Advertisement

Social Psychology of Education

, Volume 22, Issue 3, pp 649–671 | Cite as

Testing the effects of a role model intervention on women’s STEM outcomes

  • Amanda R. Van CampEmail author
  • Patricia N. Gilbert
  • Laurie T. O’Brien
Article
  • 112 Downloads

Abstract

Female role models show promise for inoculating women against the harmful impact of stereotypes impugning their ability in science, technology, engineering, and math (STEM, e.g., Dasgupta in Psychol Inq 22(4):231–246, 2011). We conducted a test of an intervention to leverage the benefits of STEM role models. Female STEM majors (N = 72) in their first year of college were exposed to same-sex role models on two occasions. They completed measures of stereotypes and other STEM outcomes at the beginning of their first semester (pre-manipulation) and again at the end of their first semester (post-manipulation). Women who were assigned to engage in a process of reflective identification with the STEM role models (i.e., reflect on their similarity in a writing passage) showed greater change in implicit and explicit stereotypes compared to women who were exposed to STEM role models, but did not engage in reflection. Among women exposed to role models, role model identification was negatively related to explicit stereotypes and positively related to STEM outcomes including GPA in STEM courses.

Keywords

Women STEM Role-models Stereotypes 

Notes

Acknowledgements

This research was partially supported by a grant from the National Science Foundation: HRD0936722. We thank Jane Stout for providing copies of study materials and Alexandra Marcovicci and India Reidt for their assistance with data coding.

References

  1. Brown, R. P., & Josephs, R. A. (1999). A burden of proof: Stereotype relevance and gender differences in math performance. Journal of Personality and Social Psychology, 76(2), 246–257.Google Scholar
  2. Ceci, S. J., Ginther, D. K., Kahn, S., & Williams, W. M. (2014). Women in academic science: A changing landscape. Psychological Science in the Public Interest, 15(3), 75–141.Google Scholar
  3. Cheryan, S., Drury, B. J., & Vichayapai, M. (2013). Enduring influence of stereotypical computer science role models on women’s academic aspirations. Psychology of Women Quarterly, 37(1), 72–79.Google Scholar
  4. Cheryan, S., Plaut, V., Davies, P., & Steele, C. (2009). Ambient belonging: How stereotypical cues impact gender participation in computer science. Journal of Personality and Social Psychology, 97(6), 1045–1060.  https://doi.org/10.1037/a0016239.Google Scholar
  5. Cheryan, S., Siy, J., Vichayapai, M., Drury, B., & Kim, S. (2011). Do female and male role models who embody STEM stereotypes hinder women’s anticipated success in STEM? Social Psychological and Personality Science, 2(6), 656–664.  https://doi.org/10.1177/1948550611405218.Google Scholar
  6. Dasgupta, N. (2011). Ingroup experts and peers as social vaccines who inoculate the self-concept: The stereotype inoculation model. Psychological Inquiry, 22(4), 231–246.Google Scholar
  7. Dasgupta, N. (2013). Implicit attitudes and beliefs adapt to situations: A decade of research on the malleability of implicit prejudice, stereotypes, and the self-concept. In Advances in experimental social psychology (Vol. 47, pp. 233–279). Academic Press.Google Scholar
  8. Dasgupta, N., & Asgari, S. (2004). Seeing is believing: Exposure to counterstereotypic women leaders and its effect on the malleability of automatic gender stereotyping. Journal of Experimental Social Psychology, 40(5), 642–658.  https://doi.org/10.1016/j.jesp.2004.02.003.Google Scholar
  9. Devine, P., & Sherman, S. J. (1989). Stereotypes and prejudice: Their automatic and controlled components. Journal of Personality and Social Psychology, 56(1), 5–18.  https://doi.org/10.1037/0022-3514.56.1.5.Google Scholar
  10. Forbes, C., Schmader, T., & Judd, C. M. (2010). Retraining attitudes and stereotypes to affect motivation and cognitive capacity under stereotype threat. Journal of Personality and Social Psychology, 99(5), 740–754.  https://doi.org/10.1037/a0020971.Google Scholar
  11. Gilbert, P. N., O’Brien, L. T., Garcia, D. M., & Marx, D. M. (2015). Not the sum of its parts: Decomposing implicit academic stereotypes to understand sense of fit in math and English. Sex Roles, 72(1–2), 25–39.  https://doi.org/10.1007/s11199-015-0481-1.Google Scholar
  12. Good, C., Rattan, A., & Dweck, C. S. (2012). Why do women opt out? Sense of belonging and women’s representation in mathematics. Journal of Personality and Social Psychology, 102(4), 700–717.Google Scholar
  13. Greenwald, A. G., & Banaji, M. R. (1995). Implicit social cognition: Attitudes, self-esteem, and stereotypes. Psychological Review, 102(1), 4–27.Google Scholar
  14. Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74(6), 1464–1480.Google Scholar
  15. Hixon, J. G., & Swann, W. B. (1993). When does introspection bear fruit? Self-reflection, self-insight, and interpersonal choices. Journal of Personality and Social Psychology, 64(1), 35–43.  https://doi.org/10.1037/0022-3514.64.1.35.Google Scholar
  16. Hoyt, C., & Simon, S. (2011). Female leaders: Injurious or inspiring role models for women? Psychology of Women Quarterly, 35(1), 143–157.Google Scholar
  17. Kiefer, A., & Sekaquaptewa, D. (2007). Implicit stereotypes, gender identification, and math-related outcomes. Psychological Science, 18(1), 13–18.  https://doi.org/10.1111/j.1467-9280.2007.01841.x.Google Scholar
  18. Lai, C. K., Marini, M., Lehr, S. A., Cerruti, C., Shin, J. E. L., Joy-Gaba, J. A., et al. (2014). Reducing implicit racial preferences. I. A comparative investigation of 17 interventions. Journal of Experimental Psychology: General, 143(4), 1765–1785.  https://doi.org/10.1037/a0036260.Google Scholar
  19. Lane, K. A., Goh, J. X., & Driver-Linn, E. (2012). Implicit science stereotypes mediate the relationship between gender and academic participation. Sex Roles, 66(3–4), 220–234.  https://doi.org/10.1007/s11199-011-0036-z.Google Scholar
  20. Lockwood, P. (2006). “Someone like me can be successful”: Do college students need same-gender role models? Psychology of Women Quarterly, 30(1), 36–46.Google Scholar
  21. Marini, M., Rubichi, S., & Sartori, G. (2012). The role of self-involvement in shifting IAT effects. Experimental Psychology, 59(6), 348–354.  https://doi.org/10.1027/1618-3169/a000163.Google Scholar
  22. Marx, D., & Goff, P. (2005). Clearing the air: The effect of experimenter race on target’s test performance and subjective experience. British Journal of Social Psychology, 44(4), 645–657.  https://doi.org/10.1348/014466604X17948.Google Scholar
  23. Marx, D., & Ko, S. (2012). Superstars “like” me: The effect of role model similarity on performance under threat. European Journal of Social Psychology, 42(7), 807–812.  https://doi.org/10.1002/ejsp.1907.Google Scholar
  24. Marx, D., Monroe, A., Cole, C., & Gilbert, P. (2013). No doubt about it: When doubtful role models undermine men’s and women’s math performance under threat. The Journal of Social Psychology, 153(5), 542–559.  https://doi.org/10.1080/00224545.2013.778811.Google Scholar
  25. Marx, D. M., Ko, S. J., & Friedman, R. A. (2009). The “Obama Effect”: How a salient role model reduces race-based performance differences. Journal of Experimental Social Psychology, 45(4), 953–956.  https://doi.org/10.1016/j.jesp.2009.03.012.Google Scholar
  26. Marx, D. M., & Roman, J. S. (2002). Female role models: Protecting women’s math test performance. Personality and Social Psychology Bulletin, 28(9), 1183–1193.  https://doi.org/10.1177/01461672022812004.Google Scholar
  27. McIntyre, R. B., Paulson, R. M., & Lord, C. G. (2003). Alleviating women’s mathematics stereotype threat through salience of group achievements. Journal of Experimental Social Psychology, 39(1), 83–90.  https://doi.org/10.1016/S0022-1031(02)00513-9.Google Scholar
  28. Miller, D., Nolla, K., Eagly, A., & Uttal, D. (2018). The development of children’s gender-science stereotypes: A meta-analysis of 5 decades of US. Draw-a-scientist studies. Child Development, 89(6), 1943–1955.  https://doi.org/10.1111/cdev.13039.Google Scholar
  29. Miller, D. I., Eagly, A. H., & Linn, M. C. (2015). Women’s representation in science predicts national gender-science stereotypes: Evidence from 66 nations. Journal of Educational Psychology, 107(3), 631–644.  https://doi.org/10.1037/edu0000005miller.Google Scholar
  30. Miller, D. I., & Ewai, J. (2015). The bachelor’s to Ph.D. STEM pipeline no longer leaks more women than men: A 30-year analysis. Frontiers in Psychology, 6, 37.  https://doi.org/10.3389/fpsyg.2015.00037.Google Scholar
  31. Moss-Racusin, C., Dovidio, J., Brescoll, V., Graham, M., & Handelsman, J. (2012). Science faculty’s subtle gender biases favor male students. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16474–16479.  https://doi.org/10.1073/pnas.1211286109.Google Scholar
  32. National Science Foundation, National Center for Science and Engineering Statistics. (2017). Women, minorities, and persons with disabilities in science and engineering: 2017. Special Report NSF 17-310. Arlington, VA. Available at https://www.nsf.gov/statistics/wmpd/.
  33. Nosek, B., Banaji, M., Greenwald, A., & Devine, P. (2002). Math = male, me = female, therefore math ≠ me. Journal of Personality and Social Psychology, 83(1), 44–59.  https://doi.org/10.1037/0022-3514.83.1.44.Google Scholar
  34. Nosek, B. A., & Banaji, M. R. (2001). The go/no-go association task. Social Cognition, 19(6), 625–666.Google Scholar
  35. Nosek, B. A., & Smyth, F. L. (2011). Implicit social cognitions predict sex differences in math engagement and achievement. American Educational Research Journal, 48(5), 1125–1156.  https://doi.org/10.3102/0002831211410683.Google Scholar
  36. Nosek, B. A., Smyth, F. L., Sriram, N., Lindner, N. M., Devos, T., Ayala, A., et al. (2009). National differences in gender–science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Sciences, 106(26), 10593–10597.  https://doi.org/10.1073/pnas.0809921106.Google Scholar
  37. O’Brien, L., Hitti, A., Shaffer, E., Camp, A., Henry, D., & Gilbert, P. (2017). Improving girls’ sense of fit in science. Social Psychological and Personality Science, 8(3), 301–309.  https://doi.org/10.1177/1948550616671997.Google Scholar
  38. Pennebaker, J. (1989). Confession, inhibition, and disease. Advances in Experimental Social Psychology, 22(1), 211–244.  https://doi.org/10.1016/s0065-2601(08)60309-3.Google Scholar
  39. Pennebaker, J., & Francis, M. (1996). Cognitive, emotional, and language processes in disclosure. Cognition and Emotion, 10(6), 601–626.  https://doi.org/10.1080/026999396380079.Google Scholar
  40. Pennebaker, J. W., & Beall, S. K. (1986). Confronting a traumatic event: Toward an understanding of inhibition and disease. Journal of Abnormal Psychology, 95(3), 274–281.Google Scholar
  41. Petty, R., Cacioppo, J., & Appelbaum, M. I. (1990). Involvement and persuasion: Tradition versus integration. Psychological Bulletin, 107(3), 367–374.  https://doi.org/10.1037/0033-2909.107.3.367.Google Scholar
  42. Plant, E. Ashby, Baylor, A. L., Doerr, C. E., & Rosenberg-Kima, R. B. (2009). Changing middle-school students’ attitudes and performance regarding engineering with computer-based social models. Computers and Education, 53(2), 209–215.  https://doi.org/10.1016/j.compedu.2009.01.013.Google Scholar
  43. Ramsey, L., & Sekaquaptewa, R. (2011). Changing stereotypes, changing grades: A longitudinal study of stereotyping during a college math course. Social Psychology of Education, 14(3), 377–387.  https://doi.org/10.1007/s11218-010-9150-y.Google Scholar
  44. Ramsey, L. R., Betz, D. E., & Sekaquaptewa, D. (2013). The effects of an academic environment intervention on science identification among women in STEM. Social Psychology of Education, 16(3), 377–397.Google Scholar
  45. Schmader, T., Johns, M., & Barquissau, M. (2004). The costs of accepting gender differences: The role of stereotype endorsement in women’s experience in the math domain. Sex Roles, 50(11), 835–850.  https://doi.org/10.1023/B:SERS.0000029101.74557.a0.Google Scholar
  46. Slatcher, R. B., & Pennebaker, J. W. (2006). How do I love thee? Let me count the words: The social effects of expressive writing. Psychological Science, 17(8), 660–664.Google Scholar
  47. Spencer, S., Logel, C., & Davies, P. (2016). Stereotype threat. Annual Review of Psychology, 67, 415–437.  https://doi.org/10.1146/annurev-psych-073115-103235.Google Scholar
  48. Spencer, S., & Quinn, (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35(1), 4–28.  https://doi.org/10.1006/jesp.1998.1373.Google Scholar
  49. Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African Americans. Journal of Personality and Social Psychology, 69(5), 797–811.Google Scholar
  50. Steffens, M. C., & Jelenec, P. (2011). Separating implicit gender stereotypes regarding math and language: Implicit ability stereotypes are self-serving for boys and men, but not for girls and women. Sex Roles, 64(5–6), 324–335.Google Scholar
  51. Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. A. (2011). STEMing the tide: Using ingroup experts to inoculate women’s self-concept in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 100(2), 255–270.  https://doi.org/10.1037/a0021385.Google Scholar
  52. Wilson, T. D., Lindsey, S., & Schooler, T. Y. (2000). A model of dual attitudes. Psychological Review, 107(1), 101–126.Google Scholar
  53. Young, D., Rudman, L., Buettner, H., & McLean, M. (2013). The influence of female role models on women’s implicit science cognitions. Psychology of Women Quarterly, 37(3), 283–292.  https://doi.org/10.1177/0361684313482109.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PsychologyTulane UniversityNew OrleansUSA

Personalised recommendations