Advertisement

Sensing and Imaging

, 20:16 | Cite as

CMOS Image Sensor with Tunable Conversion Gain for Improved Performance

  • Gaurav MusalgaonkarEmail author
  • Raghvendra Sahai Saxena
Original Paper
  • 158 Downloads

Abstract

This paper describes the use of shallow trench isolation as a modified trench capacitor in CMOS image sensor. MTC helps to tune the conversion gain at the floating diffusion (FD) node. The use of MTC in pixel improves the sensitivity of the pixel without affecting the dynamic range (DR) of the pixel. The proposed pixel structure uses an existing in-built isolation trench as a capacitor. During low illumination, the MTC is separated from the floating diffusion (FD) node thus makes it easier to detect the low light signals owing to the lower FD node capacitance. However, in the event of high illumination, MTC is connected in parallel to the FD node increasing the capacity to store more charges from the photodiode. This attributed to the improved DR performance of the pixel. Using 2D numerical simulations, we show that an overall 60 dB enhancement in the DR as compared to the conventional pixel. Moreover, the proposed modification does not affect the other pixel characteristics such as dark current and crosstalk.

Keywords

Dynamic range 4T pixel CMOS image sensor Conversion gain Trench capacitor 

Notes

References

  1. 1.
    Seo, M.-W., Kawahito, S., Kagawa, K., & Yasutomi, K. (2015). A 0.27 e-rms read noise 220-µv/e-conversion gain reset gate-less CMOS image sensor with 0.11-µm CIS process. IEEE Electron Device Letters, 36, 1344–1347.  https://doi.org/10.1109/led.2015.2496359.CrossRefGoogle Scholar
  2. 2.
    Fossum, E. R., & Hondongwa, D. B. (2014). A review of the pinned photodiode for CCD and CMOS image sensors. IEEE Journal of the Electron Devices Society, 2, 33–43.  https://doi.org/10.1109/JEDS.2014.2306412.CrossRefGoogle Scholar
  3. 3.
    Sakai, S., Tashiro, Y., Akahane, N., Kuroda, R., Mizobuchi, K., & Sugawa, S. (2009). A pixel-shared CMOS image sensor using lateral overflow gate. In ESSCIRC proceedings of IEEE (pp. 240–243).  https://doi.org/10.1109/esscirc.2009.5326026.
  4. 4.
    Ahmed, N., Roy, F., Lu, G. N., Mamdy, B., Carrere, J. P., Tournier, A., Virollet, N., Perrot, C., Rivoire, M., Seignard, A., Pellissier-Tanon, D., Leverd, F., Orlando, B. (2014). MOS capacitor deep trench isolation for CMOS image sensors. In 2014 IEEE international electron devices meeting. Google Scholar
  5. 5.
    Kitamura, Y., Aikawa, H., Kakehi, K., Yousyou, T., Eda, K., Minami, T., Uya, S., Takegawa, Y. H., & Kohyama, Y. (2012). Suppression of crosstalk by using backside deep trench isolation for 1.12 µm backside illuminated CMOS image sensor. In IEEE international electron devices meeting (IEDM) (pp. 22–24).  https://doi.org/10.1109/iedm.2012.6479093.
  6. 6.
    Ahn, J., Lee, K., Kim, Y., Jeong, H., Kim, B., Kim, H., Park, J., Jung, J., Park, W., & Lee, T. (2014) 7.1 a 1/4-inch 8Mpixel CMOS image sensor with 3D backside-illuminated 1.12 µm pixel with front-side deep-trench isolation and vertical transfer gate. In IEEE international solid-state circuits conference digest of technical papers (ISSCC) (pp. 124–125).Google Scholar
  7. 7.
    Tournier, A., Leverd, F., Favennec, L., Perrot, C., Pinzelli, L., Gatefait, M., Cherault, N., Jeanjean, D., Carrere, J., & Hirigoyen, F. (2011). Pixel-to-pixel isolation by deep trench technology: Application to CMOS image sensor. In Proceedings International Image Sensor workshop.Google Scholar
  8. 8.
    Bastien, M., Guo-Neng, L., & Francois, R. (2016). P-type BSI image sensor with active deep trench interface passivation for radiation-hardened imaging systems. Procedia Engineering, 168, 176–180.CrossRefGoogle Scholar
  9. 9.
    Gao, Z., Yao, S., Yang, C., & Xu, J. (2015). A dynamic range extension technique for CMOS image sensors with in-pixel dual exposure synthesis. IEEE Sensors Journal, 15(6), 3265–3273.CrossRefGoogle Scholar
  10. 10.
    Wang, X., Rao, P. R, & Theuwissen, A. J. (2006). Fixed-pattern noise induced by transmission gate in pinned 4t CMOS image sensor pixels. In Proceeding of the 36th European Solid-State Device Research Conference, ESSDERC (pp. 331–334).  https://doi.org/10.1109/essder.2006.307705.
  11. 11.
    Banqiu, W., Ajay, K., & Sharma, P. (2010). High aspect ratio silicon etch: A review. Journal of Applied Physics, 108(5), 051101.CrossRefGoogle Scholar
  12. 12.
    Johari, H., & Ayazi, F. (2009). High-density embedded deep trench capacitors in silicon with enhanced breakdown voltage. IEEE Transactions on Components and Packaging Technologies, 32, 808–815.  https://doi.org/10.1109/TCAPT.2009.2024210.CrossRefGoogle Scholar
  13. 13.
    Cogenda pte ltd. (2008) Singapore, Genius, 3-D Device Simulator, Version 1.9.0, Reference Manual.Google Scholar
  14. 14.
    Elahy, M., Shichijo, H., Chatterjee, P., Shah, A., Banerjee, S., & Womack, R. (1984). Trench capacitor leakage in mbit DRAMs. In 1984 International Electron Devices Meeting (pp. 248–251).  https://doi.org/10.1109/iedm.1984.190693.
  15. 15.
    Matters-Kammerer, M. K., Jinesh, K., Rijks, T. G., Roozeboom, F., & Klootwijk, J. H. (2012). Characterization and modeling of atomic layer deposited high-density trench capacitors in silicon. IEEE Transactions on Semiconductor Manufacturing, 25, 247–254.  https://doi.org/10.1109/TSM.2012.2183903.CrossRefGoogle Scholar
  16. 16.
    Seo, M. W., Kawahito, S., Yasutomi, K., Kagawa, K., & Teranishi, N. (2014). A low dark leakage current high-sensitivity CMOS image sensor with STI-less shared pixel design. IEEE Transactions on Electron Devices, 61, 2093–2097.  https://doi.org/10.1109/TED.2014.2318522.CrossRefGoogle Scholar
  17. 17.
    Ma, J., Anzagira, L., & Fossum, E. R. (2016). A 1 µm-pitch quanta image sensor jot device with shared readout. IEEE Journal of the Electron Devices Society, 4, 83–89.  https://doi.org/10.1109/jeds.2016.2516026.CrossRefGoogle Scholar
  18. 18.
    Boukhayma, A., Peizerat, A., & Enz, C. (2016). Noise reduction techniques and scaling effects towards photon counting. CMOS Image Sensors Sensors, 16, 514–520.  https://doi.org/10.3390/s16040514.CrossRefGoogle Scholar
  19. 19.
    Quinteiro, J., Brea, V., Lopez, P., Blanco-Filgueira, B., Cabello, D., & Domenech-Asensi, G. (2014) Dark current in standard CMOS pinned photodiodes for Time-of-Flight sensors. In IEEE workshop on microelectronics and electron devices (WMED) (pp. 1–4).  https://doi.org/10.1109/wmed.2014.6818726.
  20. 20.
    Ma, J., & Fossum, E. R. (2015). A pump-gate jot device with high conversion gain for a quanta image sensor. IEEE Journal of the Electron Devices Society, 3, 73–77.  https://doi.org/10.1109/JEDS.2015.2390491.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Solid State Physics LaboratoryDRDONew DelhiIndia

Personalised recommendations