Advertisement

Sensing and Imaging

, 20:8 | Cite as

A Mathematical Analysis Method of the Relationship Between DFT Magnitude and Periodic Feature of a Signal

  • Ronggang Huang
  • Yiguang LiuEmail author
  • Xuelei Shi
  • Yunan Zheng
  • Ying Wang
  • Bei Zhai
Original Paper
  • 57 Downloads
Part of the following topical collections:
  1. Recent Developments in Sensing and Imaging

Abstract

In this study, we developed a logical and complete mathematical analysis of the relationship between the discrete Fourier transform (DFT) magnitude and periodic feature of a signal. The physical meaning of the DFT magnitude index corresponds to the periodic signal feature; further analysis makes clear the relationship among DFT magnitude, magnitude index, and number of samples. The proposed analysis method also elucidates the relationship between alternating current magnitude index and frequency, by the way, the unit of image frequency will be given. The proposed analysis method is suitable for the machine vision and image processing in general.

Keywords

DFT magnitude index Fold number Periodic feature Unit of image frequency 

Notes

Acknowledgements

The authors would like to thank Lee et al. [8] for the rotation symmetry test images. This work is supported by NSFC under Grants 61860206007 and 61571313, by National Key Research and Development Program under Grant 2016YFB0801101, by Sichuan Province under Grant 18GJHZ0138, by Sichuan University and Lu-Zhou city under 2016CDLZ-G02-SCU.

References

  1. 1.
    Arya, R., Singh, N., & Agrawal, R. (2017). A novel combination of second-order statistical features and segmentation using multi-layer superpixels for salient object detection. Applied Intelligence, 46, 254–271.CrossRefGoogle Scholar
  2. 2.
    Beyerer, J., León, F. P., & Frese, C. (2016). Morphological image processing. In Machine vision (pp. 607–647). Berlin: Springer.Google Scholar
  3. 3.
    Chen, Y. (2003). Information signals and systems (Vol. 1). Chengdu: Sichuan University Press.Google Scholar
  4. 4.
    Gervais, B., Giglio, E., Jacquet, E., Ipatov, A., Reinhard, P. -G., & Suraud, E. (2004). Simple DFT model of clusters embedded in rare gas matrix: Trapping sites and spectroscopic properties of Na embedded in Ar. The Journal of Chemical Physics, 121(17), 8466–8480.CrossRefGoogle Scholar
  5. 5.
    Huang, R., Liu, Y., Xu, Z., Wu, P., & Shi, Y. (2018). Multiple rotation symmetry group detection via saliency-based visual attention and frieze expansion pattern. Signal Processing: Image Communication, 60, 91–99.Google Scholar
  6. 6.
    Lathi, B. P., et al. (2005). Linear systems and signals (Vol. 2). New York: Oxford University Press.zbMATHGoogle Scholar
  7. 7.
    Lee, S., Collins, R. T., & Liu, Y. (2008). Rotation symmetry group detection via frequency analysis of frieze-expansions. In IEEE conference on computer vision and pattern recognition, 2008, CVPR 2008 (pp. 1–8). IEEE.Google Scholar
  8. 8.
    Lee, S., & Liu, Y. (2010). Skewed rotation symmetry group detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1659–1672.CrossRefGoogle Scholar
  9. 9.
    Li, G., Pidko, E. A., & Hensen, E. J. (2016). A periodic DFT study of glucose to fructose isomerization on tungstite (WO3\(\cdot\)H2O): influence of group IV–VI dopants and cooperativity with hydroxyl groups. ACS Catalysis, 6, 4162–4169.CrossRefGoogle Scholar
  10. 10.
    Lyons, R. G. (2010). Understanding digital signal processing. London: Pearson Education.Google Scholar
  11. 11.
    Nagy, Á. (2016). Advances in DFT. International Journal of Quantum Chemistry, 116(11), 801.CrossRefGoogle Scholar
  12. 12.
    Oppenheim, A. V., Willsky, A. S., & Nawab, S. H. (1983). Signals and systems (Vol. 2). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  13. 13.
    Park, M., Lee, S., Chen, P. C., Kashyap, S., Butt, A. A., & Liu, Y. (2008). Performance evaluation of state-of-the-art discrete symmetry detection algorithms. In IEEE conference on computer vision and pattern recognition, 2008, CVPR 2008 (pp. 1–8). IEEE.Google Scholar
  14. 14.
    Poor, H. V. (2013). An introduction to signal detection and estimation. Berlin: Springer.Google Scholar
  15. 15.
    Porat, B. (1997). A course in digital signal processing (Vol. 1). New York: Wiley.Google Scholar
  16. 16.
    Proakis, J., & Manolakis, D. (1996). Digital signal processing (3rd ed.). Upper Saddle River: Prentice-Hall, Inc.Google Scholar
  17. 17.
    Shen, D., Ip, H. H., & Teoh, E. K. (2000). A novel theorem on symmetries of 2D images. In 15th international conference on pattern recognition, 2000. Proceedings (Vol. 3, pp. 1002–1005). IEEE.Google Scholar
  18. 18.
    Weyl, H. (1952). Symmetry. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  19. 19.
    White, B. J., & Munoz, D. P. (2017). Neural mechanisms of saliency, attention, and orienting. In Q. Zhao (Ed.), Computational and cognitive neuroscience of vision (pp. 1–23). Singapore: Springer.Google Scholar
  20. 20.
    Wojciechowski, M., Brzostowski, B., & Kamieniarz, G. (2016). Augmented symmetry approach to the DFT simulations of the chromium-based rings. In R. Wyrzykowski, E. Deelman, J. Dongarra, K. Karczewski, J. Kitowski, & K. Wiatr (Eds.), Parallel processing and applied mathematics (pp. 321–331). Cham: Springer.CrossRefGoogle Scholar
  21. 21.
    Zhan, L., Liu, Y., & Liu, Y. (2018). A clarke transformation-based DFT phasor and frequency algorithm for wide frequency range. IEEE Transactions on Smart Grid, 9(1), 67–77.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Computer ScienceSichuan UniversityChengduChina
  2. 2.The Third People’s Hospital of Chengdu CityChengduChina

Personalised recommendations