Advertisement

Space Science Reviews

, 215:8 | Cite as

ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA)

  • Francesca FerriEmail author
  • Özgür Karatekin
  • Stephen R. Lewis
  • François Forget
  • Alessio Aboudan
  • Giacomo Colombatti
  • Carlo Bettanini
  • Stefano Debei
  • Bart Van Hove
  • Veronique Dehant
  • Ari-Matti Harri
  • Mark Leese
  • Teemu Mäkinen
  • Ehouarn Millour
  • Ingo Muller-Wodarg
  • Gian Gabriele Ori
  • Andrea Pacifici
  • Sebastien Paris
  • Manish Patel
  • Mark Schoenenberger
  • Jeffrey Herath
  • Tero Siili
  • Aymeric Spiga
  • Tetsuya Tokano
  • Martin Towner
  • Paul Withers
  • Sami Asmar
  • Dirk Plettemeier
Article
  • 97 Downloads
Part of the following topical collections:
  1. ExoMars-16

Abstract

The entry, descent and landing of Schiaparelli, the ExoMars Entry, descent and landing Demonstrator Module (EDM), offered a rare (once-per-mission) opportunity for in situ investigations of the martian environment over a wide altitude range. The aim of the ExoMars AMELIA experiment was to exploit the Entry, Descent and Landing System (EDLS) engineering measurements for scientific investigations of Mars’ atmosphere and surface. Here we present the simulations, modelling and the planned investigations prior to the Entry, Descent and Landing (EDL) event that took place on 19th October 2016. Despite the unfortunate conclusion of the Schiaparelli mission, flight data recorded during the entry and the descent until the loss of signal, have been recovered. These flight data, although limited and affected by transmission interruptions and malfunctions, are essential for investigating the anomaly and validating the EDL operation, but can also contribute towards the partial achievement of AMELIA science objectives.

Keywords

Mars Entry Descent and Landing (EDL) Dynamical models Trajectory Attitude Atmospheric investigations 

Notes

Acknowledgements

AMELIA is an experiment for scientific investigations of Mars’ atmosphere and surface by means of the Schiaparelli measurements during its entry, descent and landing on Mars. The International AMELIA team built under the joint coordination of Principal Investigator: Francesca Ferri (Italy) and 3 Co-Principal Investigators (CoPIs): François Forget (France), Stephen R. Lewis (United Kingdom), Özgür Karatekin (Belgium). The team includes scientists from Italy, France, UK, Belgium, Finland, Germany, Australia and USA.

The support of the national funding agencies of Italy (ASI, grant no. 2017-03-17 and I/018/12/3), Belgium (BELSPO and PRODEX), UK (UKSA, grant no. ST/M00306X/1) and France (CNES) is gratefully acknowledged.

References

  1. A. Aboudan, G. Colombatti, F. Ferri, F. Angrilli, Huygens probe entry trajectory and attitude estimated simultaneously with Titan atmospheric structure by Kalman filtering. Planet. Space Sci. 56, 573–585 (2008) ADSCrossRefGoogle Scholar
  2. A. Aboudan, G. Colombatti, C. Bettanini, F. Ferri, S. Lewis, B. Van Hove, O. Karatekin, S. Debei, ExoMars 2016 Schiaparelli module trajectory and atmospheric profiles reconstruction: analysis of the on-board inertial and radar measurements. Space Sci. Rev. 214, 97 (2018).  https://doi.org/10.1007/s11214-018-0532-3 ADSCrossRefGoogle Scholar
  3. Asmar et al., Curiosity’s landing dynamics as observed at the CSIRO Parkes radio telescope, in 10th International Planetary Probe Workshop, San Jose, California, USA (2013) Google Scholar
  4. A. Ball et al. Space Sci. Rev. (2019, this issue) Google Scholar
  5. Bird et al., The vertical profile of winds on Titan. Nature 438, 800–802 (2005).  https://doi.org/10.1038/nature04060 ADSCrossRefGoogle Scholar
  6. R.C. Blanchard, P.N. Desai, Mars Phoenix entry, descent, and landing trajectory and atmosphere reconstruction. J. Spacecr. Rockets 48(5), 809–822 (2011) ADSCrossRefGoogle Scholar
  7. D. Bonetti, G. De Zaiacomo, G. Blanco, I. Pontijas Fuentes, S. Portigliotti, O. Bayle, L. Lorenzoni, ExoMars 2016: Schiaparelli coasting, entry and descent post flight mission analysis. Acta Astronaut. 149, 93–105 (2018).  https://doi.org/10.1016/j.actaastro.2018.05.029 ADSCrossRefGoogle Scholar
  8. F.M. Cheatwood, D. Bose, C.D. Karlgaard, C.A. Kuhl, J.A. Santos, M.J. Wright, Mars science laboratory (MSL) entry, descent, and landing instrumentation (MEDLI): Complete flight data set (2014). NASA/TM-2014-218533. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140016393.pdf
  9. A. Chen, A. Cianciolo, A.R. Vasavada, C. Karlgaard, J. Barnes, B. Cantor, D. Kass, S. Rafkin, D. Tyler, Reconstruction of atmospheric properties from Mars Science Laboratory entry, descent, and landing. J. Spacecr. Rockets 51(4), 1062–1075 (2014).  https://doi.org/10.2514/1.A32708 ADSCrossRefGoogle Scholar
  10. G. Colombatti, A. Aboudan, F. Ferri, F. Angrilli, Huygens probe entry dynamic model and accelerometer data analysis. Planet. Space Sci. 56, 601–612 (2008) ADSCrossRefGoogle Scholar
  11. P.N. Desai, J.L. Prince, E.M. Queen, M.M. Schoenenberger, J.R. Cruz, M.R. Grover, Entry, descent, and landing performance of the Mars Phoenix lander. J. Spacecr. Rockets 48(5), 798–808 (2011) ADSCrossRefGoogle Scholar
  12. F. Esposito, S. Debei, C. Bettanini, C. Molfese, I. Arruego Rodríguez, G. Colombatti, A-M. Harri, F. Montmessin, C. Wilson, A. Aboudan, P. Schipani, L. Marty, F.J. Álvarez, V. Apestigue, G. Bellucci, J-J. Berthelier, J.R. Brucato, S.B. Calcutt, S. Chiodini, F. Cortecchia, F. Cozzolino, F. Cucciarrè, N. Deniskina, G. Déprez, G. Di Achille, F. Ferri, F. Forget, G. Franzese, E. Friso, M. Genzer, R. Hassen- Kodja, H. Haukka, M. Hieta, J.J. Jiménez, J-L. Josset, H. Kahanpää, O. Karatekin, G. Landis, L. Lapauw, R. Lorenz, J. Martinez-Oter, V. Mennella, D. Möhlmann, D. Moirin, R. Molinaro, T. Nikkanen, E. Palomba, M.R. Patel, J-P. Pommereau, C.I. Popa, S. Rafkin, P. Rannou, N.O. Renno, J. Rivas, W. Schmidt, E. Segato, S. Silvestro, A. Spiga, D. Toledo, R. Trautner, F. Valero, L. Vázquez, F. Vivat, O. Witasse, M. Yela, R. Mugnuolo, E. Marchetti, S. Pirrotta, The DREAMS experiment onboard the Schiaparelli Module of the ExoMars 2016 mission: 1 design, performances and expected results. Space Sci. Rev. 214, 103 (2018, this issue).  https://doi.org/10.1007/s11214-018-0535-0 ADSCrossRefGoogle Scholar
  13. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J.P. Huot, Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104(E10), 24155–24176 (1999) ADSCrossRefGoogle Scholar
  14. F. Forget, A. Spiga, L. Montabone, E. Millour, A. Colaitis, V. Bourrier, S. Portigliotti, Characterizing the Martian atmosphere for the ExoMars 2016 Lander, in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observation held 8–11 February, 2011, in Paris, France. Scientific Committee: F. Forget, M. Allen, M.C. Desjean, R.M. Haberle, J.W. Head, J.L. Hollingsworth, J.P. Huot, F. Lefevre, J.S. Levine, S.R. Lewis, M.A. Lopez-Valverde, F. Montmessin, S. Rafkin, P.L. Read, A. Spiga, O. Witasse, and M.J. Wolff. Published online at http://www-mars.lmd.jussieu.fr/paris2011/program.html (2011), pp. 275–278 Google Scholar
  15. M. Fulchignoni, F. Ferri, F. Angrilli, A.J. Ball, A. Bar-Nun, M.A. Barucci, C. Bettanini, G. Bianchini, W. Borucki, G. Colombatti, M. Coradini, A. Coustenis, S. Debei, P. Falkner, G. Fanti, E. Flamini, V. Gaborit, R. Grard, M. Hamelin, A.M. Harri, B. Hathi, I. Jernej, M.R. Leese, A. Lehto, P.F. Lion Stoppato, J.J. López-Moreno, T. Mäkinen, J.A.M. McDonnell, C.P. McKay, G. Molina-Cuberos, F.M. Neubauer, V. Pirronello, R. Rodrigo, B. Saggin, K. Schwingenschuh, A. Seiff, F. Simões, H. Svedhem, T. Tokano, M.C. Towner, R. Trautner, P. Withers, J.C. Zarnecki, In situ measurements of the physical characteristics of Titan’s atmosphere and surface. Nature 438, 785–791 (2005).  https://doi.org/10.1038/nature04314 ADSCrossRefGoogle Scholar
  16. D. Grassi, V. Formisano, F. Forget, C. Fiorenza, N.I. Ignatiev, A. Maturilli, L.V. Zasova, The martian atmosphere in the region of Hellas basin as observed by the planetary Fourier spectrometer (PFS-MEX). Planet. Space Sci. 55(10), 1346–1357 (2007).  https://doi.org/10.1016/j.pss.2006.12.006 ADSCrossRefGoogle Scholar
  17. A. Gülhan, T. Thiele, F. Siebe, R. Kronen, Combined Instrumentation Package COMARS+ for the ExoMars Schiaparelli Lander. Space Sci. Rev. 214, 12 (2018, this issue).  https://doi.org/10.1007/s11214-017-0447-4 ADSCrossRefGoogle Scholar
  18. R.M. Haberle, M.M. Joshi, J.R. Murphy, J.R. Barnes, J.T. Schofield, G. Wilson, M. Lopez-Valverde, J.L. Hollingsworth, A.F. Bridger, J. Schaeffer, General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J. Geophys. Res. 104, 8957–8974 (1999) ADSCrossRefGoogle Scholar
  19. C. Holstein-Rathlou, A. Maue, P. Withers, Atmospheric studies from the Mars Science Laboratory entry, descent and landing atmospheric structure reconstruction. Planet. Space Sci. 120, 15–23 (2016) ADSCrossRefGoogle Scholar
  20. Ö. Karatekin, S.W. Asmar, in Entry Trajectory Reconstruction Using Phoenix Radio Link: 8th International Planetary Probe Workshop, Portsmouth, Virginia, USA (2011) Google Scholar
  21. C.D. Karlgaard, P. Kutty, M. Schoenenberger, J. Shidner, M. Munk, Mars entry atmospheric data system trajectory reconstruction algorithms and flight results, in AIAA 2013-0028, AIAA Aerospace Sciences Meeting, Grapevine, TX, USA (2013).  https://doi.org/10.2514/6.2013-28 CrossRefGoogle Scholar
  22. C.D. Karlgaard, P. Kutty, M. Schoenenberger, M.M. Munk, A. Little, C.A. Kuhl, J. Shidner, Mars science laboratory entry atmospheric data system trajectory and atmosphere reconstruction. J. Spacecr. Rockets 51(4), 1029–1047 (2014).  https://doi.org/10.2514/1.A32770 ADSCrossRefGoogle Scholar
  23. V.V. Kerzhanovich, Mars 6: improved analysis of the descent module measurements. Icarus 30(1), 1–25 (1977).  https://doi.org/10.1016/0019-1035(77)90117-8 ADSCrossRefGoogle Scholar
  24. S.R. Lewis, M. Collins, P.L. Read, F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, J.P. Huot, A climate database for Mars. J. Geophys. Res. 104(E10), 24177–24194 (1999) ADSCrossRefGoogle Scholar
  25. S.R. Lewis, P.L. Read, B.J. Conrath, J.C. Pearl, M.D. Smith, Assimilation of Thermal Emission Spectrometer atmospheric data during the Mars Global Surveyor aerobraking period. Icarus 192(2), 327–347 (2007) ADSCrossRefGoogle Scholar
  26. J.A. Magalhães, J.T. Schofield, A. Seiff, Results of the Mars Pathfinder atmospheric structure investigation. J. Geophys. Res. 104, 8943–89455 (1999) ADSCrossRefGoogle Scholar
  27. D.J. McCleese, J.T. Schofield, F.W. Taylor, S.B. Calcutt, M.C. Foote, D.M. Kass, C.B. Leovy, D.A. Paige, P.L. Read, R.W. Zurek, Mars climate sounder: an investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res. 112, E05S06 (2007).  https://doi.org/10.1029/2006JE002790 ADSCrossRefGoogle Scholar
  28. E. Millour, F. Forget, A. Spiga, T. Navarro, J.-B. Madeleine, L. Montabone, A. Pottier, F. Lefevre, F. Montmessin, J.-Y. Chaufray, M.A. Lopez-Valverde, F. Gonzalez-Galindo, S.R. Lewis, P.L. Read, J.-P. Huot, M.-C. Desjean, The Mars Climate Database (MCD version 5.2). EPSC (2015) Google Scholar
  29. L. Montabone, S.R. Lewis, P.L. Read, Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations. Adv. Space Res. 36, 2146–2155 (2005) ADSCrossRefGoogle Scholar
  30. L. Montabone, S.R. Lewis, P.L. Read, P. Withers, Reconstructing the weather on Mars at the time of the MERs and Beagle 2 landings. Geophys. Res. Lett. 33, L19202 (2006).  https://doi.org/10.1029/2006GL026565 ADSCrossRefGoogle Scholar
  31. G.G. Ori, A. Aboudan, S. Portigliotti, A. Marcer, L. Lorenzoni, A. Pacifici, F. Cannarsa, The analysis of the ExoMars 2016 Landing Site, in Lunar and Planetary Science Conference, vol. 45 (2014), p. 1787 Google Scholar
  32. G.G. Ori, A. Aboudan, A. Pacifici, F. Cannarsa, A. Murana, S. Portigliotti, L. Lorenzoni, The ExoMars 2016 Landing Site, in European Planetary Science Congress 2015 held 27 September–2 October, 2015 in Nantes, France, Online at http://meetingorganizer.copernicus.org/EPSC2015, id. EPSC2015-764 (2015), p. 764 Google Scholar
  33. A. Pacifici, G.G. Ori, F. Cannarsa, A. Murana, A. Aboudan, S. Portigliotti, L. Lorenzoni, Geological and geomorphological map of ExoMars 2016 Landing Site, in Lunar and Planetary Science Conference, vol. 45 (2014), p. 1531 Google Scholar
  34. S. Portigliotti, C. Cassi, M. Montagna, P. Martella, M. Faletra, S. De Sanctis, D. Granà, O. Bayle, T. Blancquaert, L. Lorenzoni, ExoMars 2016, the Schiaparelli mission. EDL demonstration results from real time telemetry before unfortunate impact, in 14th International Planetary Probe Workshop (IPPW), The Hague, The Netherlands, June 2017 (2017) Google Scholar
  35. T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhães, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) Experiment. Science 278, 1752–1758 (1997) ADSCrossRefGoogle Scholar
  36. A. Seiff, Mars atmospheric winds indicated by motion of the Viking Landers during parachute descent. J. Geophys. Res. 98, 7461–7474 (1993).  https://doi.org/10.1029/92JE02738 ADSCrossRefGoogle Scholar
  37. A. Seiff, D.B. Kirk, Structure of Mars’ atmosphere up to 100 km from the entry measurements of Viking 2. Science 194, 1300–1303 (1976) ADSCrossRefGoogle Scholar
  38. A. Seiff, D.B. Kirk, Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4364–4378 (1977) ADSCrossRefGoogle Scholar
  39. A. Seiff, D.E. Reese Jr., Use of entry vehicle responses to define the properties of the Mars atmosphere. Adv. Astronaut. Sci. 19, 419–447 (1965) Google Scholar
  40. A. Seiff et al., The atmosphere structure and meteorological instrument on the Mars Pathfinder lander. J. Geophys. Res. 102(E2), 4045–4056 (1997) ADSCrossRefGoogle Scholar
  41. M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, Thermal emission spectrometer results: atmospheric thermal structure and aerosol distribution. J. Geophys. Res. 106(E10), 23,929–23,945 (2001) ADSCrossRefGoogle Scholar
  42. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114, E02009 (2009) ADSCrossRefGoogle Scholar
  43. A. Spiga, S.R. Lewis, Martian mesoscale and microscale wind variability of relevance for dust lifting. Mars 5, 146–158 (2010).  https://doi.org/10.1555/mars.2010.0006 ADSCrossRefGoogle Scholar
  44. A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010) ADSCrossRefGoogle Scholar
  45. T. Tolker-Nielsen, ESA ExoMars 2016—Schiaparelli Anomaly inquiry report (18/05/2017) (2017). http://exploration.esa.int/science-e/www/object/doc.cfm?fobjectid=59175
  46. B. Van Hove, Ö. Karatekin, Mars entry, descent, and landing reconstruction from flight data: uncertainty quantification, in Proceedings of 11th International Planetary Probe Workshop, IPPW11, 16–20 June 2014, Pasadena, CA, United States (2014) Google Scholar
  47. B. Van Hove, Ö. Karatekin, Atmospheric reconstruction with stagnation pressure flight data from Mars Science Laboratory. J. Spacecr. Rockets 54(3), 609–620 (2017) ADSCrossRefGoogle Scholar
  48. P. Withers, Trajectory and atmospheric structure from entry probes: demonstration of a real-time reconstruction technique using a simple direct-to-Earth radio link. Planet. Space Sci. 58, 2044–2049 (2010) ADSCrossRefGoogle Scholar
  49. P. Withers, A smoothing technique for improving atmospheric reconstruction for planetary entry probes. Planet. Space Sci. 79–80, 52–55 (2013).  https://doi.org/10.1016/j.pss.2013.01.011 ADSCrossRefGoogle Scholar
  50. P. Withers, D.C. Catling, Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry. Geophys. Res. Lett. 37, L24204 (2010).  https://doi.org/10.1029/2010GL045382 ADSCrossRefGoogle Scholar
  51. P. Withers, M.D. Smith, Atmospheric entry profiles from the Mars Exploration Rovers Spirit and Opportunity. Icarus 185(1), 133–142 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Francesca Ferri
    • 1
    Email author
  • Özgür Karatekin
    • 2
  • Stephen R. Lewis
    • 3
  • François Forget
    • 4
  • Alessio Aboudan
    • 1
  • Giacomo Colombatti
    • 1
  • Carlo Bettanini
    • 1
  • Stefano Debei
    • 1
    • 5
  • Bart Van Hove
    • 2
  • Veronique Dehant
    • 2
  • Ari-Matti Harri
    • 6
  • Mark Leese
    • 3
  • Teemu Mäkinen
    • 6
  • Ehouarn Millour
    • 4
  • Ingo Muller-Wodarg
    • 7
  • Gian Gabriele Ori
    • 8
  • Andrea Pacifici
    • 8
  • Sebastien Paris
    • 9
  • Manish Patel
    • 3
  • Mark Schoenenberger
    • 10
  • Jeffrey Herath
    • 10
  • Tero Siili
    • 6
  • Aymeric Spiga
    • 4
  • Tetsuya Tokano
    • 11
  • Martin Towner
    • 12
  • Paul Withers
    • 13
  • Sami Asmar
    • 14
  • Dirk Plettemeier
    • 15
  1. 1.Centro di Ateneo di Studi e Attività Spaziali “Giuseppe Colombo” CISASUniversità degli Studi di PadovaPadovaItaly
  2. 2.Royal Observatory of Belgium (ROB)BrusselsBelgium
  3. 3.School of Physical SciencesThe Open UniversityMilton KeynesUK
  4. 4.Laboratoire de Météorologie Dynamique/Institut Pierre-Simon Laplace (LMD/IPSL), Sorbonne Universités, UPMC Univ Paris 06Centre National de la Recherche ScientifiqueParisFrance
  5. 5.Department of Industrial EngineeringUniversità degli Studi di PadovaPadovaItaly
  6. 6.Finnish Meteorological Institute (FMI)HelsinkiFinland
  7. 7.Imperial College LondonLondonUK
  8. 8.International Research School of Planetary SciencesPescaraItaly
  9. 9.Von Karman InstituteRhode-St-GenèseBelgium
  10. 10.NASA Langley Research CenterHamptonUSA
  11. 11.Institut für Geophysik und MeteorologieUniversität zu Köln Albertus-Magnus-PlatzKölnGermany
  12. 12.Department of Applied GeologyCurtin UniversityPerthAustralia
  13. 13.Boston UniversityBostonUSA
  14. 14.Jet Propulsion LaboratoryCalifornia Institute of Technology–NASAPasadenaUSA
  15. 15.Technische Universität DresdenDresdenGermany

Personalised recommendations