Advertisement

Strength of Materials

, Volume 51, Issue 2, pp 240–251 | Cite as

Solution to the Task of Elastic Axial Compression–Tension of the Composite Multilayered Cylindrical Beam

  • S. B. Koval’chukEmail author
  • A. V. Gorik
  • A. N. Pavlikov
  • A. V. Antonets
Article
  • 14 Downloads

The authors present an accurate solution to the task of elastic axial compression (tension) of the multilayered cylindrical beam with axial orthotropic layers surrounding a central core. The description of the geometry and structural framework of the beam requires the employment of the circular cylindrical system of coordinates where the mechanical characteristics of its inhomogeneous materials serve as the functions of the only variable. The task is solved via direct integration of the entire system of equations of the theory of elasticity within the selected system of coordinates upon the condition of rigid contact at the interfaces of the layers. The analytical relations for all the components of the features of the stress-strain state are obtained, their application is illustrated by the results of the solution to the test task of compression of the four-layered beam with the isotropic core.

Keywords

multilayered beam orthotropic layer axial elastic compression–tension stress-strain state displacement 

References

  1. 1.
    M. Ei-Mikawi and A. S. Mosallam, “A methodology for evaluation of the use of advanced composites in structural civil engineering applications,” Compos. Part B-Eng., 27, Nos. 3–4, 203–215 (1996).CrossRefGoogle Scholar
  2. 2.
    L. I. Storozhenko, P. I. Plakhotnyi, and A. Ya. Chernyi, Calculation of Tube Confined Concrete Structures [in Russian], Budivelnyk, Kiev (1991).Google Scholar
  3. 3.
    J. Zheng and T. Ozbakkaloglu, “Sustainable FRP-recycled aggregate concretesteel composite columns: Behavior of circular and square columns under axial compression,” Thin Wall. Struct., 120, 60–69 (2017).CrossRefGoogle Scholar
  4. 4.
    Y. Xiao, “Applications of FRP composites in concrete columns,” Adv. Struct. Eng., 7, No. 4, 335–343 (2004).CrossRefGoogle Scholar
  5. 5.
    A. Mirmiran and M. Shahawy, “A new concrete-filled hollow FRP composite column,” Compos. Part B-Eng., 27, Nos. 3–4, 263–268 (1996).CrossRefGoogle Scholar
  6. 6.
    V. A. Romashchenko, “A numerical study of the nonlinear dynamics of multilayer spirally orthotropic cylinders,” Strength Mater., 40, No. 6, 678–687 (2008).CrossRefGoogle Scholar
  7. 7.
    P. P. Lepikhin, V. A. Romashchenko, and O. S. Beiner, “A numerical study of 3D dynamics and strength of metal-composite cylinders under internal explosion loading,” Strength Mater., 49, No. 6, 796–808 (2017).CrossRefGoogle Scholar
  8. 8.
    S. Matthys, H. Toutanji, K. Audenaert, and L. Taerwe, “Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites,” ACI Struct. J., 102, No. 2, 258–267 (2005).Google Scholar
  9. 9.
    L. Lam and J. G. Teng, “Strength models for fiber-reinforced plastic-confined concrete,” J. Struct. Eng., 128, No. 5, 612–623 (2002).CrossRefGoogle Scholar
  10. 10.
    T. H. Almusallam, “Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates,” Compos. Part B-Eng., 38, Nos. 5–6, 629 – 639 (2007).CrossRefGoogle Scholar
  11. 11.
    V. V. Vasil’ev, Mechanics of Structures Made of Composite Materials [in Russian], Mashinostroenie, Moscow (1988).Google Scholar
  12. 12.
    N. I. Muskhelishvili, “To the task of torsion and bending of elastic bars made of various materials,” Izv. AN SSSR. VII Ser. Otd. Matem. Estestv. Nauk, No. 7, 907–945 (1932).Google Scholar
  13. 13.
    N. I. Muskhelishvili, Some Basic Tasks of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).Google Scholar
  14. 14.
    E. Soós, “Sur le problème de Saint-Venant dans le cas des barres hétérogènes avec anisotropie cylindrique,” B. Math. Soc. Sci. Math., 7 (55), 6–75 (1963).Google Scholar
  15. 15.
    S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Body [in Russian], Nauka, Moscow (1977).Google Scholar
  16. 16.
    V. V. Vasil’ev (Ed.), Yu. M. Tarnopol’skii (Ed.), V. D. Protasov, et al., Composite Materials [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  17. 17.
    L. É. Él’sgol’ts, Differential Equations and the Calculus of Variations [in Russian], Nauka, Moscow (1969)Google Scholar
  18. 18.
    W. Voigt, “Über die elasticitätsverhältnisse cylindrisch aufgebauter Körper,” Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, No. 16, 505–514 (1886).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. B. Koval’chuk
    • 1
    Email author
  • A. V. Gorik
    • 1
  • A. N. Pavlikov
    • 2
  • A. V. Antonets
    • 1
  1. 1.Poltava State Agrarian AcademyPoltavaUkraine
  2. 2.Yuriy Kondratyuk Poltava National Technical UniversityPoltavaUkraine

Personalised recommendations