Advertisement

Sensing and Imaging

, 20:37 | Cite as

An Efficient Adaptive Interpolation for Bayer CFA Demosaicking

  • Bin YangEmail author
  • Dongsheng Wang
Original Paper

Abstract

Demosaicking refers to the image processing of reconstruction full color image from the raw incomplete samples recorded by a single-chip image sensor. For most available demosaicking methods, the image edges are important cues to design the interpolation scheme, and the accuracy of edge estimation has great influence on the reconstructed image quality. In this paper, a block edge estimation method is proposed by considering all the color channels comprehensively. Based on the novel edge estimation method, the proposed algorithm firstly interpolates the G channel pixels with the guidance of the color correlation and edge directions. The interpolated G channel is further used to help the R and B channel interpolations in sequence. In addition, a border pixels interpolation strategy is also presented to overcome the difficulties of the gradient estimation at border positions. Both Kodak and IMAX data set are used to test the validation of the proposed methods. The experimental results demonstrate that the proposed algorithm provides superior performances in terms of both objective evaluate and subjective visual quality.

Keywords

Demosaicking Color filter array Color interpolation Gradient estimation 

Notes

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Nos. 61871210, 61102108), Scientific Research Fund of Hunan Provincial Education Department (Nos. 16B225, YB2013B039), the Natural Science Foundation of Hunan Province (No. 2016JJ3106), Chuanshan talents program of the University of South China, the construct program of key disciplines in USC (No. NHXK04), and Scientific Research Fund of Hengyang Science and Technology Bureau (No. 2015KG51).

References

  1. 1.
    Li, J., Bai, C. Y., Lin, Z., & Yu, J. (2017). Optimized color filter arrays for sparse representation based demosaicking. IEEE Transactions on Image Processing, 26(5), 2381–2393.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bayer, B. E. (1976). Color imaging array. U.S. Patent 3,971,065.Google Scholar
  3. 3.
    Menon, D., & Calvagno, G. (2011). Color image demosaicking: An overview. Signal Processing: Image Communication, 26(8), 518–533.Google Scholar
  4. 4.
    Aggarwal, H. K., & Majumdar, A. (2014). Compressive sensing multi-spectral demosaicing from single sensor architecture. In Proceedings of the international conference on signal and information processing (ICIP), Xi’an (pp. 334–338).Google Scholar
  5. 5.
    Rossi, M., & Calvagno, G. (2014). Luminance driven sparse representation based demosaicking. In Proceedings of the international conference on image processing (ICIP), Paris (pp. 1788–1792).Google Scholar
  6. 6.
    Tan, Y. P. (2016). Hybrid color filter array demosaicking for effective artifact suppression. Journal of Electronic Imaging, 15(1), 13003–13020.Google Scholar
  7. 7.
    Chang, K., Ding, P. L. K., & Li, B. (2015). Color image demosaicking using inter-channel correlation and nonlocal self-similarity. Amsterdam: Elsevier Science Inc.CrossRefGoogle Scholar
  8. 8.
    Kim, Y., & Jeong, J. (2016). Four direction residual interpolation for demosaicking. IEEE Transactions on Circuits and Systems for Video Technology, 26(5), 881–890.CrossRefGoogle Scholar
  9. 9.
    Kiku, D., Monno, Y., Tanaka, M., & Okutomi, M. (2016). Beyond color difference: Residual interpolation for color image demosaicking. IEEE Transactions on Image Processing, 25(3), 1288–1300.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Menon, D., Andriani, S., & Calvagno, G. (2017). Demosaicing with directional filtering and a posteriori decision. IEEE Transactions on Image Processing, 16(1), 132–141.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wang, J., Wu, J. J., Wu, Z. S., Jeon, G., & Jeong, J. (2017). Bilateral filtering and directional differentiation for Bayer demosaicking. IEEE Sensors Journal, 17(3), 726–734.CrossRefGoogle Scholar
  12. 12.
    Lee, J., Jeong, T., & Lee, C. (2007). Improved edge-adaptive demosaicking for artifact suppression along line edges. IEEE Transactions on Consumer Electronics, 53(3), 1076–1083.CrossRefGoogle Scholar
  13. 13.
    Ferradans, S., Bertalmio, M., & Caselles, V. (2009). Geometry-based demosaicking. IEEE Transactions on Image Processing, 18(3), 665–670.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, N., Jim, S., Jimmy, L., & Randhawa, S. (2016). Edge preserving CFA demosaicking based on nonlinear weighted color differences. In IEEE Region 10 conference (TENCON) (pp. 2159–3450).Google Scholar
  15. 15.
    Wu, J., Anisetti, M., Wu, W., Damiani, E., & Jeon, G. (2016). Bayer demosaicking with polynomial interpolation. IEEE Transactions on Image Processing, 25(11), 5369–5382.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chen, S. L., & Ma, E. D. (2014). VLSI implementation of an adaptive edge-enhanced color interpolation processor for real-time video applications. IEEE Transactions on Circuits and Systems for Video Technology, 24(11), 1982–1991.CrossRefGoogle Scholar
  17. 17.
    Lien, C. Y., Yang, F. J., & Chen, P. Y. (2017). An efficient edge-based technique for color filter array demosaicking. IEEE Sensors Journal, 17(13), 4067–4074.CrossRefGoogle Scholar
  18. 18.
    Tomita, F., Shirai, Y., & Tsuji, S. (2009). Description of textures by a structural analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 4(2), 183–191.CrossRefGoogle Scholar
  19. 19.
    Zhang, F., Wu, X., Yang, X., Zhang, W., & Zhang, L. (2009). Robust color demosaicking with adaptation to varying spectral correlations. IEEE Transactions on Image Processing, 18(12), 2706–2717.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, X., Jeon, G., Jeong, J., & He, L. (2015). Multidirectional weighted interpolation and refinement method for Bayer pattern CFA demosaicking. IEEE Transactions on Circuits and Systems for Video Technology, 25(8), 255–262.CrossRefGoogle Scholar
  21. 21.
    Ngai, L., Jim, S., Jimmy, L., & Sharmil, R. (2017). Color filter array demosaicking based on the distribution of directional color differences. IEEE Signal Processing Letters, 24(5), 604–608.CrossRefGoogle Scholar
  22. 22.
    Ramanath, R., Snyder, W. E., Bilbro, G. L., & Sander, W. A. (2002). Demosaicking methods for Bayer colour arrays. Journal of Electronic Imaging, 11(3), 306–315.CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Shiau, Y. H., Chen, P. Y., & Chang, C. W. (2011). An area-efficient colour demosaicking scheme for VLSI architecture. International Journal of Innovative Computing, Information and Control, 7(4), 1739–1752.Google Scholar
  25. 25.
    Chen, S. L., & Chang, H. R. (2017). Fully pipelined low-cost and high-quality color demosaicking VLSI design for real-time video applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(6), 588–592.CrossRefGoogle Scholar
  26. 26.
    Wang, X., & Cai, S. Y. (2007). Study of regulation of choosing rendering intent utilizing S-CIELAB. Packaging Engineering, 28, 82–84.Google Scholar
  27. 27.
    Wang, D. Y., Yu, G., Zhou, X., & Wang, C. Y. (2017). Image demosaicking for Bayer-patterned CFA images using improved linear interpolation. In Proceedings of the 7th international conference on information science and technology, Da Nang, Vietnam, April 1619, 2017 (pp. 464–469).Google Scholar
  28. 28.
    Zhang, L., & Wu, X. (2005). Color demosaicking via directional linear minimum mean square-error estimation. IEEE Transactions on Image Processing, 14(12), 2167–2178.CrossRefGoogle Scholar
  29. 29.
    Aggarwal, H. K., & Majumdar, A. (2014). Compressive sensing multi-spectral demosaicing from single sensor architecture. In Proceedings of the international conference on signal and information processing (ICIP) (pp. 334–338).Google Scholar
  30. 30.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electric EngineeringUniversity of South ChinaHengyangChina

Personalised recommendations