Advertisement

Effects of Undercooling and Transformation Time on Microstructure and Strength of Fe–C–Mn–Si Superbainitic Steel

  • J. Y. TianEmail author
  • G. Xu
  • H. J. Hu
  • M. X. Zhou
Article
  • 4 Downloads

A metallographic method, dilatometry, and X-ray diffraction were applied to investigate the effects of undercooling and holding time on bainitic transformation, microstructure, and strength of Fe–C–Mn–Si superbainitic steel. The results indicate that the strength of the samples decreases and the elongation increases with the isothermal transformation time, resulting in an increase in the product of the tensile strength and the total elongation. Therefore, the prolongation of the transformation time can improve the comprehensive property of the sample. In addition, the morphology of bainite changes from granular bainite to lath-like one with a decline in the isothermal transformation temperature, leading to an increase in strength. The elongation first increases and then decreases with a decrease in the isothermal transformation temperature. Finally, the sample shows the best comprehensive property when it is austempered at an intermediate temperature (350°C). The data presented here are instrumental in optimizing the technology of austempering treatment in industrial production.

Keywords

undercooling transformation time superbainite morphology property 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51874216), National Nature Science Foundation of China (No. 51704217), Major Projects of Technological Innovation in Hubei (No. 2017AAA116), and the State Scholarship Fund of China Scholarship Council.

References

  1. 1.
    B. Koczurkiewicz, “The effect of time and temperature variations during isothermal annealing on the mechanical properties of high carbon bainitic steel,” Mater. Sci. Forum, 706–709, 2158–2163 (2012).CrossRefGoogle Scholar
  2. 2.
    H. J. Hu, G. Xu, L. Wang, et al., “Effect of ausforming on the stability of retained austenite in a C-Mn-Si bainitic steel,” Met. Mater. Int., 21, No. 5, 929–935 (2015).CrossRefGoogle Scholar
  3. 3.
    M. X. Zhou, G. Xu, L. Wang, and H. J. Hu, “Combined effect of the prior deformation and applied stress on the bainite transformation,” Met. Mater. Int., 22, No. 6, 956–961 (2016).CrossRefGoogle Scholar
  4. 4.
    H. T. Jiang, H. B. Wu, D. Tang, and Q. Liu, “Influence of isothermal bainitic processing on the mechanical properties and microstructure characterization of TRIP steel,” J. Univ. Sci. Technol. B., 15, No. 5, 574–579 (2008).CrossRefGoogle Scholar
  5. 5.
    X. L. Wang, K. M. Wu, F. Hu, et al., “Multi-step isothermal bainitic transformation in medium-carbon steel,” Scripta Mater., 74, No. 3, 56–59 (2014).CrossRefGoogle Scholar
  6. 6.
    J. Speer, D. K. Matlock, B. C. D. Cooman, and J. G. Schroth, “Carbon partitioning into austenite after martensite transformation,” Acta Mater., 51, No. 9, 2611–2622 (2003).CrossRefGoogle Scholar
  7. 7.
    J. Shi, X. Sun, M. Wang, et al., “Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite,” Scripta Mater., 63, No. 8, 815–818 (2010).CrossRefGoogle Scholar
  8. 8.
    H. K. D. H. Bhadeshia, “High performance bainitic steels,” Mater. Sci. Forum, 500–501, 63–74 (2005).CrossRefGoogle Scholar
  9. 9.
    Y. F. Shen, Y. D. Liu, X. Sun, et al., “Improved ductility of a transformation- induced-plasticity steel by nanoscale austenite lamellae,” Mater. Sci. Eng. A, 583, 1–10 (2013).CrossRefGoogle Scholar
  10. 10.
    F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, et al., “Design of novel high strength bainitic steels: Part 2,” Mater. Sci. Tech., 17, No. 5, 517–523 (2001).CrossRefGoogle Scholar
  11. 11.
    H. K. D. H. Bhadeshia, “52nd hat field memorial lecture large chunks of very strong steel,” Mater. Sci. Tech., 21, No. 11, 1293–1302 (2005).CrossRefGoogle Scholar
  12. 12.
    F. G. Caballero and H. K. D. H. Bhadeshia, “Very strong bainite,” Curr. Opin. Solid St. M., 8, Nos. 3–4, 251–257 (2004).Google Scholar
  13. 13.
    Y. B. Guo, K. Feng, F. G. Lu, et al., “Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings,” Appl. Surf. Sci., 357, 309–316 (2015).CrossRefGoogle Scholar
  14. 14.
    Z. Zhang, K. I. Manabe, Y. Li, and F. Zhu, “Effect of isothermal bainite treatment on microstructure and mechanical properties of low-carbon TRIP seamless steel tube,” Steel Res. Int., 83, No. 7, 645–652 (2012).CrossRefGoogle Scholar
  15. 15.
    S. Sharma, S. Sangal, and K. Mondal, “Development of new high-strength carbide-free bainitic steels,” Metall. Mater. Trans. A, 42, No. 13, 3921–3933 (2011).CrossRefGoogle Scholar
  16. 16.
    C. Huang, C. Zhang, L. Jiang, et al., “Isothermal heat treatment of a bearing steel for improved mechanical properties,” J. Alloy. Compd., 660, 131–135 (2015).CrossRefGoogle Scholar
  17. 17.
    M. X. Zhou, G. Xu, L. Wang, and H. J. Hu, “Effect of undercooling and austenitic grain size on bainitic transformation in an Fe–C–Mn–Si superbainite steel,” Trans. Indian Inst. Met., 69, No. 3, 693–698 (2016).CrossRefGoogle Scholar
  18. 18.
    Z. Yang, Q. Yan, L. Chen, and X. Yuan, “Effect of isothermal temperature on microstructure and mechanical properties of high Al–low Si TRIP steel,” Acta Metall. Sin., 27, No. 3, 389–394 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Gomez, C. I. Garcia, D. M. Haezebrouck, and A. J. Deardo, “Design of composition in (Al/Si)-alloyed TRIP steels,” ISIJ Int., 49, No. 2, 302–311 (2009).CrossRefGoogle Scholar
  20. 20.
    H. J. Hu, G. Xu, L. Wang, et al., “The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels,” Mater. Design, 84, No. 4, 95–99 (2015).CrossRefGoogle Scholar
  21. 21.
    G. Xu, F. Liu, L. Wang, and H. J. Hu, “A new approach to quantitative analysis of bainitic transformation in a superbainite steel,” Scripta Mater., 68, No. 11, 833–836 (2013).CrossRefGoogle Scholar
  22. 22.
    H. K. D. H. Bhadeshia, Bainite in Steels: Transformations, Microstructure and Properties, IOM Communications (2001).Google Scholar
  23. 23.
    F. G. Caballero, M. J. Santofimia, C. Garcia-Mateo, et al., “Theoretical design and advanced microstructure in super high strength steels,” Mater. Design, 30, No. 6, 2077–2083 (2009).CrossRefGoogle Scholar
  24. 24.
    H. K. D. H. Bhadeshia, S. A. David, J. M. Vitek, and R. W. Reed, “Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel,” Mater. Sci. Tech., 7, No. 8, 686–698 (1991).CrossRefGoogle Scholar
  25. 25.
    F. G. Caballero, M. J. Santofimia, C. Capdevila, et al., “Design of advanced bainitic steels by optimisation of TTT diagrams and T 0 curves,” ISIJ Int., 46, No. 10, 1479–1488 (2006).CrossRefGoogle Scholar
  26. 26.
    D. Quidort and Y. J. M. Brechet, “Isothermal growth kinetics of bainite in 0.5% C steels,” Acta Mater., 49, No. 20, 4161–4170 (2001).CrossRefGoogle Scholar
  27. 27.
    Z. W. Hu, G. Xu, H. J. Hu, et al., “In situ measured growth rates of bainite plates in an Fe-C-Mn-Si superbainitic steel,” Int. J. Miner. Metall. Mater., 21, No. 4, 371–378 (2014).CrossRefGoogle Scholar
  28. 28.
    M. X. Zhou, G. Xu, L. Wang, and B. He, “Effects of austenitization temperature and compressive stress during bainitic transformation on the stability of retained austenite,” Trans. Indian Inst. Met., 70, No. 6, 1447–1453 (2016).CrossRefGoogle Scholar
  29. 29.
    X. X. Zhang, G. Xu, X. Wang, et al., “Mechanical behavior of carbide-free medium carbon bainitic steels,” Metall. Mater. Trans. A, 45, No. 3, 1352–1361 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced SteelsWuhan University of Science and TechnologyWuhanChina

Personalised recommendations