Advertisement

Strength of Materials

, Volume 51, Issue 2, pp 175–182 | Cite as

Rapid Method of Predicting the Subsonic Flutter Stability of AGTE Axial-Flow Compressor Blade Cascades. Part 1. Physical Backgrounds of the Method

  • A. L. Stel’makh
  • A. P. ZinkovskiiEmail author
  • S. N. Kabannik
SCIENTIFIC AND TECHNICAL SECTION
  • 10 Downloads

Generalization of experimental investigation results for direct compressor cascades of blade profiles at a subsonic (continuous and separated) gas flow with bending, torsional, and bending-torsional vibrations created the basis for defining the physical mechanisms of subsonic flutter initiation in AGTE axial-flow compressor blade cascades. Such a combination of reduced frequencies and angles of attack is possible when the aerodynamic blade vibration decrement equals zero. It corresponds to the critical reduced vibration frequency value below which the aeroexcitation of blade vibrations and an increase in its level are observed, i.e., the dynamic subsonic cascade flutter loss is taking place. Known methods of evaluating these critical loss conditions are analyzed. The rapid method of predicting the dynamic subsonic flutter stability for compressor blade cascades is described. The scheme of critical reduced blade vibration frequency data base generation is tabulated as the critical values at fixed geometric cascade parameters (pitch-chord ratio and deflection angle), angles of attack, and coefficients of bending-torsional coupling. An example of such a data base for specific compressor blade cascades is given.

Keywords

blade cascade profile axial-flow compressor subsonic cascade flutter reduced vibration frequency dynamic stability limits 

References

  1. 1.
    E. K. Armstrong and R. E. Stevenson, “Some practical aspects of compressor blade vibration,” J. R. Aeronaut. Soc., 64, No. 591, 117–130 (1960).CrossRefGoogle Scholar
  2. 2.
    A. V. Srinivasan, “Flutter and resonant vibrations characteristics of engine blades,” J. Eng. Gas Turb. Power, 119, 742–775 (1997).CrossRefGoogle Scholar
  3. 3.
    E. A. Lokshtanov, V. M. Mikhailov, and A. A. Khorikov, Statistical Flutter Prediction for Turbomachine Blades. Aeroelasticity of Turbomachines [in Russian], Naukova Dumka, Kiev (1980), pp. 73–81.Google Scholar
  4. 4.
    Tszi and Srinivasan, “Some recent advances in studying the nature of stall flutter in turbomachines,” Énerg. Mash. Ustan., 107, No. 2, 113–124 (1985).Google Scholar
  5. 5.
    V. R. Capece and Y. M. El-Aini, “Stall flutter prediction techniques for fan and compressor blades,” J. Propul. Power, 12, 800–806 (1996).CrossRefGoogle Scholar
  6. 6.
    J. D. Jeffers II and C. E. Meece, Jr, “F100 fan stall flutter problem review and solution,” AAIA J. Aircraft, 12, No. 1, 350–357 (1975).CrossRefGoogle Scholar
  7. 7.
    S. N. Smith, Discrete Frequency Sound Generation in Axial Flow Turbomachines, Aeronautical Research Council Reports and Memoranda, No. 3709, Her Majesty’s Stationery Office, London (1973).Google Scholar
  8. 8.
    F. O. Carta, “Coupled blade-disk-shroud flutter instabilities in turbojet engine rotors,” J. Eng. Power, 89, No. 3, 419–426 (1967).Google Scholar
  9. 9.
    A. Bölcs and T. H. Fransson, Aeroelasticity in Turbomachines. Comparison of Theoretical and Experimental Cascade Results, Communications de Laboratoire de Thermique Appliquée et de Turbomachines No. 13, EPFL, Lausanne (1986).Google Scholar
  10. 10.
    J. G. Marshall and M. Imregun, “A review of aeroelasticity methods with emphasis on turbomachinery applications,” J. Fluid. Struct., 10, 237–267 (1996).CrossRefGoogle Scholar
  11. 11.
    L. Sbardella, A. I. Sayma, and M. Imregun, “Semi-structured meshes for axial turbomachinery blades,” Int. J. Numer. Meth. Fl., 32, No. 5, 569–584 (2000).CrossRefGoogle Scholar
  12. 12.
    M. Imregun and M. Vahdati, “Aeroelasticity analysis of a bird-damaged fan assembly using a large numerical model,” Aeronaut. J., 103, No. 1030, 569–578 (1999).CrossRefGoogle Scholar
  13. 13.
    M. Vahdati, A. I. Sayma, M. Imregun, and G. Simpson, “Core-compressor rotating stall simulation with a multi-bladerow model,” in: K. C. Hall, R. E. Kielb, and J. P. Thomas (Eds.), Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Springer (2006), pp. 313–329.Google Scholar
  14. 14.
    F. Sisto, S. Thangam, and A. Abdel-Rahimi, “Computational prediction of stall flutter in cascaded airfoils,” AAIA J., 29, No. 7, 1161–1167 (1991).CrossRefGoogle Scholar
  15. 15.
    V. I. Gnesin and Yu. A. Bykov, “Numerical studies on aeroelastic characteristics of the turbomachine blade cascade operating under abnormal conditions,” Probl. Mashinostr., 7, No. 1, 31–40 (2004).Google Scholar
  16. 16.
    V. I. Gnesin and L. V. Kolodyazhnaya, “Numerical simulation of the aeroelastic state of the vibrating turbomachine blade cascade in the three-dimensional transonic nonviscous gas flow,” Probl. Mashinostr., 1, No. 2, 65–76 (1998).Google Scholar
  17. 17.
    V. A. Tsymbalyuk, A. P. Zinkovskii, and A. V. Poberezhnikov, “Experimental-calculation determination of dynamic stability of blade assemblies of GTE compressor rotor wheels,” Strength Mater., 33, No. 6, 516–525 (2001).CrossRefGoogle Scholar
  18. 18.
    A. Pajak and R. Rzadkowski, “Influence of mesh density and turbulence models on 2D viscous flutter in 11th standard configuration,” in: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition (June 11–15, 2012, Copenhagen, Denmark), Vol. 7: Structures and Dynamics, Paper No. GT2012-68393, doi:  https://doi.org/10.1115/GT2012-68393 (2012), pp. 1431–1439.
  19. 19.
    A. Rougerald-Sens and A. Dugeai, “Numerical unsteady aerodynamics for turbomachinery aeroelasticity,” in: K. C. Hall, R. E. Kielb, and J. P. Thomas (Eds.), Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Springer (2006), pp. 423–436.Google Scholar
  20. 20.
    A. L. Stel’makh, Ya. A. Stel’makh, and A. P. Zinkovskii, “Rapid assessment technique for dynamic subsonic cascade flutter stability of gas turbine engine compressor blades,” Aviats.-Kosm. Tekhn. Tekhnol., Issue 5 (40), 71–75 (2003).Google Scholar
  21. 21.
    A. A. Kaminer and A. L. Stel’makh, “Effect of the aerodynamic connectedness between blades on the aerodynamic damping of their vibrations, and origin of cascade flutter,” Strength Mater., 14, No. 12, 1667–1672 (1982).CrossRefGoogle Scholar
  22. 22.
    A. L. Stel’makh and A. A. Kaminer, “Experimental study on cascade flutter-induced bending compressor blade vibrations,” in: Aeroelasticity of Turbomachines [in Russian], Proc. of Central Institute of Aviation Motors, No. 1064 (1983), pp. 273–284.Google Scholar
  23. 23.
    A. L. Stel’makh and A. A. Kaminer, “Effect of the geometrical parameters of a compressor cascade on the limit of bending self-oscillations of blades caused by cascade flatter,” Strength Mater., 15, No. 1, 104–109 (1983).CrossRefGoogle Scholar
  24. 24.
    A. D. Len, A. A. Kaminer, A. L. Stel’makh, and V. A. Balalaev, “Loss of dynamic stability of torsional vibrations of blades due to cascade flutter,” Strength Mater., 18, No. 1, 76–80 (1986).CrossRefGoogle Scholar
  25. 25.
    A. A. Kaminer, A. L. Stel’makh, and A. D. Len, “Experimental study on flutter-induced torsional autovibration limits for compressor blades,” in: Aeroelasticity of Turbomachines [in Russian], Proc. of Central Institute of Aviation Motors, No. 1127 (1985), pp. 96–104.Google Scholar
  26. 26.
    A. L. Stel’makh, “Aerodamping and stability of fan and compressor cascades under continuous and separated flow conditions,” Vibr. Tekhn. Tekhnol., No. 1 (10), 45–51 (1999).Google Scholar
  27. 27.
    A. L. Stel’makh, A. P. Zinkovskii, and Ya. A. Stel’makh, “Experimental-numerical investigation of the dynamic stability of flexural-torsional vibrations of compressor blades under conditions of attached and separated flow. Part 3. Mutual aerodynamic couplings,” Strength Mater., 42, No. 3, 304–312 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. L. Stel’makh
    • 1
  • A. P. Zinkovskii
    • 1
    Email author
  • S. N. Kabannik
    • 1
  1. 1.Pisarenko Institute of Problems of StrengthNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations