Strength of Materials

, Volume 51, Issue 2, pp 202–213 | Cite as

Fracture Behavior of Single-Crystal Alloys Under Thermocyclic Loading

  • L. B. GetsovEmail author
  • A. S. Semenov
  • A. N. Grudinin
  • A. I. Rybnikov

Experimental study results for thermal fatigue fracture of sand-glass specimens from a ZhS32 single-crystal alloy with different crystallographic orientations are presented over a wide range of maximum and minimum cycle temperature variations. Crystallographic, fractographic, and finite element data were used to identify crystallographic and noncrystallographic fracture modes of a single-crystal alloy. The noncrystallographic mode is realized at high maximum cycle temperatures and comparatively narrow temperature ranges. It is characterized by mode I crack growth. The crystallographic mode is realized at lower maximum temperatures and a wide range of cycle temperature variations. It is characterized by combined I–II mode crack growth in crystallographic plane {111}. The chart of fracture mechanisms in the maximum temperature-temperature range coordinates is proposed. The boundary between the regions permits of approximation, corresponding to the Arrhenius equation.


single-crystal alloy thermal fatigue crystallographic and noncrystallographic fracture modes crack finite element simulation 


  1. 1.
    E. N. Kablov and E. R. Golubovskii, Heat Resistance of Nickel Alloys [in Russian], Mashinostroenie, Moscow (1998).Google Scholar
  2. 2.
    L. B. Getsov, V. E. Mikhailov, A. S. Semenov, et al., “Calculated life assessment of blades and guide vanes of gas turbine plants. Part 2. Single-crystal materials,” Gazoturb. Tekhnol., No. 8, 18–25 (2011).Google Scholar
  3. 3.
    G. R. Leverant and M. Gell, “The influence of temperature and frequency on the fatigue fracture of cube oriented nickel-base superalloy single crystals,” Metall. Trans. A, 6, 367–371 (1975).CrossRefGoogle Scholar
  4. 4.
    J. Telesman and L. J. Ghosn, “The unusual near-threshold FCG behavior of a single crystal superalloy and the resolved shear stress as the crack driving force,” Eng. Fract. Mech., 34, Nos. 5–6, 1183–1196 (1989).CrossRefGoogle Scholar
  5. 5.
    J. Telesman and L. J. Ghosn, “Fatigue crack growth behavior of PWA 1484 single crystal superalloy at elevated temperatures,” J. Eng. Gas Turb. Power, 118, No. 2, 399–405 (1996).CrossRefGoogle Scholar
  6. 6.
    J. Gallagher, T. Nicholas, A. Gunderson, et al., Advanced High Cycle Fatigue (HCF) Life Assurance Methodologies, Final Report of University of Dayton Research Institute (2004).Google Scholar
  7. 7.
    K. S. Chan, J. Feiger, Y.-D. Lee, et al., “Fatigue crack growth thresholds of deflected mixed-mode cracks in PWA1484,” J. Eng. Mater. Technol., 127, No. 1, 2–7 (2005).CrossRefGoogle Scholar
  8. 8.
    L. B. Getsov and A. S. Semenov, “Fracture criteria for polycrystalline and single-crystal materials under thermocyclic loading,” in: Proc. of the TsKTI [in Russian], Issue 296 (2009), pp. 83–91.Google Scholar
  9. 9.
    L. B. Getsov, “Fracture criterion for a multiaxial loading program,” in: Proc. of the All-Union Workshop on Low-Cycle Fatigue Problems [in Russian], Kaunas (1971), pp. 52–55.Google Scholar
  10. 10.
    A. S. Semenov and L. B. Getsov, “Thermal fatigue fracture criteria of single crystal heat-resistant alloys and methods for identification of their parameters,” Strength Mater., 46, No. 1, 38–48 (2014).CrossRefGoogle Scholar
  11. 11.
    A. S. Semenov, S. G. Semenov, and L. B. Getsov, “Methods of computational determination of growth rates of fatigue, creep, and thermal fatigue cracks in poly- and monocrystalline blades of gas turbine units,” Strength Mater., 47, No. 1, 268–290 (2015).CrossRefGoogle Scholar
  12. 12.
    E. A. Tikhomirova, A. A. Zhivushkin, L. B. Getsov, and A. I. Rybnikov, “Studies on the properties of heat-resistant nickel single-crystal superalloys,” Vestn. Samar. Gos. Aérokosm. Univ., No 3, 89–97 (2011).Google Scholar
  13. 13.
    B. M. Gugelev, L. B. Getsov, Yu. N. Zhuravlev, and E. G. Novikova, “Microstructural studies on damages in metals on thermal fatigue,” Zavod. Lab., No. 1, 94–98 (1976).Google Scholar
  14. 14.
    L. B. Getsov, N. I. Dobina, A. I. Rybnikov, et al., “Thermal fatigue resistance of a monocrystalline alloy,” Strength Mater., 40, No. 5, 538–551 (2008).CrossRefGoogle Scholar
  15. 15.
    E. A. Tikhomirova, Change of the Structure and Properties of a Casting Heat-Resistant Nickel Alloy at a Temperature-Force Effect [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Saint Petersburg (2013).Google Scholar
  16. 16.
    A. S. Semenov, Computational Methods in the Theory of Plasticity [in Russian], SPbGPU, Saint Petersburg (2008).Google Scholar
  17. 17.
    G. Cailletaud, “A micromechanical approach to inelastic behaviour of metals,” Int. J. Plasticity, 8, No. 1, 55–73 (1991).CrossRefGoogle Scholar
  18. 18.
    A. I. Grishchenko, A. S. Semenov, and L. B. Getsov, “Modeling inelastic deformation of single crystal superalloys with account of γ γ′ phases evolution,” Mater. Phys. Mech., 24, No. 4, 325–330 (2015).Google Scholar
  19. 19.
    L. B. Getsov, A. S. Semenov, E. A. Tikhomirova, and A. I. Rybnikov, “Failure criteria for single crystal alloys of gas turbine blades under static and thermocycling loading,” in: Proc. of the 19th Eur. Conf. on Fracture: Fracture Mechanics for Durability, Reliability and Safety (ECF19, August 26–31, 2012, Kazan, Russia) (2012), pp. 670–678.Google Scholar
  20. 20.
    R. E. Shalin, I. L. Svetlov, E. B. Kachanov, et al., Single Crystals of Heat Resistant Nickel Alloys [in Russian], Mashinostroenie, Moscow (1997).Google Scholar
  21. 21.
    A. S. Semenov, “PANTOCRATOR – finite element software complex for solving nonlinear problems of mechanics,” in: Proc. of the V Int. Conf. on Scientific-Technical Problems for Prediction of Reliability and Durability of Structures and Methods of Their Solution [in Russian], SPbGPU, Saint Petersburg (a2003), pp. 466–480.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. B. Getsov
    • 1
    Email author
  • A. S. Semenov
    • 2
  • A. N. Grudinin
    • 2
  • A. I. Rybnikov
    • 1
  1. 1.Polzunov Power Equipment Research & Design Science & Technology AssociationSaint PetersburgRussia
  2. 2.Peter the Great Saint Petersburg State Polytechnic UniversitySaint PetersburgRussia

Personalised recommendations