 14.
    V. Mittal, “Polymer layered silicate nanocomposites: a review,” Materials, 2, 992–1057 (2009).CrossRefGoogle Scholar
  15. 15.
    S. S. Ray, P. Maiti, M. Okamoto, et al., “New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties,” Macromolecules, 35, 3104–3110 (2002).CrossRefGoogle Scholar
  16. 16.
    S. S. Ray, K. Yamada, M. Okamoto, et al., “New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials,” Chem. Mater., 15, 1456–1465 (2003).CrossRefGoogle Scholar
  17. 17.
    S. M. Lai and Y. T. Hsieh, “Preparation and properties of polylactic acid (PLA)/silica nanocomposites,” J. Macromol. Sci. B, 55, 211–228 (2016).CrossRefGoogle Scholar
  18. 18.
    L. Basilissi, G. Di Silvestro, H. Farina, and M. A. Ortenzi, “Synthesis and characterization of PLA nanocomposites containing nanosilica modified with different organosilanes II: Effect of the organosilanes on the properties of nanocomposites: Thermal characterization,” J. Appl. Polym. Sci., 128, 3057–3063 (2013).CrossRefGoogle Scholar
  19. 19.
    J. M. Raquez, Y. Habibi, M. Murariu, and P. Dubois, “Polylactide (PLA)-based nanocomposites,” Prog. Polym. Sci., 38, 1504–1542 (2013).CrossRefGoogle Scholar
  20. 20.
    M. Obarzanek-Fojt, Y. Elbs-Glatz, E. Lizundia, et al., “From implantation to degradation – are poly (L-lactide)/multiwall carbon nanotube composite materials really cytocompatible?” Nanomedicine, 10, 1041–1051 (2014).CrossRefGoogle Scholar
  21. 21.
    G. Gorrasi, C. Milone, E. Piperopoulos, et al., “Hybrid clay mineral-carbon nanotube-PLA nanocomposite films. Preparation and photodegradation effect on their mechanical, thermal and electrical properties,” Appl. Clay Sci., 71, 49–54 (2013).CrossRefGoogle Scholar
  22. 22.
    P. R. Supronowicz, P. M. Ajayan, K. R. Ullmann, et al., “Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation,” J. Biomed. Mater. Res., 59, 499–506 (2002).CrossRefGoogle Scholar
  23. 23.
    B. Kumar, M. Castro, and J. F. Feller, “Poly (lactic acid)-multi-wall carbon nanotube conductive biopolymer nanocomposite vapor sensors,” Sensor. Actuat. B-Chem., 161, 621–628 (2012).CrossRefGoogle Scholar
  24. 24.
    W. M. Chiu, Y. A. Chang, H. Y. Kuo, et al., “A study of carbon nanotubes/ biodegradable plastic polylactic acid composites,” J. Appl. Polym. Sci., 108, 3024– 3030 (2008).CrossRefGoogle Scholar
  25. 25.
    T. S. Lee, A. R. Rahmat, and W. A. W. A. Rahman, Polylactic Acid: PLA Biopolymer Technology and Applications, Elsevier (2012).Google Scholar
  26. 26.
    Z. Su, W. Guo, Y. Liu, et al., “Non-isothermal crystallization kinetics of poly (lactic acid)/modified carbon black composite,” Polym. Bull., 62, 629–642 (2009).CrossRefGoogle Scholar
  27. 27.
    N. Wang, X. Zhang, X. Ma, and J. Fang, “Influence of carbon black on the properties of plasticized poly (lactic acid) composites,” Polym. Degrad. Stabil., 93, No. 6, 1044–1052 (2008).CrossRefGoogle Scholar
  28. 28.
    G. H. Michler, Electron Microscopy of Polymers, Springer Verlag, Berlin–Heidelberg (2008).Google Scholar
  29. 29.
    H. Xiu, Y. Zhou, J. Dai, et al., “Formation of new electric double percolation via carbon black induced co-continuous like morphology,” RSC Adv., 4, No. 70, 37193– 37196 (2014).Google Scholar
  30. 30.
    J. S. Dick, Basic Rubber Testing: Selecting Methods for a Rubber Test Program, ASTM (2003).Google Scholar
  31. 31.
    R. Auras, T. L. Lim, S. E. M. Sekle, and H. Tsuji, Poly(lactic acid): Synthesis, Structures, Properties, Processing and Application, Wiley (2010).Google Scholar
  32. 32.
    B. P. Grady, Carbon Nanotube-Polymer Composites Manufacture, Properties, and Applications, Wiley, Hoboken, NJ (2011).Google Scholar
  33. 33.
    ASTM D792-13. Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA (2013).Google Scholar
  34. 34.
    G. Wypych, Handbook of Fillers, 2nd edn, ChemTec Publishing, Toronto–New York (2000).Google Scholar
  35. 35.
    J. Roesler, H. Harders, and M. Baeker, Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites, Springer-Verlag Berlin–Heidelberg (2007).Google Scholar
  36. 36.
    V. Shah, Handbook of Plastics Testing and Technology, Wiley, New York (1998).Google Scholar
  37. 37.
    P. S. Theocaris, The Mesophase Concept in Composites, Springer-Verlag, Berlin–Heidelberg (1987).CrossRefGoogle Scholar
  38. 38.
    S. Qian, H. Zhang, W. Yao, and K. Sheng, “Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites,” Compos. Part B–Eng., 133, 203–209 (2018).CrossRefGoogle Scholar
  39. 39.
    G. Wypych, Atlas of Material Damage, ChemTec Publishing, Toronto (2012).Google Scholar
  40. 40.
    J. Wang, H. Li, R. Liu, et al., “Thermoelectric and mechanical properties of PLA/Bi0.5Sb1.5Te3 composite wires used for 3D printing,” Compos. Sci. Technol., 157, 1–9 (2018).CrossRefGoogle Scholar
  41. 41.
    ASTM D648-18. Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position, ASTM International, West Conshohocken, PA (2018).Google Scholar
  42. 42.
    J. E. Mark, Physical Properties of Polymers Handbook, Springer, New York (2007).CrossRefGoogle Scholar
  43. 43.
    N. X. Ding and M. S. Zhan, “Magnetostrictive properties of carbon black filled polypropylene composites,” Polym. Test., 23, 523–526 (2004).CrossRefGoogle Scholar
  44. 44.
    A. Kaynak, A. Polat, and U. Yilmazer, “Some microwave and mechanical properties of carbon fiberpolypropylene and carbon black-polypropylene composites,” Mater. Res. Bull., 31, No. 10, 1195–1206 (1996).CrossRefGoogle Scholar
  45. 45.
    S. Zhao, W. Zhai, N. Li, et al., “Liquid sensing properties of carbon black/ polypropylene composite with a segregated conductive network,” Sensor. Actuat. A-Phys., 217, 13–0 (2014).CrossRefGoogle Scholar
  46. 46.
    M. Kurzböck, G. M. Wallner, and R. W. Lang, “Black pigmented polypropylene materials for solar absorbers,” Energy Proced., 30, 438–445 (2012).Google Scholar
  47. 47.
    F. Beck, G. T. Suden, U. Tormin, and T. Boinowitz, “Thin inert bipolar electrodes fabricated from carbon black filled polypropylene,” Electrochim. Acta, 41, No. 6, 933–935 (1996).CrossRefGoogle Scholar
  48. 48.
    S. Mondal, S. Ganguly, P. Das, et al., “Effect of thermal-air ageing treatment on mechanical properties and electromagnetic interference shielding effectiveness of low-cost nano-structured carbon filled chlorinated polyethylene,” Mater. Sci. Eng. B, 225, 140–149 (2017).CrossRefGoogle Scholar
  49. 49.
    Y. Luo, Y. Liu, and L. Wang, “Influence of plasma discharge on vapor sensitivity of polyethylene/carbon black conductive films,” Sensor. Actuat. B-Chem., 119, No. 2, 516–523 (2006).CrossRefGoogle Scholar
  50. 50.
    L. Ma, J. Zhao, X. Wang, et al., “Effects of carbon black nanoparticles on two-way reversible shape memory in cross-linked polyethylene,” Polymer, 56, 490–497 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Rane
    • 1
  • K. Kanny
    • 1
    Email author
  • A. Mathew
    • 2
  • T. P. Mohan
    • 1
  • S. Thomas
    • 3
  1. 1.Composite Research Group, Department of Mechanical EngineeringDurban University of TechnologyDurbanSouth Africa
  2. 2.Vimala College (Autonomous)Thrissur – Affiliated to University of CalicutKeralaIndia
  3. 3.School of Chemical Sciences and International and Interuniversity Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia

Personalised recommendations