Sensing and Imaging

, 21:1 | Cite as

Reversible Image Steganography Using Dual-Layer LSB Matching

  • Aditya Kumar SahuEmail author
  • Gandharba Swain
Original Paper


Recently, reversible information hiding (RIH) methods have drawn substantial attention in many privacy-sensitive real-time applications, such as the Internet of Things (IoT) enabled communications, electronic health care infrastructure, and military applications. The RIH methods are proven to be competent in such hyper-sensitive infrastructures where the loss of a single bit of information is not acceptable. In this paper, dual-layered based RIH method using modified least significant bit (LSB) matching has been proposed. The objective of the proposed work is to enhance the embedding efficiency (EE) using dual-layer based embedding strategy and to curtail the distortion caused to the stego-image to improve its quality. At the first layer of embedding, each pixel conceals two bits of information using the proposed modified LSB matching method to produce the intermediate pixel pair (IPP). Further, the IPP is utilized to conceal four bits of information during the next layer of embedding. Experimental study reveals that, the proposed method can embed 1,572,864 bits of secret data with peak signal-to-noise ratio (PSNR) of 47.86 dB, 48.05 dB, 46.51 dB and 48.14 dB, for the respective images. Further, the image quality assessment parameters like structural similarity (SSIM) index and universal image quality index (Q) are as good as the existing literature. Additionally, the proposed method shows excellent anti-steganalysis ability to regular and singular (RS) and pixel difference histogram (PDH) analysis.


Steganography Reversible information hiding Steganalysis Embedding efficiency 



  1. 1.
    Shi, Y. Q., Li, X., Zhang, X., Wu, H. T., & Ma, B. (2016). Reversible data hiding: Advances in the past two decades. IEEE Access, 4, 3210–3237.CrossRefGoogle Scholar
  2. 2.
    Subhedar, M. S., & Mankar, V. H. (2014). Current status and key issues in image steganography: A survey. Computer Science Review, 13, 95–113.zbMATHCrossRefGoogle Scholar
  3. 3.
    Cheddad, A., Condell, J., Curran, K., & Mc Kevitt, P. (2010). Digital image steganography: Survey and analysis of current methods. Signal Processing, 90(3), 727–752.zbMATHCrossRefGoogle Scholar
  4. 4.
    Pradhan, A., Sahu, A. K., Swain, G., & Sekhar, K. R. (2016). Performance evaluation parameters of image steganography techniques. In IEEE international conference on research advances in integrated navigation systems (pp. 1–8).Google Scholar
  5. 5.
    Hussain, M., Wahab, A. W. A., Idris, Y. I. B., Ho, A. T., & Jung, K. H. (2018). Image steganography in spatial domain: A survey. Signal Processing: Image Communication, 65, 46–66.Google Scholar
  6. 6.
    Sahu, A. K., & Swain, G. (2019). An optimal information hiding approach based on pixel value differencing and modulus function. Wireless Personal Communications. Scholar
  7. 7.
    Sahu, A. K., & Swain, G. (2018). Pixel overlapping image steganography using PVD and modulus function. 3D Research, 9, 40. Scholar
  8. 8.
    Sahu, A. K., Swain, G., & Babu, E. S. (2018). Digital image steganography using bit flipping. Cybernetics and Information Technologies, 18(1), 69–80.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gutub, A. A. A. (2010). Pixel indicator technique for RGB image steganography. Journal of Emerging Technologies in Web Intelligence, 2(1), 56–64.Google Scholar
  10. 10.
    Sahu, A. K., & Swain, G. (2019). A novel n-rightmost bit replacement image steganography technique. 3D Research, 10, 2. Scholar
  11. 11.
    Abu-Marie, W., Gutub, A., & Abu-Mansour, H. (2010). Image based steganography using truth table based and determinate array on RGB indicator. International Journal of Signal & Image Processing, 1(3), 196–204.Google Scholar
  12. 12.
    Sahu, A. K., & Swain, G. (2019). A novel multi stego-image based data hiding method for gray scale image. Pertanika Journal of Science & Technology, 27(2), 753–768.Google Scholar
  13. 13.
    Liao, X., Qin, Z., & Ding, L. (2017). Data embedding in digital images using critical functions. Signal Processing: Image Communication, 58, 146–156.CrossRefGoogle Scholar
  14. 14.
    Liao, X., Li, K., & Yin, J. (2017). Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimedia Tools and Applications, 76(20), 20739–20753.CrossRefGoogle Scholar
  15. 15.
    Liao, X., Yu, Y., Li, B., Li, Z., & Qin, Z. (2019). A new payload partition strategy in color image steganography. IEEE Transactions on Circuits and Systems for Video Technology. Scholar
  16. 16.
    Shi, Y. Q., Ni, Z., Zou, D., Liang, C., & Xuan, G. (2004, May). Lossless data hiding: Fundamentals, algorithms and applications. In 2004 IEEE international symposium on circuits and systems (IEEE Cat. No. 04CH37512) (Vol. 2, pp. II-33). IEEE.Google Scholar
  17. 17.
    Barton, J. M. (1997). Method and apparatus for embedding authentication information within digital data, U.S. Patent 5646997.Google Scholar
  18. 18.
    Tian, J. (2003). Reversible data embedding using a difference expansion. IEEE Transactions on Circuits and Systems for Video Technology, 13(8), 890–896.CrossRefGoogle Scholar
  19. 19.
    Alattar, A. M. (2004). Reversible watermark using the difference expansion of a generalized integer transform. IEEE Transactions on Image Processing, 13(8), 1147–1156.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kim, H. J., Sachnev, V., Shi, Y. Q., Nam, J., & Choo, H. G. (2008). A novel difference expansion transform for reversible data embedding. IEEE Transactions on Information Forensics and Security, 3(3), 456–465.CrossRefGoogle Scholar
  21. 21.
    Ni, Z., Shi, Y. Q., Ansari, N., & Su, W. (2006). Reversible data hiding. IEEE Transactions on Circuits and Systems for Video Technology, 16(3), 354–362.CrossRefGoogle Scholar
  22. 22.
    Tsai, P., Hu, Y. C., & Yeh, H. L. (2009). Reversible image hiding scheme using predictive coding and histogram shifting. Signal Processing, 89(6), 1129–1143.zbMATHCrossRefGoogle Scholar
  23. 23.
    Thodi, D. M., & Rodríguez, J. J. (2007). Expansion embedding techniques for reversible watermarking. IEEE Transactions on Image Processing, 16(3), 721–730.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li, J., Li, X., & Yang, B. (2013). Reversible data hiding scheme for color image based on prediction-error expansion and cross-channel correlation. Signal Processing, 93(9), 2748–2758.CrossRefGoogle Scholar
  25. 25.
    Ou, B., Li, X., Zhao, Y., & Ni, R. (2014). Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal Processing: Image Communication, 29(7), 760–772.Google Scholar
  26. 26.
    Ou, B., Li, X., & Wang, J. (2016). Improved PVO-based reversible data hiding: A new implementation based on multiple histograms modification. Journal of Visual Communication and Image Representation, 38, 328–339.CrossRefGoogle Scholar
  27. 27.
    Ou, B., Li, X., & Wang, J. (2016). High-fidelity reversible data hiding based on pixel-value-ordering and pairwise prediction-error expansion. Journal of Visual Communication and Image Representation, 39, 12–23.CrossRefGoogle Scholar
  28. 28.
    Li, X., Yang, B., & Zeng, T. (2011). Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Transactions on Image Processing, 20(12), 3524–3533.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lu, T. C., Tseng, C. Y., & Wu, J. H. (2015). Dual imaging-based reversible hiding technique using LSB matching. Signal Processing, 108, 77–89.CrossRefGoogle Scholar
  30. 30.
    Mielikainen, J. (2006). LSB matching revisited. IEEE Signal Processing Letters, 13(5), 285–287.CrossRefGoogle Scholar
  31. 31.
    Jung, K. H. (2015). Dual image based reversible data hiding method using neighbouring pixel value differencing. The Imaging Science Journal, 63(7), 398–407.CrossRefGoogle Scholar
  32. 32.
    Wu, D. C., & Tsai, W. H. (2003). A steganographic method for images by pixel-value differencing. Pattern Recognition Letters, 24(9–10), 1613–1626.zbMATHCrossRefGoogle Scholar
  33. 33.
    Hussain, M., Wahab, A. W. A., Javed, N., & Jung, K. H. (2018). Recursive information hiding scheme through LSB, PVD shift, and MPE. IETE Technical Review, 35(1), 53–63.CrossRefGoogle Scholar
  34. 34.
    Hameed, M. A., Aly, S., & Hassaballah, M. (2017). An efficient data hiding method based on adaptive directional pixel value differencing (ADPVD). Multimedia Tools and Applications, 77(12), 14705–14723.CrossRefGoogle Scholar
  35. 35.
    USC-SIPI Image Database. Retrieved 11 February, 2019
  36. 36.
    Gutub, A., Al-Qahtani, A., & Tabakh, A. (2009). Triple-A: Secure RGB image steganography based on randomization. In IEEE/ACS International Conference on Computer Systems and Applications, 2009. AICCSA 2009 (pp 400–403). IEEE.Google Scholar
  37. 37.
    Hassaballah, M., Makky, M. M., & Mahdy, Y. B. (2005). A fast fractal image compression method based entropy. ELCVIA Electronic Letters on Computer Vision and Image Analysis, 5(1), 30–40.CrossRefGoogle Scholar
  38. 38.
    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRefGoogle Scholar
  39. 39.
    Swain, G. (2019). Two new steganography techniques based on quotient value differencing with addition-subtraction logic and PVD with modulus function. Optik, 180, 807–823.CrossRefGoogle Scholar
  40. 40.
    Swain, G. (2016). Adaptive pixel value differencing steganography using both vertical and horizontal edges. Multimedia Tools and Applications, 75(21), 13541–13556.CrossRefGoogle Scholar
  41. 41.
    Sahu, A. K., & Swain, G. (2019). Dual Stego-imaging based reversible data hiding using improved LSB matching. International Journal of Intelligent Engineering and Systems, 12(5), 63–73.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringKoneru Lakshmaiah Education FoundationVaddeswaram, GunturIndia
  2. 2.Department of Computer Science and EngineeringGMRITRajamIndia

Personalised recommendations