Advertisement

Space Science Reviews

, 215:13 | Cite as

Mars’ Background Free Oscillations

  • Y. NishikawaEmail author
  • P. Lognonné
  • T. Kawamura
  • A. Spiga
  • E. Stutzmann
  • M. Schimmel
  • T. Bertrand
  • F. Forget
  • K. Kurita
Article
  • 65 Downloads
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

Observations and inversion of the eigenfrequencies of free oscillations constitute powerful tools to investigate the internal structure of a planet. On Mars, such free oscillations can be excited by atmospheric pressure and wind stresses from the Martian atmosphere, analogous to what occurs on Earth. Over long periods and on a global scale, this phenomenon may continuously excite Mars’ background free oscillations (MBFs), which constitute the so-called Martian hum. However, the source exciting MBFs is related both to the global-scale atmospheric circulation on Mars and to the variations in pressure and wind at the planetary boundary layer, for which no data are available.

To overcome this drawback, we focus herein on a global-scale source and use results of simulations based on General Circular Models (GCMs). GCMs can predict and reproduce long-term, global-scale Martian pressure and wind variations and suggest that, contrary to what happens on Earth, daily correlations in the Martian hum might be generated by the solar-driven GCM. After recalling the excitation terms, we calculate MBFs by using GCM computations and estimate the contribution to the hum made by the global atmospheric circulation. Although we work at the lower limit of MBF signals, the results indicate that the signal is likely to be periodic, which would allow us to use more efficient stacking theories than can be applied to Earth’s hum. We conclude by discussing the perspectives for the InSight SEIS instrument to detect the Martian hum. The amplitude of the MBF signal is on the order of nanogals and is therefore hidden by instrumental and thermal noise, which implies that, provided the predicted daily coherence in hum excitation is present, the InSight SEIS seismometer should be capable of detecting the Martian hum after monthly to yearly stacks.

Keywords

Mars Planetary free oscillation GCM Seismometer Normal mode InSight 

Notes

Acknowledgements

The authors are grateful for the support of CNES for the development of the SEIS experiment and its scientific support, and to the ANR for supporting the project through ANR SEISMARS. Y.K. acknowledges the support of the CNES and JSPC for his Ph.D. support. P.L. and A.S. acknowledge the support of IUF. This is IPGP contribution number 4010 and InSight contribution number 74.

References

  1. G. Backus, M. Mulcahy, Moment tensors and other phenomenological descriptions of seismic sources—I. Continuous displacements. Geophys. J. Int. 46(2), 341–361 (1976) ADSzbMATHCrossRefGoogle Scholar
  2. H. Benioff, J.C. Harrison, L. LaCoste, W.H. Munk, L.B. Slichter, Searching for the Earth’s free oscillations. J. Geophys. Res. 64(9), 1334–1337 (1959) ADSCrossRefGoogle Scholar
  3. H. Benioff, F. Press, S. Smith, Excitation of the free oscillations of the Earth by earthquakes. J. Geophys. Res. 66(2), 605–619 (1961) ADSCrossRefGoogle Scholar
  4. B.A. Bolt, J.S. Derr, Free bodily vibrations of the terrestrial planets. Vistas Astron. 11, 69–102 (1969) ADSCrossRefGoogle Scholar
  5. A. Colaïtis, A. Spiga, F. Hourdin, C. Rio, F. Forget, E. Millour, A thermal plume model for the Martian convective boundary layer. J. Geophys. Res., Planets 118(7), 1468–1487 (2013) ADSCrossRefGoogle Scholar
  6. F.A. Dahlen, J. Tromp, Theoretical Global Seismology (Princeton University Press, Princeton, 1998) Google Scholar
  7. M. Deen, E. Wielandt, E. Stutzmann, W. Crawford, G. Barruol, K. Sigloch, First observation of the Earth’s permanent free oscillations on ocean bottom seismometers. Geophys. Res. Lett. 44(21), 10,988–10,996 (2017).  https://doi.org/10.1002/2017GL074892 CrossRefGoogle Scholar
  8. A.M. Dziewonski, D.L. Anderson, Preliminary reference Earth model. Phys. Earth Planet. Inter. 25(4), 297–356 (1981) ADSCrossRefGoogle Scholar
  9. F. Forget, S. Lebonnois, Global climate models of the terrestrial planets. Comp. Climatol. Terr. Planets 1, 213–229 (2013) ADSGoogle Scholar
  10. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J-P. Huot, Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res., Planets 104(E10), 24155–24175 (1999) ADSCrossRefGoogle Scholar
  11. P. Goldreich, D.A. Keeley, Solar seismology. II. The stochastic excitation of the solar p-modes by turbulent convection. Astrophys. J. 212, 243–251 (1977) ADSCrossRefGoogle Scholar
  12. P. Goldreich, P. Kumar, The interaction of acoustic radiation with turbulence. Astrophys. J. 326(1), 462–478 (1988) ADSCrossRefGoogle Scholar
  13. M.P. Golombek, W.B. Banerdt, K.L. Tanaka, D.M. Tralli, A prediction of Mars seismicity from surface faulting. Science 258(5084), 979–981 (1992) ADSCrossRefGoogle Scholar
  14. T.V. Gudkova, V.N. Zharkov, Mars: interior structure and excitation of free oscillations. Phys. Earth Planet. Inter. 142(1–2), 1–22 (2004) ADSCrossRefGoogle Scholar
  15. B. Gutenberg, C.F. Richter, Earthquake magnitude, intensity, energy, and acceleration: (second paper). Bull. Seismol. Soc. Am. 46(2), 105–145 (1956) Google Scholar
  16. R.M. Haberle, M.M. Joshi, J.R. Murphy, J.R. Barnes, J.T. Schofield, G. Wilson, M. Lopez-Valverde, J.L. Hollingsworth, A.F.C. Bridger, J. Schaeffer, General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data (1999) Google Scholar
  17. P. Julián, M. Jordán, A. Desages, Canonical piecewise-linear approximation of smooth functions. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45(5), 567–571 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  18. V.G. Kaydash, M.A. Kreslavsky, Y.G. Shkuratov, G. Videen, J.F. Bell III., M. Wolff, Measurements of winds on Mars with Hubble Space Telescope images in 2003 opposition. Icarus 185(1), 97–101 (2006) ADSCrossRefGoogle Scholar
  19. B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R. Lorenz, D. Banfield, M. Golombek, Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. 211(1–4), 501–524 (2017) ADSCrossRefGoogle Scholar
  20. A. Khan, J.A.D. Connolly, Constraining the composition and thermal state of Mars from inversion of geophysical data. LPI Contributions, No. 1353 (2007), p. 3013 Google Scholar
  21. M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res., Planets 111(E11) (2006) Google Scholar
  22. N. Kobayashi, K. Nishida, Atmospheric excitation of planetary free oscillations. J. Phys. Condens. Matter 10(49), 11557 (1998a) ADSCrossRefGoogle Scholar
  23. N. Kobayashi, K. Nishida, Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature 395(6700), 357–360 (1998b) ADSCrossRefGoogle Scholar
  24. R.L. Kovach, D.L. Anderson, The interiors of the terrestrial planets. J. Geophys. Res. 70(12), 2873–2882 (1965) ADSCrossRefGoogle Scholar
  25. G. Laske, R. Widmer-Schnidrig, Treatise on Geophysics, Theory and Observations: Normal Mode and Surface Wave Observations, vol. 1.04 (Elsevier, Amsterdam, 2015) Google Scholar
  26. P. Lognonné, Normal modes and seismograms in an anelastic rotating Earth. J. Geophys. Res., Solid Earth 96(B12), 20309–20319 (1991) CrossRefGoogle Scholar
  27. P. Lognonné, Normal modes of the Earth and planets, in Handbook on Earthquake and Engineering Seismology (2002), pp. 125–147 CrossRefGoogle Scholar
  28. P. Lognonné, Planetary seismology. Annu. Rev. Earth Planet. Sci. 33, 571–604 (2005) ADSCrossRefGoogle Scholar
  29. P. Lognonné, D. Giardini, The NetLander very broad band seismometer. Planet. Space Sci. 48, 1289–1302 (2000) ADSCrossRefGoogle Scholar
  30. P. Lognonné, C.L. Johnson, Planetary Seismology, vol. 10.03 (Elsevier, Amsterdam, 2007) Google Scholar
  31. P. Lognonné, C.L. Johnson, Planetary Seismology, vol. 10.03 (Elsevier, Amsterdam, 2015) Google Scholar
  32. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14(3), 239–302 (1993) ADSCrossRefGoogle Scholar
  33. P. Lognonné, B. Mosser, F.A. Dahlen, Excitation of jovian seismic waves by the Shoemaker-Levy 9 cometary impact. Icarus 110(2), 180–195 (1994) ADSCrossRefGoogle Scholar
  34. P. Lognonné, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44(11), 1237–1249 (1996) ADSCrossRefGoogle Scholar
  35. P. Lognonné, E. Clévédé, H. Kanamori, Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical Earth model with realistic atmosphere. Geophys. J. Int. 135(2), 388–406 (1998a) ADSCrossRefGoogle Scholar
  36. P. Lognonné, V.N. Zharkov, J.F. Karczewski, B. Romanowicz, M. Menvielle, G. Poupinet, B. Brient, C. Cavoit, A. Desautez, B. Dole et al., The seismic optimism experiment. Planet. Space Sci. 46(6–7), 739–747 (1998b) ADSCrossRefGoogle Scholar
  37. P. Lognonne, T. Spohn, D. Mimoun, S. Ulamec, J. Biele, GEP-ExoMars: a geophysics and environment observatory on Mars, in 37th Annual Lunar and Planetary Science Conference, vol. 37 (2006) Google Scholar
  38. P. Lognonné, W.T. Pike, V. Tong, R. Garcia, Planetary seismometry, in Extraterrestrial Seismology (2015), pp. 36–48 CrossRefGoogle Scholar
  39. P. Lognonné, F. Karakostas, L. Rolland, Y. Nishikawa, Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: from Earth observation to Mars and Venus perspectives. J. Acoust. Soc. Am. 140(2), 1447–1468 (2016) ADSCrossRefGoogle Scholar
  40. P. Lognonné, W.B. Banerdt, D. Giardini, W.T. Pike, U. Christensen, P. Laudet, S. de Raucourt, P. Zweifel, S. Calcutt, M. Bierwirth, K.J. Hurst, F. Ijpelaan, J.W. Umland, R. Llorca-Cejudo, S.A. Larson, R.F. Garcia, S. Kedar, B. Knapmeyer-Endrun, D. Mimoun, A. Mocquet, M.P. Panning, R.C. Weber, A. Sylvestre-Baron, G. Pont, N. Verdier, L. Kerjean, L.J. Facto, V. Gharakanian, J.E. Feldman, T.L. Hoffman, D.B. Klein, K. Klein, N.P. Onufer, J. Paredes-Garcia, M.P. Petkov, J.R. Willis, S.E. Smrekar, M. Drilleau, T. Gabsi, T. Nebut, O. Robert, S. Tillier, C. Moreau, M. Parise, G. Aveni, S. Ben Charef, Y. Bennour, T. Camus, P.A. Dandonneau, C. Desfoux, B. Lecomte, O. Pot, P. Revuz, D. Mance, J. tenPierick, N.E. Bowles, C. Charalambous, A.K. Delahunty, J. Hurley, R. Irshad, H. Liu, A.G. Mukherjee, I.M. Standley, A.E. Stott, J. Temple, T. Warren, M. Eberhardt, A. Kramer, W. Kühne, E.-P. Miettinen, M. Monecke, C. Aicardi, M. André, J. Baroukh, A. Borrien, A. Bouisset, P. Boutte, K. Brethomé, C. Brysbaert, T. Carlier, M. Deleuze, J.M. Desmarres, D. Dilhan, C. Doucet, D. Faye, N. Faye-Refalo, R. Gonzalez, C. Imbert, C. Larigauderie, E. Locatelli, L. Luno, J.-R. Meyer, F. Mialhe, J.M. Mouret, M. Nonon, Y. Pahn, A. Paillet, P. Pasquier, G. Perez, R. Perez, L. Perrin, B. Pouilloux, A. Rosak, I. Savin de Larclause, J. Sicre, M. Sodki, N. Toulemont, B. Vella, C. Yana, F. Alibay, O.M. Avalos, M.A. Balzer, P. Bhandari, E. Blanco, B.D. Bone, J.C. Bousman, P. Bruneau, F.J. Calef, R.J. Calvet, S.A. D’Agostino, G. de los Santos, R.G. Deen, R.W. Denise, J. Ervin, N.W. Ferraro, H.E. Gengl, F. Grinblat, D. Hernandez, M. Hetzel, M.E. Johnson, L. Khachikyan, J.Y. Lin, S.M. Madzunkov, S.L. Marshall, I.G. Mikellides, E.A. Miller, W. Raff, J.E. Singer, C.M. Sunday, J.F. Villalvazo, M.C. Wallace, D. Banfield, J.A. Rodriguez-Manfredi, C.T. Russell, A. Trebi-Ollennu, J.N. Maki, E. Beucler, M. Böse, C. Bonjour, J.L. Berenguer, S. Ceylan, J. Clinton, V. Conejero, I. Daubar, V. Dehant, P. Delage, F. Euchner, I. Estève, L. Fayon, L. Ferraioli, C.L. Johnson, J. Gagnepain-Beyneix, M. Golombek, A. Khan, T. Kawamura, B. Kenda, P. Labrot, N. Murdoch, C. Pardo, C. Perrin, L. Pou, A. Sauron, D. Savoie, S. Stähler, E. Stutzmann, N.A. Teanby, J. Tromp, M. van Driel, M. Wieczorek, R. Widmer-Schnidrig, J. Wookey, SEIS: Insight’s Seismic Experiment for Internal Structure of Mars. Space Sci. Rev. 215(1), 12 (2019).  https://doi.org/10.1007/s11214-018-0574-6 ADSCrossRefGoogle Scholar
  41. J-B. Madeleine, F. Forget, E. Millour, L. Montabone, M.J. Wolff, Revisiting the radiative impact of dust on Mars using the LMD global climate model. J. Geophys. Res., Planets 116(E11) (2011) Google Scholar
  42. G.M. Martínez, C.N. Newman, A. De Vicente-Retortillo, E. Fischer, N.O. Renno, M.I. Richardson, A.G. Fairén, M. Genzer, S.D. Guzewich, R.M. Haberle, A.-M. Harri, O. Kemppinen, M.T. Lemmon, M.D. Smith, M. de la Torre-Juárez, A.R. Vasavada, The modern near-surface Martian climate: a review of in-situ meteorological data from viking to curiosity. Space Sci. Rev. 212(1), 295–338 (2017).  https://doi.org/10.1007/s11214-017-0360-x ADSCrossRefGoogle Scholar
  43. R. Millot-Langet, E. Clévédé, P. Lognonné, Realistic long period synthetic seismograms using normal modes of a 3d anelastic elliptic rotating Earth, in EGS General Assembly Conference Abstracts, vol. 27 (2002) Google Scholar
  44. D. Mimoun, N. Murdoch, P. Lognonné, T. Pike, K. Hurst et al. (SEIS Team), The seismic noise model of the InSight mission to Mars. Space Sci. Rev. (2016) Google Scholar
  45. L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, B. Cantor, D. Kass, A. Kleinböhl, M.T. Lemmon, M.D. Smith et al., Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015) ADSCrossRefGoogle Scholar
  46. J.P. Montagner, Treatise on Geophysics, Deep Earth Structure: Upper Mantle Structure: Global Isotropic and Anisotropic Elastic Tomography, vol. 1.19 (Elsevier, Amsterdam, 2015) Google Scholar
  47. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. 211(1–4), 457–483 (2017) ADSCrossRefGoogle Scholar
  48. J.R. Murphy, C.B. Leovy, J.E. Tillman, Observations of Martian surface winds at the Viking Lander 1 site. J. Geophys. Res., Solid Earth (1978–2012) 95(B9), 14555–14576 (1990) ADSCrossRefGoogle Scholar
  49. T. Navarro, J-B. Madeleine, F. Forget, A. Spiga, E. Millour, F. Montmessin, A. Määttänen, Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res., Planets 119(7), 1479–1495 (2014) ADSCrossRefGoogle Scholar
  50. K. Nishida, Earth’s background free oscillations. Annu. Rev. Earth Planet. Sci. 41, 719–740 (2013a) ADSCrossRefGoogle Scholar
  51. K. Nishida, Global propagation of body waves revealed by cross-correlation analysis of seismic hum. Geophys. Res. Lett. 40(9), 1691–1696 (2013b) ADSCrossRefGoogle Scholar
  52. K. Nishida, Source spectra of seismic hum. Geophys. J. Int. 199(1), 416–429 (2014) ADSCrossRefGoogle Scholar
  53. K. Nishida, Ambient seismic wave field. Proc. Jpn. Acad. Ser. B 93(7), 423–448 (2017) CrossRefGoogle Scholar
  54. K. Nishida, N. Kobayashi, Y. Fukao, Resonant oscillations between the solid earth and the atmosphere. Science 287(5461), 2244–2246 (2000) ADSCrossRefGoogle Scholar
  55. K. Nishida, J-P. Montagner, H. Kawakatsu, Global surface wave tomography using seismic hum. Science 326(5949), 112 (2009) ADSCrossRefGoogle Scholar
  56. E.A. Okal, D.L. Anderson, Theoretical models for Mars and their seismic properties. Icarus 33(3), 514–528 (1978) ADSCrossRefGoogle Scholar
  57. M.P. Panning, P. Lognonné, W.B. Banerdt, R. García, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp et al., Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 211(1–4), 611–650 (2017) ADSCrossRefGoogle Scholar
  58. A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijärvi, T. Siili et al., The Martian atmospheric boundary layer. Rev. Geophys. 49(3) (2011) Google Scholar
  59. R.J. Phillips, R.E. Grimm, Martian seismicity, in Lunar and Planetary Science Conference, vol. 22 (1991), pp. 1061–1062 Google Scholar
  60. A. Pottier, F. Forget, F. Montmessin, T. Navarro, A. Spiga, E. Millour, A. Szantai, J.-B. Madeleine, Unraveling the Martian water cycle with high-resolution global climate simulations. Icarus (2017).  https://doi.org/10.1016/j.icarus.2017.02.016 CrossRefGoogle Scholar
  61. P.L. Read, S.R. Lewis, The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet (Springer, Berlin, 2004) Google Scholar
  62. J. Rhie, B. Romanowicz, Excitation of Earth’s continuous free oscillations by atmosphere–ocean–seafloor coupling. Nature 431(7008), 552 (2004) ADSCrossRefGoogle Scholar
  63. J. Rhie, B. Romanowicz, A study of the relation between ocean storms and the Earth’s hum. Geochem. Geophys. Geosyst. 7(10) (2006) Google Scholar
  64. A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213(2), 451–472 (2011) ADSCrossRefGoogle Scholar
  65. B.A. Romanowicz, B.J. Mitchell, Treatise on Geophysics, Deep Earth Structure: Q of the Earth from Crust to Core, vol. 1.19 (Elsevier, Amsterdam, 2015) Google Scholar
  66. M. Schimmel, E. Stutzmann, J. Gallart, Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale. Geophys. J. Int. 184(1), 494–506 (2011).  https://doi.org/10.1111/j.1365-246X.2010.04861.x ADSCrossRefGoogle Scholar
  67. M. Schimmel, E. Stutzmann, S. Ventosa, Low-frequency ambient noise autocorrelations: waveforms and normal modes. Seismol. Res. Lett. 89(4), 1488–1496 (2018).  https://doi.org/10.1785/0220180027 CrossRefGoogle Scholar
  68. J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science 278(5344), 1752–1758 (1997) ADSCrossRefGoogle Scholar
  69. S.E. Smrekar, P. Lognonné, T. Spohn, W.B. Banerdt, D. Breuer, U. Christensen, V. Dehant, M. Drilleau, W. Folkner, N. Fuji, R.F. Garcia, D. Giardini, M. Golombek, M. Grott, T. Gudkova, C. Johnson, A. Khan, B. Langlais, A. Mittelholz, A. Mocquet, R. Myhill, M. Panning, C. Perrin, T. Pike, A.-C. Plesa, A. Rivoldini, H. Samuel, S.C. Stähler, M. van Driel, T. Van Hoolst, O. Verhoeven, R. Weber, M. Wieczorek, Pre-mission InSights on the Interior of Mars. Space Sci. Rev. 215(1), 3 (2018).  https://doi.org/10.1007/s11214-018-0563-9 ADSCrossRefGoogle Scholar
  70. F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res., Planets 102, 1613–1635 (1997) ADSCrossRefGoogle Scholar
  71. S.C. Solomon, D.L. Anderson, W.B. Banerdt, R.G. Butler, P.M. Davis, F.K. Duennebier, Y. Nakamura, E.A. Okal, R.J. Phillips, Scientific rationale and requirements for a global seismic network on Mars (1991) Google Scholar
  72. A. Spiga, Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: katabatic winds and boundary layer convection. Planet. Space Sci. 59(10), 915–922 (2011) ADSCrossRefGoogle Scholar
  73. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114(E2) (2009) Google Scholar
  74. A. Spiga, S.R. Lewis, Martian mesoscale and microscale wind variability of relevance for dust lifting. Mars 5, 146–158 (2010) ADSCrossRefGoogle Scholar
  75. A. Spiga, D. Banfield, N.A. Teanby, F. Forget, A. Lucas, B. Kenda, J.A. Rodriguez Manfredi, R. Widmer-Schnidrig, N. Murdoch, M.T. Lemmon, R.F. Garcia, L. Martire, Ö. Karatekin, S. Le Maistre, B. Van Hove, V. Dehant, P. Lognonné, N. Mueller, R. Lorenz, D. Mimoun, S. Rodriguez, É. Beucler, I. Daubar, M.P. Golombek, T. Bertrand, Y. Nishikawa, E. Millour, L. Rolland, Q. Brissaud, T. Kawamura, A. Mocquet, R. Martin, J. Clinton, É. Stutzmann, T. Spohn, S. Smrekar, W.B. Banerdt, Atmospheric science with InSight. Space Sci. Rev. 214, 109 (2018).  https://doi.org/10.1007/s11214-018-0543-0 ADSCrossRefGoogle Scholar
  76. T. Spohn, M.H. Acuña, D. Breuer, Geophysical constraints on the evolution of Mars. Space Sci. Rev. 96, 231–262 (2001) ADSCrossRefGoogle Scholar
  77. N. Suda, K. Nawa, Y. Fukao, Earth’s background free oscillations. Science 279(5359), 2089–2091 (1998) ADSCrossRefGoogle Scholar
  78. T. Tanimoto, Continuous free oscillations: atmosphere-solid earth coupling. Annu. Rev. Earth Planet. Sci. 29(1), 563–584 (2001) ADSCrossRefGoogle Scholar
  79. T. Tanimoto, The oceanic excitation hypothesis for the continuous oscillations of the Earth. Geophys. J. Int. 160(1), 276–288 (2005) ADSMathSciNetCrossRefGoogle Scholar
  80. T. Tanimoto, J. Um, Cause of continuous oscillations of the Earth. J. Geophys. Res., Solid Earth 104(B12), 28723–28739 (1999) CrossRefGoogle Scholar
  81. V.C.H. Tong, R.A. García, Extraterrestrial Seismology (Cambridge University Press, Cambridge, 2015) CrossRefGoogle Scholar
  82. T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161(2), 281–296 (2003) ADSCrossRefGoogle Scholar
  83. S. Ventosa, M. Schimmel, E. Stutzmann, Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond. Geophys. J. Int. 211(1), 30–44 (2017).  https://doi.org/10.1002/2017JB014354 ADSCrossRefGoogle Scholar
  84. S. Watada, H. Kanamori, Acoustic resonant oscillations between the atmosphere and the solid earth during the 1991 Mt. Pinatubo eruption. J. Geophys. Res. Solid Earth 115(B12) (2010) Google Scholar
  85. S. Watada, G. Masters, Oceanic excitation of the continuous oscillations of the Earth, in AGU Fall Meeting Abstracts (2001), art. S32A-0620 Google Scholar
  86. S.C. Webb, The Earth’s hum is driven by ocean waves over the continental shelves. Nature 445(7129), 754 (2007) ADSCrossRefGoogle Scholar
  87. J.H. Woodhouse, A. Deuss, Theory and Observations – Earth’s Free Oscillations, vol. 1.03 (Elsevier, Amsterdam, 2015) Google Scholar
  88. V.N. Zharkov, T.V. Gudkova, On the dissipative factor of the Martian interiors. Planet. Space Sci. 45(4), 401–407 (1997) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Y. Nishikawa
    • 1
    Email author
  • P. Lognonné
    • 1
  • T. Kawamura
    • 1
  • A. Spiga
    • 2
  • E. Stutzmann
    • 3
  • M. Schimmel
    • 4
  • T. Bertrand
    • 5
  • F. Forget
    • 2
  • K. Kurita
    • 6
  1. 1.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris DiderotParisFrance
  2. 2.Laboratoire de Météorologie Dynamique (LMD/IPSL)Sorbonne Université, Centre National de la Recherche Scientifique, École Polytechnique, École Normale SupérieureParisFrance
  3. 3.Institut de Physique du Globe de Paris, CNRS-UMR 7580University Paris 7ParisFrance
  4. 4.Institute of Earth Sciences Jaume Almera – CSICBarcelonaSpain
  5. 5.Ames Research CenterNational Aeronautics and Space Administration (NASA)Mountain ViewUSA
  6. 6.Earthquake Research InstituteThe University of TokyoTokyoJapan

Personalised recommendations