Advertisement

Space Science Reviews

, 215:5 | Cite as

Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: A Topical Perspective

  • N. WernerEmail author
  • B. R. McNamara
  • E. Churazov
  • E. Scannapieco
Article
Part of the following topical collections:
  1. Clusters of Galaxies: Physics and Cosmology

Abstract

Most galaxies comparable to or larger than the mass of the Milky Way host hot, X-ray emitting atmospheres, and many such galaxies are radio sources. Hot atmospheres and radio jets and lobes are the ingredients of radio-mechanical active galactic nucleus (AGN) feedback. While a consensus has emerged that such feedback suppresses cooling of hot cluster atmospheres, less attention has been paid to massive galaxies where similar mechanisms are at play. Observation indicates that the atmospheres of elliptical and S0 galaxies were accreted externally during the process of galaxy assembly and augmented significantly by stellar mass loss. Their atmospheres have entropy and cooling time profiles that are remarkably similar to those of central cluster galaxies. About half display filamentary or disky nebulae of cool and cold gas, much of which has likely cooled from the hot atmospheres. We review the observational and theoretical perspectives on thermal instabilities in galactic atmospheres and the evidence that AGN heating is able to roughly balance the atmospheric cooling. Such heating and cooling may be regulating star formation in all massive spheroids at late times.

Keywords

Elliptical galaxies Active galactic nuclei Interstellar medium 

Notes

Acknowledgements

NW was supported by the Lendület LP2016-11 grant awarded by the Hungarian Academy of Sciences. BRM thanks the Natural Sciences and Engineering Research Council of Canada and the Canadian Space Agency for financial support.

References

  1. Z. Abdulla, J.E. Carlstrom, A.B. Mantz, D.P. Marrone, C.H. Greer, J.W. Lamb, E.M. Leitch, S. Muchovej, C. O’Donnell, T.J. Plagge, D. Woody, Constraints on the thermal contents of the X-ray cavities of cluster MS 0735.6+7421 with Sunyaev-Zel’dovich effect observations (2018). arXiv:1806.05050
  2. M. Ackermann, M. Ajello, A. Albert, et al., Search for cosmic-ray-induced gamma-ray emission in galaxy clusters. Astrophys. J. 787, 18 (2014).  https://doi.org/10.1088/0004-637X/787/1/18 CrossRefADSGoogle Scholar
  3. Planck Collaboration, P.A.R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. Balbi, A.J. Banday, et al., Planck intermediate results. XI. The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies. Astron. Astrophys. 557, 52 (2013).  https://doi.org/10.1051/0004-6361/201220941 CrossRefGoogle Scholar
  4. S.W. Allen, G.B. Taylor, P.E.J. Nulsen, R.M. Johnstone, L.P. David, S. Ettori, A.C. Fabian, W. Forman, C. Jones, B. McNamara, Chandra X-ray observations of the 3C 295 cluster core. Mon. Not. R. Astron. Soc. 324, 842–858 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04315.x CrossRefADSGoogle Scholar
  5. S.W. Allen, R.J.H. Dunn, A.C. Fabian, G.B. Taylor, C.S. Reynolds, The relation between accretion rate and jet power in X-ray luminous elliptical galaxies. Mon. Not. R. Astron. Soc. 372, 21–30 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10778.x CrossRefADSGoogle Scholar
  6. M.E. Anderson, J.N. Bregman, Detection of a hot gaseous halo around the Giant Spiral Galaxy NGC 1961. Astrophys. J. 737, 22 (2011).  https://doi.org/10.1088/0004-637X/737/1/22 CrossRefADSGoogle Scholar
  7. M.E. Anderson, R. Sunyaev, FUV line emission, gas kinematics, and discovery of [Fe XXI] \(\lambda\)1354.1 in the sightline toward a filament in M87. Astron. Astrophys. 617, 123 (2018).  https://doi.org/10.1051/0004-6361/201732510 CrossRefGoogle Scholar
  8. M.E. Anderson, E. Churazov, J.N. Bregman, A deep XMM-Newton study of the hot gaseous halo around NGC 1961. Mon. Not. R. Astron. Soc. 455, 227–243 (2016).  https://doi.org/10.1093/mnras/stv2314 CrossRefADSGoogle Scholar
  9. M. Arnaud, A.E. Evrard, The L_X-T relation and intracluster gas fractions of X-ray clusters. Mon. Not. R. Astron. Soc. 305, 631–640 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02442.x CrossRefADSGoogle Scholar
  10. S. Arnouts, D. Schiminovich, O. Ilbert, L. Tresse, B. Milliard, M. Treyer, S. Bardelli, T. Budavari, T.K. Wyder, E. Zucca, O. Le Fèvre, D.C. Martin, G. Vettolani, C. Adami, M. Arnaboldi, T. Barlow, L. Bianchi, M. Bolzonella, D. Bottini, Y.-I. Byun, A. Cappi, S. Charlot, T. Contini, J. Donas, K. Forster, S. Foucaud, P. Franzetti, P.G. Friedman, B. Garilli, I. Gavignaud, L. Guzzo, T.M. Heckman, C. Hoopes, A. Iovino, P. Jelinsky, V. Le Brun, Y.-W. Lee, D. Maccagni, B.F. Madore, R. Malina, B. Marano, C. Marinoni, H.J. McCracken, A. Mazure, B. Meneux, R. Merighi, P. Morrissey, S. Neff, S. Paltani, R. Pellò, J.P. Picat, A. Pollo, L. Pozzetti, M. Radovich, R.M. Rich, R. Scaramella, M. Scodeggio, M. Seibert, O. Siegmund, T. Small, A.S. Szalay, B. Welsh, C.K. Xu, G. Zamorani, A. Zanichelli, The GALEX VIMOS-VLT deep survey measurement of the evolution of the 1500 Å luminosity function. Astrophys. J. Lett. 619, 43–46 (2005).  https://doi.org/10.1086/426733 CrossRefADSGoogle Scholar
  11. A. Babul, M.L. Balogh, G.F. Lewis, G.B. Poole, Physical implications of the X-ray properties of galaxy groups and clusters. Mon. Not. R. Astron. Soc. 330, 329–343 (2002).  https://doi.org/10.1046/j.1365-8711.2002.05044.x CrossRefADSGoogle Scholar
  12. I.V. Babyk, B.R. McNamara, P.E.J. Nulsen, H.R. Russell, A.N. Vantyghem, M.T. Hogan, F.A. Pulido, A universal entropy profile for the hot atmospheres of galaxies and clusters within R 2500. Astrophys. J. 862, 39 (2018a).  https://doi.org/10.3847/1538-4357/aacce5 CrossRefADSGoogle Scholar
  13. I.V. Babyk, B.R. McNamara, P.D. Tamhane, P.E.J. Nulsen, H.R. Russell, A.C. Edge, Origins of molecular clouds in early-type galaxies (2018b). arXiv:1810.11465
  14. I.V. Babyk, B.R. McNamara, P.E.J. Nulsen, M.T. Hogan, A.N. Vantyghem, H.R. Russell, F.A. Pulido, A.C. Edge, X-ray scaling relations of early-type galaxies. Astrophys. J. 857, 32 (2018c).  https://doi.org/10.3847/1538-4357/aab3c9 CrossRefADSGoogle Scholar
  15. S.A. Balbus, N. Soker, Theory of local thermal instability in spherical systems. Astrophys. J. 341, 611–630 (1989).  https://doi.org/10.1086/167521 CrossRefADSGoogle Scholar
  16. S.A. Balbus, N. Soker, Resonant excitation of internal gravity waves in cluster cooling flows. Astrophys. J. 357, 353–366 (1990).  https://doi.org/10.1086/168926 CrossRefADSGoogle Scholar
  17. A. Baldi, W. Forman, C. Jones, R. Kraft, P. Nulsen, E. Churazov, L. David, S. Giacintucci, The unusual X-ray morphology of NGC 4636 revealed by deep Chandra observations: cavities and shocks created by past active galactic nucleus outbursts. Astrophys. J. 707, 1034–1043 (2009).  https://doi.org/10.1088/0004-637X/707/2/1034 CrossRefADSGoogle Scholar
  18. M.L. Balogh, A. Babul, D.R. Patton, Pre-heated isentropic gas in groups of galaxies. Mon. Not. R. Astron. Soc. 307, 463–479 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02608.x CrossRefADSGoogle Scholar
  19. C.J. Bambic, B.J. Morsony, C.S. Reynolds, Suppression of AGN-driven turbulence by magnetic fields in a magnetohydrodynamic model of the intracluster medium. Astrophys. J. 857, 84 (2018).  https://doi.org/10.3847/1538-4357/aab558 CrossRefADSGoogle Scholar
  20. M.C. Begelman, Impact of active galactic nuclei on the surrounding medium, in Gas and Galaxy Evolution, ed. by J.E. Hibbard, M. Rupen, J.H. van Gorkom. Astronomical Society of the Pacific Conference Series, vol. 240 (2001), p. 363 Google Scholar
  21. J. Bergeron, G. Stasińska, Absorption line systems in QSO spectra—properties derived from observations and from photoionization models. Astron. Astrophys. 169, 1–13 (1986) ADSGoogle Scholar
  22. P.N. Best, C.R. Kaiser, T.M. Heckman, G. Kauffmann, AGN-controlled cooling in elliptical galaxies. Mon. Not. R. Astron. Soc. 368, 67–71 (2006).  https://doi.org/10.1111/j.1745-3933.2006.00159.x CrossRefADSGoogle Scholar
  23. G.V. Bicknell, M.C. Begelman, Understanding the kiloparsec-scale structure of M87. Astrophys. J. 467, 597 (1996).  https://doi.org/10.1086/177636 CrossRefADSGoogle Scholar
  24. V. Biffi, F. Mernier, P. Medvedev, Enrichment of the hot intracluster medium: numerical simulations. Space Sci. Rev. 214(8), 123 (2018).  https://doi.org/10.1007/s11214-018-0557-7 CrossRefADSGoogle Scholar
  25. J. Binney, The physics of dissipational galaxy formation. Astrophys. J. 215, 483–491 (1977).  https://doi.org/10.1086/155378 CrossRefADSGoogle Scholar
  26. J. Binney, On the origin of the galaxy luminosity function. Mon. Not. R. Astron. Soc. 347, 1093–1096 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07277.x CrossRefADSGoogle Scholar
  27. J. Binney, G. Tabor, Evolving cooling flows. Mon. Not. R. Astron. Soc. 276, 663 (1995).  https://doi.org/10.1093/mnras/276.2.663 CrossRefADSGoogle Scholar
  28. L. Bîrzan, D.A. Rafferty, B.R. McNamara, M.W. Wise, P.E.J. Nulsen, A systematic study of radio-induced X-ray cavities in clusters, groups, and galaxies. Astrophys. J. 607, 800–809 (2004).  https://doi.org/10.1086/383519 CrossRefADSGoogle Scholar
  29. J. Bland-Hawthorn, O. Gerhard, The galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).  https://doi.org/10.1146/annurev-astro-081915-023441 CrossRefADSGoogle Scholar
  30. H. Boehringer, G.E. Morfill, On the dynamical role of cosmic rays in cooling flows in clusters of galaxies. Astrophys. J. 330, 609–619 (1988).  https://doi.org/10.1086/166497 CrossRefADSGoogle Scholar
  31. H. Boehringer, W. Voges, A.C. Fabian, A.C. Edge, D.M. Neumann, A ROSAT HRI study of the interaction of the X-ray-emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, 25–28 (1993).  https://doi.org/10.1093/mnras/264.1.L25 CrossRefADSGoogle Scholar
  32. Á. Bogdán, W.R. Forman, R.P. Kraft, C. Jones, Detection of a luminous hot X-ray corona around the massive spiral galaxy NGC 266. Astrophys. J. 772, 98 (2013a).  https://doi.org/10.1088/0004-637X/772/2/98 CrossRefADSGoogle Scholar
  33. Á. Bogdán, W.R. Forman, M. Vogelsberger, H. Bourdin, D. Sijacki, P. Mazzotta, R.P. Kraft, C. Jones, M. Gilfanov, E. Churazov, L.P. David, Hot X-ray coronae around massive spiral galaxies: a unique probe of structure formation models. Astrophys. J. 772, 97 (2013b).  https://doi.org/10.1088/0004-637X/772/2/97 CrossRefADSGoogle Scholar
  34. Á. Bogdán, H. Bourdin, W.R. Forman, R.P. Kraft, M. Vogelsberger, L. Hernquist, V. Springel, Probing the hot X-ray corona around the massive spiral galaxy, NGC 6753, using deep XMM-Newton observations. Astrophys. J. 850, 98 (2017).  https://doi.org/10.3847/1538-4357/aa9523 CrossRefADSGoogle Scholar
  35. H. Bohringer, P.E.J. Nulsen, R. Braun, A.C. Fabian, The interaction of the radio halo of M87 with the cooling intracluster medium of the Virgo cluster. Mon. Not. R. Astron. Soc. 274, 67–71 (1995).  https://doi.org/10.1093/mnras/274.1.L67 CrossRefADSGoogle Scholar
  36. H. Böhringer, K. Matsushita, E. Churazov, Y. Ikebe, Y. Chen, The new emerging model for the structure of cooling cores in clusters of galaxies. Astron. Astrophys. 382, 804–820 (2002).  https://doi.org/10.1051/0004-6361:20011708 CrossRefADSGoogle Scholar
  37. H. Bondi, On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195 (1952) MathSciNetCrossRefADSGoogle Scholar
  38. B.C.J. Borguet, N. Arav, D. Edmonds, C. Chamberlain, C. Benn, Major contributor to AGN feedback: VLT X-shooter observations of S IV BALQSO outflows. Astrophys. J. 762, 49 (2013).  https://doi.org/10.1088/0004-637X/762/1/49 CrossRefADSGoogle Scholar
  39. B. Boroson, D.-W. Kim, G. Fabbiano, Revisiting with Chandra the scaling relations of the X-ray emission components (binaries, nuclei, and hot gas) of early-type galaxies. Astrophys. J. 729, 12 (2011).  https://doi.org/10.1088/0004-637X/729/1/12 CrossRefADSGoogle Scholar
  40. S. Borthakur, T. Heckman, J. Tumlinson, R. Bordoloi, G. Kauffmann, B. Catinella, D. Schiminovich, R. Davé, S.M. Moran, A. Saintonge, The properties of the circumgalactic medium in red and blue galaxies: results from the COS-GASS+COS-halos surveys. Astrophys. J. 833, 259 (2016).  https://doi.org/10.3847/1538-4357/833/2/259 CrossRefADSGoogle Scholar
  41. A. Boselli, M. Fossati, A. Longobardi, G. Consolandi, P. Amram, M. Sun, P. Andreani, M. Boquien, J. Braine, F. Combes, P. Cote, J.C. Cuillandre, P.A. Duc, E. Emsellem, L. Ferrarese, G. Gavazzi, S. Gwyn, G. Hensler, E.W. Peng, H. Plana, J. Roediger, R. Sanchez-Janssen, M. Sarzi, P. Serra, G. Trinchieri, A Virgo environmental survey tracing ionised gas emission (VESTIGE).V. Properties of the ionised gas filament of M87 (2018). arXiv:1810.09804
  42. J.N. Bregman, E.D. Miller, A.E. Athey, J.A. Irwin, On VI in elliptical galaxies: indicators of cooling flows. Astrophys. J. 635, 1031–1043 (2005).  https://doi.org/10.1086/497421 CrossRefADSGoogle Scholar
  43. J.N. Bregman, M.E. Anderson, X. Dai, Metal production in galaxy clusters: the non-galactic component. Astrophys. J. Lett. 716, 63–67 (2010).  https://doi.org/10.1088/2041-8205/716/1/L63 CrossRefADSGoogle Scholar
  44. J.N. Bregman, M.E. Anderson, M.J. Miller, E. Hodges-Kluck, X. Dai, J.-T. Li, Y. Li, Z. Qu, The extended distribution of baryons around galaxies. Astrophys. J. 862, 3 (2018).  https://doi.org/10.3847/1538-4357/aacafe CrossRefADSGoogle Scholar
  45. F. Brighenti, W.G. Mathews, Entropy evolution in galaxy groups and clusters: a comparison of external and internal heating. Astrophys. J. 553, 103–120 (2001).  https://doi.org/10.1086/320664 CrossRefADSGoogle Scholar
  46. F. Brighenti, W.G. Mathews, Stopping cooling flows with jets. Astrophys. J. 643, 120–127 (2006).  https://doi.org/10.1086/502645 CrossRefADSGoogle Scholar
  47. M. Brüggen, C.R. Kaiser, Hot bubbles from active galactic nuclei as a heat source in cooling-flow clusters. Nature 418, 301–303 (2002).  https://doi.org/10.1038/nature00857 CrossRefADSGoogle Scholar
  48. D.A. Buote, A.J. Barth, The luminous X-ray halos of two compact elliptical galaxies. Astrophys. J. 854, 143 (2018).  https://doi.org/10.3847/1538-4357/aaa971 CrossRefADSGoogle Scholar
  49. R.E.A. Canning, G.J. Ferland, A.C. Fabian, R.M. Johnstone, P.A.M. van Hoof, R.L. Porter, N. Werner, R.J.R. Williams, Collisional excitation of [C II], [O I] and CO in massive galaxies. Mon. Not. R. Astron. Soc. 455, 3042–3057 (2016).  https://doi.org/10.1093/mnras/stv2390 CrossRefADSGoogle Scholar
  50. A. Cattaneo, S.M. Faber, J. Binney, A. Dekel, J. Kormendy, R. Mushotzky, A. Babul, P.N. Best, M. Brüggen, A.C. Fabian, C.S. Frenk, A. Khalatyan, H. Netzer, A. Mahdavi, J. Silk, M. Steinmetz, L. Wisotzki, The role of black holes in galaxy formation and evolution. Nature 460, 213–219 (2009).  https://doi.org/10.1038/nature08135 CrossRefADSGoogle Scholar
  51. K.W. Cavagnolo, M. Donahue, G.M. Voit, M. Sun, An entropy threshold for strong H\(\upalpha\) and radio emission in the cores of galaxy clusters. Astrophys. J. Lett. 683, 107–110 (2008).  https://doi.org/10.1086/591665 CrossRefGoogle Scholar
  52. A. Cavaliere, N. Menci, P. Tozzi, Diffuse baryons in groups and clusters of galaxies. Astrophys. J. 501, 493–508 (1998).  https://doi.org/10.1086/305839 CrossRefADSGoogle Scholar
  53. G. Chartas, W.N. Brandt, S.C. Gallagher, D. Proga, XMM-Newton and Chandra spectroscopy of the variable high-energy absorption of PG 1115+080: refined outflow constraints. Astron. J. 133, 1849–1860 (2007).  https://doi.org/10.1086/512364 CrossRefADSGoogle Scholar
  54. H.-W. Chen, F.S. Zahedy, S.D. Johnson, R.M. Pierce, Y.-H. Huang, B.J. Weiner, J.-R. Gauthier, Characterizing circumgalactic gas around massive ellipticals at \(z\sim0.4\) - I. Initial results. Mon. Not. R. Astron. Soc. 479, 2547–2563 (2018).  https://doi.org/10.1093/mnras/sty1541 CrossRefGoogle Scholar
  55. N.E. Chisari, M.L.A. Richardson, J. Devriendt, Y. Dubois, A. Schneider, A.M.C. Le Brun, R.S. Beckmann, S. Peirani, A. Slyz, C. Pichon, The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation. Mon. Not. R. Astron. Soc. 480, 3962–3977 (2018).  https://doi.org/10.1093/mnras/sty2093 CrossRefADSGoogle Scholar
  56. J. Chisholm, C.A. Tremonti, C. Leitherer, Y. Chen, The mass and momentum outflow rates of photoionized galactic outflows. Mon. Not. R. Astron. Soc. 469, 4831–4849 (2017).  https://doi.org/10.1093/mnras/stx1164 CrossRefADSGoogle Scholar
  57. E. Choi, J.P. Ostriker, T. Naab, L. Oser, B.P. Moster, The impact of mechanical AGN feedback on the formation of massive early-type galaxies. Mon. Not. R. Astron. Soc. 449, 4105–4116 (2015).  https://doi.org/10.1093/mnras/stv575 CrossRefADSGoogle Scholar
  58. P.P. Choudhury, P. Sharma, Cold gas in cluster cores: global stability analysis and non-linear simulations of thermal instability. Mon. Not. R. Astron. Soc. 457, 2554–2568 (2016).  https://doi.org/10.1093/mnras/stw152 CrossRefADSGoogle Scholar
  59. E. Churazov, W. Forman, C. Jones, H. Böhringer, Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 356, 788–794 (2000) ADSGoogle Scholar
  60. E. Churazov, M. Brüggen, C.R. Kaiser, H. Böhringer, W. Forman, Evolution of buoyant bubbles in M87. Astrophys. J. 554, 261–273 (2001).  https://doi.org/10.1086/321357 CrossRefADSGoogle Scholar
  61. E. Churazov, R. Sunyaev, W. Forman, H. Böhringer, Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 332, 729–734 (2002).  https://doi.org/10.1046/j.1365-8711.2002.05332.x CrossRefADSGoogle Scholar
  62. E. Churazov, S. Sazonov, R. Sunyaev, W. Forman, C. Jones, H. Böhringer, Supermassive black holes in elliptical galaxies: switching from very bright to very dim. Mon. Not. R. Astron. Soc. 363, 91–95 (2005).  https://doi.org/10.1111/j.1745-3933.2005.00093.x CrossRefADSGoogle Scholar
  63. E. Churazov, S. Tremaine, W. Forman, O. Gerhard, P. Das, A. Vikhlinin, C. Jones, H. Böhringer, K. Gebhardt, Comparison of approximately isothermal gravitational potentials of elliptical galaxies based on X-ray and optical data. Mon. Not. R. Astron. Soc. 404, 1165–1185 (2010a).  https://doi.org/10.1111/j.1365-2966.2010.16377.x CrossRefADSGoogle Scholar
  64. E. Churazov, I. Zhuravleva, S. Sazonov, R. Sunyaev, Resonant scattering of X-ray emission lines in the hot intergalactic medium. Space Sci. Rev. 157, 193–209 (2010b).  https://doi.org/10.1007/s11214-010-9685-4 CrossRefADSGoogle Scholar
  65. E. Churazov, M. Ruszkowski, A. Schekochihin, Powering of cool filaments in cluster cores by buoyant bubbles—I. Qualitative model. Mon. Not. R. Astron. Soc. 436, 526–530 (2013).  https://doi.org/10.1093/mnras/stt1594 CrossRefADSGoogle Scholar
  66. L. Ciotti, J.P. Ostriker, Radiative feedback from massive black holes in elliptical galaxies: AGN flaring and central starburst fueled by recycled gas. Astrophys. J. 665, 1038–1056 (2007).  https://doi.org/10.1086/519833 CrossRefADSGoogle Scholar
  67. L. Ciotti, S. Pellegrini, A. Negri, J.P. Ostriker, The effect of the AGN feedback on the interstellar medium of early-type galaxies:2D hydrodynamical simulations of the low-rotation case. Astrophys. J. 835, 15 (2017).  https://doi.org/10.3847/1538-4357/835/1/15 CrossRefADSGoogle Scholar
  68. C. Conroy, G.J. Graves, P.G. van Dokkum, Early-type galaxy archeology: ages, abundance ratios, and effective temperatures from full-spectrum fitting. Astrophys. J. 780, 33 (2014).  https://doi.org/10.1088/0004-637X/780/1/33 CrossRefADSGoogle Scholar
  69. C.A. Correa, J. Schaye, J.S.B. Wyithe, A.R. Duffy, T. Theuns, R.A. Crain, R.G. Bower, The formation of hot gaseous haloes around galaxies. Mon. Not. R. Astron. Soc. 473, 538–559 (2018).  https://doi.org/10.1093/mnras/stx2332 CrossRefADSGoogle Scholar
  70. D.J. Croton, V. Springel, S.D.M. White, G. De Lucia, C.S. Frenk, L. Gao, A. Jenkins, G. Kauffmann, J.F. Navarro, N. Yoshida, The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006).  https://doi.org/10.1111/j.1365-2966.2005.09675.x CrossRefADSGoogle Scholar
  71. E. Daddi, A. Renzini, N. Pirzkal, A. Cimatti, S. Malhotra, M. Stiavelli, C. Xu, A. Pasquali, J.E. Rhoads, M. Brusa, S. di Serego Alighieri, H.C. Ferguson, A.M. Koekemoer, L.A. Moustakas, N. Panagia, R.A. Windhorst, Passively evolving early-type galaxies at \(1.4< z<2.5\) in the Hubble ultra deep field. Astrophys. J. 626, 680–697 (2005).  https://doi.org/10.1086/430104 CrossRefGoogle Scholar
  72. X. Dai, M.E. Anderson, J.N. Bregman, J.M. Miller, XMM-Newton detects a hot gaseous halo in the fastest rotating spiral galaxy UGC 12591. Astrophys. J. 755, 107 (2012).  https://doi.org/10.1088/0004-637X/755/2/107 CrossRefADSGoogle Scholar
  73. R. Davé, R. Cen, J.P. Ostriker, G.L. Bryan, L. Hernquist, N. Katz, D.H. Weinberg, M.L. Norman, B. O’Shea, Baryons in the warm-hot intergalactic medium. Astrophys. J. 552, 473–483 (2001) CrossRefADSGoogle Scholar
  74. L.P. David, A. Slyz, C. Jones, W. Forman, S.D. Vrtilek, K.A. Arnaud, A catalog of intracluster gas temperatures. Astrophys. J. 412, 479–488 (1993).  https://doi.org/10.1086/172936 CrossRefADSGoogle Scholar
  75. L.P. David, J. Lim, W. Forman, J. Vrtilek, F. Combes, P. Salome, A. Edge, S. Hamer, C. Jones, M. Sun, E. O’Sullivan, F. Gastaldello, S. Bardelli, P. Temi, H. Schmitt, Y. Ohyama, W. Mathews, F. Brighenti, S. Giacintucci, D.-V. Trung, Molecular gas in the X-ray bright group NGC 5044 as revealed by ALMA. Astrophys. J. 792, 94 (2014).  https://doi.org/10.1088/0004-637X/792/2/94 CrossRefADSGoogle Scholar
  76. M. de Kool, N. Arav, R.H. Becker, M.D. Gregg, R.L. White, S.A. Laurent-Muehleisen, T. Price, K.T. Korista, Keck HIRES observations of the QSO FIRST J104459.6+365605: evidence for a large-scale outflow. Astrophys. J. 548, 609–623 (2001).  https://doi.org/10.1086/318996 CrossRefADSGoogle Scholar
  77. J. de Plaa, I. Zhuravleva, N. Werner, J.S. Kaastra, E. Churazov, R.K. Smith, A.J.J. Raassen, Y.G. Grange, Estimating turbulent velocities in the elliptical galaxies NGC 5044 and NGC 5813. Astron. Astrophys. 539, 34 (2012).  https://doi.org/10.1051/0004-6361/201118404 CrossRefGoogle Scholar
  78. J. de Plaa, J.S. Kaastra, N. Werner, C. Pinto, P. Kosec, Y.-Y. Zhang, F. Mernier, L. Lovisari, H. Akamatsu, G. Schellenberger, F. Hofmann, T.H. Reiprich, A. Finoguenov, J. Ahoranta, J.S. Sanders, A.C. Fabian, O. Pols, A. Simionescu, J. Vink, H. Böhringer, CHEERS: the chemical evolution RGS sample. Astron. Astrophys. 607, 98 (2017).  https://doi.org/10.1051/0004-6361/201629926 CrossRefGoogle Scholar
  79. T.J. Dennis, B.D.G. Chandran, Turbulent heating of galaxy-cluster plasmas. Astrophys. J. 622, 205–216 (2005).  https://doi.org/10.1086/427424 CrossRefADSGoogle Scholar
  80. T. Di Matteo, S.W. Allen, A.C. Fabian, A.S. Wilson, A.J. Young, Accretion onto the supermassive black hole in M87. Astrophys. J. 582, 133–140 (2003).  https://doi.org/10.1086/344504 CrossRefADSGoogle Scholar
  81. T. Di Matteo, J. Colberg, V. Springel, L. Hernquist, D. Sijacki, Direct cosmological simulations of the growth of black holes and galaxies. Astrophys. J. 676, 33–53 (2008).  https://doi.org/10.1086/524921 CrossRefADSGoogle Scholar
  82. R.J.H. Dunn, S.W. Allen, G.B. Taylor, K.F. Shurkin, G. Gentile, A.C. Fabian, C.S. Reynolds, The radio properties of a complete, X-ray selected sample of nearby, massive elliptical galaxies. Mon. Not. R. Astron. Soc. 6404(1), 180–197 (2010) ADSGoogle Scholar
  83. L.J. Dursi, C. Pfrommer, Draping of cluster magnetic fields over bullets and bubbles-morphology and dynamic effects. Astrophys. J. 677, 993–1018 (2008).  https://doi.org/10.1086/529371 CrossRefADSGoogle Scholar
  84. A.C. Edge, R.J. Wilman, R.M. Johnstone, C.S. Crawford, A.C. Fabian, S.W. Allen, A survey of molecular hydrogen in the central galaxies of cooling flows. Mon. Not. R. Astron. Soc. 337, 49–62 (2002).  https://doi.org/10.1046/j.1365-8711.2002.05790.x CrossRefADSGoogle Scholar
  85. D.J. Eisenstein, J. Annis, J.E. Gunn, A.S. Szalay, A.J. Connolly, R.C. Nichol, N.A. Bahcall, M. Bernardi, S. Burles, F.J. Castander, M. Fukugita, D.W. Hogg, Ž. Ivezić, G.R. Knapp, R.H. Lupton, V. Narayanan, M. Postman, D.E. Reichart, M. Richmond, D.P. Schneider, D.J. Schlegel, M.A. Strauss, M. SubbaRao, D.L. Tucker, D. Vanden Berk, M.S. Vogeley, D.H. Weinberg, B. Yanny, Spectroscopic target selection for the sloan digital sky survey: the luminous red galaxy sample. Astron. J. 122, 2267–2280 (2001).  https://doi.org/10.1086/323717 CrossRefADSGoogle Scholar
  86. T.A. Enßlin, On the escape of cosmic rays from radio galaxy cocoons. Astron. Astrophys. 399, 409–420 (2003).  https://doi.org/10.1051/0004-6361:20021827 CrossRefADSGoogle Scholar
  87. P.B. Eskridge, G. Fabbiano, D.-W. Kim, A multiparametric analysis of the Einstein sample of early-type galaxies. 2: Galaxy formation history and properties of the interstellar medium. Astrophys. J. 442, 523–537 (1995).  https://doi.org/10.1086/175458 CrossRefADSGoogle Scholar
  88. A.E. Evrard, J.P. Henry, Expectations for X-ray cluster observations by the ROSAT satellite. Astrophys. J. 383, 95–103 (1991).  https://doi.org/10.1086/170767 CrossRefADSGoogle Scholar
  89. A.C. Fabian, Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).  https://doi.org/10.1146/annurev-astro-081811-125521 CrossRefADSGoogle Scholar
  90. A.C. Fabian, P.E.J. Nulsen, Subsonic accretion of cooling gas in clusters of galaxies. Mon. Not. R. Astron. Soc. 180, 479–484 (1977).  https://doi.org/10.1093/mnras/180.3.479 CrossRefADSGoogle Scholar
  91. A.C. Fabian, J.S. Sanders, S.W. Allen, C.S. Crawford, K. Iwasawa, R.M. Johnstone, R.W. Schmidt, G.B. Taylor, A deep Chandra observation of the Perseus cluster: shocks and ripples. Mon. Not. R. Astron. Soc. 344, 43–47 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06902.x CrossRefADSGoogle Scholar
  92. A.C. Fabian, J.S. Sanders, G.B. Taylor, S.W. Allen, C.S. Crawford, R.M. Johnstone, K. Iwasawa, A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006).  https://doi.org/10.1111/j.1365-2966.2005.09896.x CrossRefADSGoogle Scholar
  93. A.C. Fabian, R.M. Johnstone, J.S. Sanders, C.J. Conselice, C.S. Crawford, J.S. Gallagher III, E. Zweibel, Magnetic support of the optical emission line filaments in NGC 1275. Nature 454, 968–970 (2008).  https://doi.org/10.1038/nature07169 CrossRefADSGoogle Scholar
  94. A.C. Fabian, J.S. Sanders, R.J.R. Williams, A. Lazarian, G.J. Ferland, R.M. Johnstone, The energy source of the filaments around the giant galaxy NGC 1275. Mon. Not. R. Astron. Soc. 417, 172–177 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19034.x CrossRefADSGoogle Scholar
  95. A.C. Fabian, S.A. Walker, H.R. Russell, C. Pinto, J.S. Sanders, C.S. Reynolds, Do sound waves transport the AGN energy in the Perseus cluster? Mon. Not. R. Astron. Soc. 464, 1–5 (2017).  https://doi.org/10.1093/mnrasl/slw170 CrossRefADSGoogle Scholar
  96. L. Feretti, D. Dallacasa, F. Govoni, G. Giovannini, G.B. Taylor, U. Klein, The radio galaxies and the magnetic field in Abell 119. Astron. Astrophys. 344, 472–482 (1999) ADSGoogle Scholar
  97. G.J. Ferland, A.C. Fabian, N.A. Hatch, R.M. Johnstone, R.L. Porter, P.A.M. van Hoof, R.J.R. Williams, The origin of molecular hydrogen emission in cooling-flow filaments. Mon. Not. R. Astron. Soc. 386, 72–76 (2008).  https://doi.org/10.1111/j.1745-3933.2008.00463.x CrossRefADSGoogle Scholar
  98. G.J. Ferland, A.C. Fabian, N.A. Hatch, R.M. Johnstone, R.L. Porter, P.A.M. van Hoof, R.J.R. Williams, Collisional heating as the origin of filament emission in galaxy clusters. Mon. Not. R. Astron. Soc. 392, 1475–1502 (2009).  https://doi.org/10.1111/j.1365-2966.2008.14153.x CrossRefADSGoogle Scholar
  99. A. Ferré-Mateu, I. Trujillo, I. Martín-Navarro, A. Vazdekis, M. Mezcua, M. Balcells, L. Domínguez, Two new confirmed massive relic galaxies: red nuggets in the present-day Universe. Mon. Not. R. Astron. Soc. 467, 1929–1939 (2017).  https://doi.org/10.1093/mnras/stx171 CrossRefADSGoogle Scholar
  100. A. Finoguenov, C. Jones, Chandra observation of M84, a radio lobe elliptical galaxy in the Virgo cluster. Astrophys. J. Lett. 547, 107–110 (2001).  https://doi.org/10.1086/318910 CrossRefADSGoogle Scholar
  101. A. Finoguenov, M. Ruszkowski, C. Jones, M. Brüggen, A. Vikhlinin, E. Mandel, In-depth Chandra study of the AGN feedback in Virgo elliptical galaxy M84. Astrophys. J. 686, 911–917 (2008).  https://doi.org/10.1086/591662 CrossRefADSGoogle Scholar
  102. A. Fontana, L. Pozzetti, I. Donnarumma, A. Renzini, A. Cimatti, G. Zamorani, N. Menci, E. Daddi, E. Giallongo, M. Mignoli, C. Perna, S. Salimbeni, P. Saracco, T. Broadhurst, S. Cristiani, S. D’Odorico, R. Gilmozzi, The K20 survey. VI. The distribution of the stellar masses in galaxies up to z ≈ 2. Astron. Astrophys. 424, 23–42 (2004).  https://doi.org/10.1051/0004-6361:20035626 CrossRefADSGoogle Scholar
  103. D.A. Forbes, A. Alabi, A.J. Romanowsky, D.-W. Kim, J.P. Brodie, G. Fabbiano, The SLUGGS survey: revisiting the correlation between X-ray luminosity and total mass of massive early-type galaxies. Mon. Not. R. Astron. Soc. 464, 26–30 (2017).  https://doi.org/10.1093/mnrasl/slw176 CrossRefADSGoogle Scholar
  104. H.A. Ford, J.N. Bregman, Direct detections of young stars in nearby elliptical galaxies. Astrophys. J. 770, 137 (2013).  https://doi.org/10.1088/0004-637X/770/2/137 CrossRefADSGoogle Scholar
  105. H.C. Ford, H. Butcher, The system of filaments in M87—evidence for matter falling into an active nucleus. Astrophys. J. Suppl. Ser. 41, 147–172 (1979).  https://doi.org/10.1086/190613 CrossRefADSGoogle Scholar
  106. H.C. Ford, R.J. Harms, Z.I. Tsvetanov, G.F. Hartig, L.L. Dressel, G.A. Kriss, R.C. Bohlin, A.F. Davidsen, B. Margon, A.K. Kochhar, Narrowband HST images of M87: evidence for a disk of ionized gas around a massive black hole. Astrophys. J. Lett. 435, 27–30 (1994).  https://doi.org/10.1086/187586 CrossRefADSGoogle Scholar
  107. W. Forman, C. Jones, W. Tucker, Hot coronae around early-type galaxies. Astrophys. J. 293, 102–119 (1985).  https://doi.org/10.1086/163218 CrossRefADSGoogle Scholar
  108. W. Forman, C. Jones, E. Churazov, M. Markevitch, P. Nulsen, A. Vikhlinin, M. Begelman, H. Böhringer, J. Eilek, S. Heinz, R. Kraft, F. Owen, M. Pahre, Filaments, bubbles, and weak shocks in the gaseous atmosphere of M87. Astrophys. J. 665, 1057–1066 (2007).  https://doi.org/10.1086/519480 CrossRefADSGoogle Scholar
  109. W. Forman, E. Churazov, C. Jones, S. Heinz, R. Kraft, A. Vikhlinin, Partitioning the outburst energy of a low eddington accretion rate AGN at the center of an elliptical galaxy: the recent 12 myr history of the supermassive black hole in M87. Astrophys. J. 844, 122 (2017).  https://doi.org/10.3847/1538-4357/aa70e4 CrossRefADSGoogle Scholar
  110. A. Franceschini, V. Braito, M. Persic, R. Della Ceca, L. Bassani, M. Cappi, P. Malaguti, G.G.C. Palumbo, G. Risaliti, M. Salvati, P. Severgnini, An XMM-Newton hard X-ray survey of ultraluminous infrared galaxies. Mon. Not. R. Astron. Soc. 343, 1181–1194 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06744.x CrossRefADSGoogle Scholar
  111. Y. Fujita, Y. Ohira, Stable heating of cluster cooling flows by cosmic-ray streaming. Astrophys. J. 738, 182 (2011).  https://doi.org/10.1088/0004-637X/738/2/182 CrossRefADSGoogle Scholar
  112. M. Fukugita, P.J.E. Peebles, Massive coronae of galaxies. Astrophys. J. 639, 590–599 (2006).  https://doi.org/10.1086/499556 CrossRefADSGoogle Scholar
  113. M. Fukugita, C.J. Hogan, P.J.E. Peebles, The cosmic baryon budget. Astrophys. J. 503, 518–530 (1998).  https://doi.org/10.1086/306025 CrossRefADSGoogle Scholar
  114. M. Gaspari, F. Brighenti, P. Temi, Mechanical AGN feedback: controlling the thermodynamical evolution of elliptical galaxies. Mon. Not. R. Astron. Soc. 424, 190–209 (2012a).  https://doi.org/10.1111/j.1365-2966.2012.21183.x CrossRefADSGoogle Scholar
  115. M. Gaspari, M. Ruszkowski, P. Sharma, Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94 (2012b).  https://doi.org/10.1088/0004-637X/746/1/94 CrossRefADSGoogle Scholar
  116. M. Gaspari, M. Ruszkowski, S.P. Oh, Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 432, 3401–3422 (2013).  https://doi.org/10.1093/mnras/stt692 CrossRefADSGoogle Scholar
  117. M. Gaspari, M. McDonald, S.L. Hamer, F. Brighenti, P. Temi, M. Gendron-Marsolais, J. Hlavacek-Larrondo, A.C. Edge, N. Werner, P. Tozzi, M. Sun, J.M. Stone, G.R. Tremblay, M.T. Hogan, D. Eckert, S. Ettori, H. Yu, V. Biffi, S. Planelles, Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. Astrophys. J. 854, 167 (2018).  https://doi.org/10.3847/1538-4357/aaaa1b CrossRefADSGoogle Scholar
  118. J.-R. Gauthier, H.-W. Chen, J.L. Tinker, The clustering of Mg ii absorption systems at ∼0.5 and detection of cold gas in massive halos. Astrophys. J. 702, 50–62 (2009).  https://doi.org/10.1088/0004-637X/702/1/50 CrossRefADSGoogle Scholar
  119. J.-R. Gauthier, H.-W. Chen, J.L. Tinker, The incidence of cool gas in \(\sim10^{13}~\mbox{m}^{13}~M_{\odot}\) halos. Astrophys. J. 716, 1263–1268 (2010).  https://doi.org/10.1088/0004-637X/716/2/1263 CrossRefGoogle Scholar
  120. K. Gebhardt, J. Adams, D. Richstone, T.R. Lauer, S.M. Faber, K. Gültekin, J. Murphy, S. Tremaine, The black hole mass in M87 from Gemini/NIFS adaptive optics observations. Astrophys. J. 729, 119 (2011).  https://doi.org/10.1088/0004-637X/729/2/119 CrossRefADSGoogle Scholar
  121. R. Genzel, L.J. Tacconi, D. Rigopoulou, D. Lutz, M. Tecza, Ultraluminous infrared mergers: elliptical galaxies in formation? Astrophys. J. 563, 527–545 (2001).  https://doi.org/10.1086/323772 CrossRefADSGoogle Scholar
  122. M.R. Gilfanov, R.A. Sunyaev, E.M. Churazov, Radial brightness profiles of resonance X-ray lines in galaxy clusters. Sov. Astron. Lett. 13, 3–7 (1987) ADSGoogle Scholar
  123. K. Glazebrook, R.G. Abraham, P.J. McCarthy, S. Savaglio, H.-W. Chen, D. Crampton, R. Murowinski, I. Jørgensen, K. Roth, I. Hook, R.O. Marzke, R.G. Carlberg, A high abundance of massive galaxies 3-6 billion years after the Big Bang. Nature 430, 181–184 (2004).  https://doi.org/10.1038/nature02667 CrossRefADSGoogle Scholar
  124. P. Goudfrooij, L. Hansen, H.E. Jorgensen, H.U. Norgaard-Nielsen, Interstellar matter in Shapley-Ames elliptical galaxies. II. The distribution of dust and ionized gas. Astron. Astrophys. Suppl. Ser. 105, 341–383 (1994) ADSGoogle Scholar
  125. A.D. Goulding, J.E. Greene, C.-P. Ma, M. Veale, A. Bogdan, K. Nyland, J.P. Blakeslee, N.J. McConnell, J. Thomas, The MASSIVE survey. IV. The X-ray halos of the most massive early-type galaxies in the nearby Universe. Astrophys. J. 826, 167 (2016).  https://doi.org/10.3847/0004-637X/826/2/167 CrossRefADSGoogle Scholar
  126. G.L. Granato, G. De Zotti, L. Silva, A. Bressan, L. Danese, A physical model for the coevolution of QSOs and their spheroidal hosts. Astrophys. J. 600, 580–594 (2004).  https://doi.org/10.1086/379875 CrossRefADSGoogle Scholar
  127. J.P. Greco, J.C. Hill, D.N. Spergel, N. Battaglia, The stacked thermal Sunyaev-Zel’dovich signal of locally brightest galaxies in Planck full mission data: evidence for galaxy feedback? Astrophys. J. 808, 151 (2015).  https://doi.org/10.1088/0004-637X/808/2/151 CrossRefADSGoogle Scholar
  128. S.F. Gull, K.J.E. Northover, Bubble model of extragalactic radio sources. Nature 244, 80–83 (1973).  https://doi.org/10.1038/244080a0 CrossRefADSGoogle Scholar
  129. F. Guo, S.P. Oh, Feedback heating by cosmic rays in clusters of galaxies. Mon. Not. R. Astron. Soc. 384, 251–266 (2008).  https://doi.org/10.1111/j.1365-2966.2007.12692.x CrossRefADSGoogle Scholar
  130. A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, M. Galeazzi, A huge reservoir of ionized gas around the Milky Way: accounting for the missing mass? Astrophys. J. Lett. 756, 8 (2012).  https://doi.org/10.1088/2041-8205/756/1/L8 CrossRefADSGoogle Scholar
  131. S.L. Hamer, A.C. Edge, A.M. Swinbank, R.J. Wilman, F. Combes, P. Salomé, A.C. Fabian, C.S. Crawford, H.R. Russell, J. Hlavacek-Larrondo, B.R. McNamara, M.N. Bremer, Optical emission line nebulae in galaxy cluster cores 1: the morphological, kinematic and spectral properties of the sample. Mon. Not. R. Astron. Soc. 460, 1758–1789 (2016).  https://doi.org/10.1093/mnras/stw1054 CrossRefADSGoogle Scholar
  132. C.M. Harrison, Impact of supermassive black hole growth on star formation. Nat. Astron. 1, 0165 (2017).  https://doi.org/10.1038/s41550-017-0165 CrossRefADSGoogle Scholar
  133. T.M. Heckman, S.A. Baum, W.J.M. van Breugel, P. McCarthy, Dynamical, physical, and chemical properties of emission-line nebulae in cooling flows. Astrophys. J. 338, 48–77 (1989).  https://doi.org/10.1086/167181 CrossRefADSGoogle Scholar
  134. S. Heinz, C.S. Reynolds, M.C. Begelman, X-ray signatures of evolving radio galaxies. Astrophys. J. 501, 126–136 (1998).  https://doi.org/10.1086/305807 CrossRefADSGoogle Scholar
  135. S.F. Helsdon, T.J. Ponman, The intragroup medium in loose groups of galaxies. Mon. Not. R. Astron. Soc. 315, 356–370 (2000).  https://doi.org/10.1046/j.1365-8711.2000.03396.x CrossRefADSGoogle Scholar
  136. D.B. Henley, R.L. Shelton, An XMM-Newton survey of the soft X-ray background. I. The O vii and O viii lines between \(l = 120\) and \(l = 240\). Astrophys. J. Suppl. Ser. 187, 388–408 (2010).  https://doi.org/10.1088/0067-0049/187/2/388 CrossRefGoogle Scholar
  137. D.B. Henley, R.L. Shelton, An XMM-Newton survey of the soft X-ray background. II. An all-sky catalog of diffuse O vii and O viii emission intensities. Astrophys. J. Suppl. Ser. 202, 14 (2012).  https://doi.org/10.1088/0067-0049/202/2/14 CrossRefADSGoogle Scholar
  138. S. Hillel, N. Soker, Heating the intracluster medium by jet-inflated bubbles. Mon. Not. R. Astron. Soc. 455, 2139–2148 (2016).  https://doi.org/10.1093/mnras/stv2483 CrossRefADSGoogle Scholar
  139. J. Hlavacek-Larrondo, A.C. Fabian, A.C. Edge, H. Ebeling, J.S. Sanders, M.T. Hogan, G.B. Taylor, Extreme AGN feedback in the MAssive cluster survey: a detailed study of X-ray cavities at \(z>0.3\). Mon. Not. R. Astron. Soc. 421, 1360–1384 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20405.x CrossRefGoogle Scholar
  140. J. Hlavacek-Larrondo, M. McDonald, B.A. Benson, W.R. Forman, S.W. Allen, L.E. Bleem, M.L.N. Ashby, S. Bocquet, M. Brodwin, J.P. Dietrich, C. Jones, J. Liu, C.L. Reichardt, B.R. Saliwanchik, A. Saro, T. Schrabback, J. Song, B. Stalder, A. Vikhlinin, A. Zenteno, X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out to \(z=1.2\). Astrophys. J. 805, 35 (2015).  https://doi.org/10.1088/0004-637X/805/1/35 CrossRefGoogle Scholar
  141. M.T. Hogan, B.R. McNamara, F. Pulido, P.E.J. Nulsen, H.R. Russell, A.N. Vantyghem, A.C. Edge, R.A. Main, Mass distribution in galaxy cluster cores. Astrophys. J. 837, 51 (2017a).  https://doi.org/10.3847/1538-4357/aa5f56 CrossRefADSGoogle Scholar
  142. M.T. Hogan, B.R. McNamara, F.A. Pulido, P.E.J. Nulsen, A.N. Vantyghem, H.R. Russell, A.C. Edge, I. Babyk, R.A. Main, M. McDonald, The onset of thermally unstable cooling from the hot atmospheres of giant galaxies in clusters: constraints on feedback models. Astrophys. J. 851, 66 (2017b).  https://doi.org/10.3847/1538-4357/aa9af3 CrossRefADSGoogle Scholar
  143. P.F. Hopkins, K. Bundy, N. Murray, E. Quataert, T.R. Lauer, C.-P. Ma, Compact high-redshift galaxies are the cores of the most massive present-day spheroids. Mon. Not. R. Astron. Soc. 398, 898–910 (2009).  https://doi.org/10.1111/j.1365-2966.2009.15062.x CrossRefADSGoogle Scholar
  144. Y.-H. Huang, H.-W. Chen, S.D. Johnson, B.J. Weiner, Characterizing the chemically enriched circumgalactic medium of ∼38 000 luminous red galaxies in SDSS DR12. Mon. Not. R. Astron. Soc. 455, 1713–1727 (2016).  https://doi.org/10.1093/mnras/stv2327 CrossRefADSGoogle Scholar
  145. P.J. Humphrey, D.A. Buote, C.R. Canizares, A.C. Fabian, J.M. Miller, A census of baryons and dark matter in an isolated, Milky Way sized elliptical galaxy. Astrophys. J. 729, 53 (2011).  https://doi.org/10.1088/0004-637X/729/1/53 CrossRefADSGoogle Scholar
  146. P.J. Humphrey, D.A. Buote, E. O’Sullivan, T.J. Ponman, The ElIXr galaxy survey. II. Baryons and dark matter in an isolated elliptical galaxy. Astrophys. J. 755, 166 (2012a).  https://doi.org/10.1088/0004-637X/755/2/166 CrossRefADSGoogle Scholar
  147. P.J. Humphrey, D.A. Buote, F. Brighenti, H.M.L.G. Flohic, F. Gastaldello, W.G. Mathews, Tracing the gas to the virial radius (R 100) in a fossil group. Astrophys. J. 748, 11 (2012b).  https://doi.org/10.1088/0004-637X/748/1/11 CrossRefADSGoogle Scholar
  148. S. Ichimaru, Bimodal behavior of accretion disks— theory and application to Cygnus X-1 transitions. Astrophys. J. 214, 840–855 (1977).  https://doi.org/10.1086/155314 CrossRefADSGoogle Scholar
  149. N. James, D.-W. Kim, G. Fabbiano, D. Forbes, A. Alabi, The mass of the globular cluster systems of early type galaxies as proxy for the total galaxy mass (2018). arXiv:1810.09475
  150. R.M. Johnstone, A.C. Fabian, P.E.J. Nulsen, The optical spectra of central galaxies in southern clusters evidence for star formation. Mon. Not. R. Astron. Soc. 224, 75–91 (1987) CrossRefADSGoogle Scholar
  151. C. Jones, W. Forman, A. Vikhlinin, M. Markevitch, L. David, A. Warmflash, S. Murray, P.E.J. Nulsen, Chandra observations of NGC 4636-an elliptical galaxy in turmoil. Astrophys. J. Lett. 567, 115–118 (2002).  https://doi.org/10.1086/340114 CrossRefADSGoogle Scholar
  152. N. Kaiser, Evolution of clusters of galaxies. Astrophys. J. 383, 104–111 (1991).  https://doi.org/10.1086/170768 CrossRefADSGoogle Scholar
  153. G. Kauffmann, S.D.M. White, B. Guiderdoni, The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201 (1993).  https://doi.org/10.1093/mnras/264.1.201 CrossRefADSGoogle Scholar
  154. D. Kereš, N. Katz, D.H. Weinberg, R. Davé, How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09451.x CrossRefADSGoogle Scholar
  155. A. Khalatyan, A. Cattaneo, M. Schramm, S. Gottlöber, M. Steinmetz, L. Wisotzki, Is AGN feedback necessary to form red elliptical galaxies? Mon. Not. R. Astron. Soc. 387, 13–30 (2008).  https://doi.org/10.1111/j.1365-2966.2008.13093.x CrossRefADSGoogle Scholar
  156. D.-W. Kim, G. Fabbiano, X-ray scaling relation in early-type galaxies: dark matter as a primary factor in retaining hot gas. Astrophys. J. 776, 116 (2013).  https://doi.org/10.1088/0004-637X/776/2/116 CrossRefADSGoogle Scholar
  157. D.-W. Kim, G. Fabbiano, X-ray scaling relations of ‘core’ and ‘coreless’ E and S0 galaxies. Astrophys. J. 812, 127 (2015).  https://doi.org/10.1088/0004-637X/812/2/127 CrossRefADSGoogle Scholar
  158. A. King, Black holes, galaxy formation, and the \(\text{m}_{\text{BH}}\mbox{-}{\sigma}\) relation. Astrophys. J. Lett. 596, 27–29 (2003).  https://doi.org/10.1086/379143 CrossRefGoogle Scholar
  159. G.R. Knapp, M.P. Rupen, Molecular gas in elliptical galaxies: CO observations of an IRAS flux-limited sample. Astrophys. J. 460, 271 (1996).  https://doi.org/10.1086/176967 CrossRefADSGoogle Scholar
  160. G.R. Knapp, E.L. Turner, P.E. Cunniffe, The statistical distribution of the neutral-hydrogen content of elliptical galaxies. Astron. J. 90, 454–468 (1985).  https://doi.org/10.1086/113751 CrossRefADSGoogle Scholar
  161. G.R. Knapp, P. Guhathakurta, D.-W. Kim, M.A. Jura, Interstellar matter in early-type galaxies. I—IRAS flux densities. Astrophys. J. Suppl. Ser. 70, 329–387 (1989).  https://doi.org/10.1086/191342 CrossRefADSGoogle Scholar
  162. J. Kormendy, L.C. Ho, Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).  https://doi.org/10.1146/annurev-astro-082708-101811 CrossRefADSGoogle Scholar
  163. J. Kormendy, D.B. Fisher, M.E. Cornell, R. Bender, Structure and formation of elliptical and spheroidal galaxies. Astrophys. J. Suppl. Ser. 182, 216–309 (2009).  https://doi.org/10.1088/0067-0049/182/1/216 CrossRefADSGoogle Scholar
  164. C. Lacey, S. Cole, Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc. 262, 627–649 (1993).  https://doi.org/10.1093/mnras/262.3.627 CrossRefADSGoogle Scholar
  165. K. Lakhchaura, N. Werner, M. Sun, R.E.A. Canning, M. Gaspari, S.W. Allen, T. Connor, M. Donahue, C. Sarazin, Thermodynamic properties, multiphase gas and AGN feedback in a large sample of giant ellipticals. Mon. Not. R. Astron. Soc. 481(4), 4472–4504 (2018).  https://doi.org/10.1093/mnras/sty2565 CrossRefADSGoogle Scholar
  166. J.-T. Li, J.N. Bregman, Q.D. Wang, R.A. Crain, M.E. Anderson, S. Zhang, The circum-galactic medium of massive spirals. II. Probing the nature of hot gaseous halo around the most massive isolated spiral galaxies. Astrophys. J. Suppl. Ser. 233, 20 (2017).  https://doi.org/10.3847/1538-4365/aa96fc CrossRefADSGoogle Scholar
  167. J.-T. Li, J.N. Bregman, Q.D. Wang, R.A. Crain, M.E. Anderson, Baryon budget of the hot circumgalactic medium of massive spiral galaxies. Astrophys. J. Lett. 855, 24 (2018).  https://doi.org/10.3847/2041-8213/aab2af CrossRefADSGoogle Scholar
  168. M. Loewenstein, E.G. Zweibel, M.C. Begelman, Cosmic-ray heating of cooling flows—a critical analysis. Astrophys. J. 377, 392–402 (1991).  https://doi.org/10.1086/170369 CrossRefADSGoogle Scholar
  169. C.J. Lonsdale, D. Farrah, H.E. Smith, in Ultraluminous Infrared Galaxies, ed. by J.W. Mason (2006), p. 285.  https://doi.org/10.1007/3-540-30313-8_9 CrossRefGoogle Scholar
  170. N. Lyskova, E. Churazov, A. Moiseev, O. Sil’chenko, I. Zhuravleva, Stellar kinematics of X-ray bright massive elliptical galaxies. Mon. Not. R. Astron. Soc. 441, 2013–2033 (2014).  https://doi.org/10.1093/mnras/stu717 CrossRefADSGoogle Scholar
  171. M. Lyutikov, Magnetic draping of merging cores and radio bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 373, 73–78 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10835.x CrossRefADSGoogle Scholar
  172. C.-P. Ma, J.E. Greene, N. McConnell, R. Janish, J.P. Blakeslee, J. Thomas, J.D. Murphy, The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 mpc. Astrophys. J. 795, 158 (2014).  https://doi.org/10.1088/0004-637X/795/2/158 CrossRefADSGoogle Scholar
  173. F. Macchetto, M. Pastoriza, N. Caon, W.B. Sparks, M. Giavalisco, R. Bender, M. Capaccioli, A survey of the ISM in early-type galaxies. I. The ionized gas. Astron. Astrophys. Suppl. Ser. 120, 463–488 (1996) CrossRefADSGoogle Scholar
  174. M. Machacek, P.E.J. Nulsen, C. Jones, W.R. Forman, Chandra observations of nuclear outflows in the elliptical galaxy NGC 4552 in the Virgo cluster. Astrophys. J. 648, 947–955 (2006).  https://doi.org/10.1086/505963 CrossRefADSGoogle Scholar
  175. J. Magorrian, S. Tremaine, D. Richstone, R. Bender, G. Bower, A. Dressler, S.M. Faber, K. Gebhardt, R. Green, C. Grillmair, J. Kormendy, T. Lauer, The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998).  https://doi.org/10.1086/300353 CrossRefADSGoogle Scholar
  176. A. Malagoli, R. Rosner, G. Bodo, On the thermal instability of galactic and cluster halos. Astrophys. J. 319, 632–636 (1987).  https://doi.org/10.1086/165483 CrossRefADSGoogle Scholar
  177. C.L. Martin, A.E. Shapley, A.L. Coil, K.A. Kornei, N. Murray, A. Pancoast, Scattered emission from \(z \sim 1\) galactic outflows. Astrophys. J. 770, 41 (2013).  https://doi.org/10.1088/0004-637X/770/1/41 CrossRefGoogle Scholar
  178. W.G. Mathews, J.N. Bregman, Radiative accretion flow onto giant galaxies in clusters. Astrophys. J. 224, 308–319 (1978).  https://doi.org/10.1086/156379 CrossRefADSGoogle Scholar
  179. W.G. Mathews, F. Brighenti, Hot gas in and around elliptical galaxies. Annu. Rev. Astron. Astrophys. 41, 191–239 (2003).  https://doi.org/10.1146/annurev.astro.41.090401.094542 CrossRefADSGoogle Scholar
  180. W.G. Mathews, A. Faltenbacher, F. Brighenti, Heating cooling flows with weak shock waves. Astrophys. J. 638, 659–667 (2006).  https://doi.org/10.1086/499119 CrossRefADSGoogle Scholar
  181. M. McCourt, I.J. Parrish, P. Sharma, E. Quataert, Can conduction induce convection? On the non-linear saturation of buoyancy instabilities in dilute plasmas. Mon. Not. R. Astron. Soc. 413, 1295–1310 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18216.x CrossRefADSGoogle Scholar
  182. M. McCourt, P. Sharma, E. Quataert, I.J. Parrish, Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes. Mon. Not. R. Astron. Soc. 419, 3319–3337 (2012).  https://doi.org/10.1111/j.1365-2966.2011.19972.x CrossRefADSGoogle Scholar
  183. M. McDonald, L.H. Wei, S. Veilleux, Cold molecular gas along the cooling X-ray filament in A1795. Astrophys. J. Lett. 755, 24 (2012).  https://doi.org/10.1088/2041-8205/755/2/L24 CrossRefADSGoogle Scholar
  184. B.R. McNamara, P.E.J. Nulsen, Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14(5), 055023 (2012).  https://doi.org/10.1088/1367-2630/14/5/055023 CrossRefADSGoogle Scholar
  185. B.R. McNamara, R.W. O’Connell, Star formation in cooling flows in clusters of galaxies. Astron. J. 98, 2018–2043 (1989).  https://doi.org/10.1086/115275 CrossRefADSGoogle Scholar
  186. B.R. McNamara, M. Wise, P.E.J. Nulsen, L.P. David, C.L. Sarazin, M. Bautz, M. Markevitch, A. Vikhlinin, W.R. Forman, C. Jones, D.E. Harris, Chandra X-ray observations of the hydra a cluster: an interaction between the radio source and the X-ray-emitting gas. Astrophys. J. Lett. 534, 135–138 (2000).  https://doi.org/10.1086/312662 CrossRefADSGoogle Scholar
  187. B.R. McNamara, M. Rohanizadegan, P.E.J. Nulsen, Are radio active galactic nuclei powered by accretion or black hole spin? Astrophys. J. 727, 39 (2011).  https://doi.org/10.1088/0004-637X/727/1/39 CrossRefADSGoogle Scholar
  188. B.R. McNamara, H.R. Russell, P.E.J. Nulsen, M.T. Hogan, A.C. Fabian, F. Pulido, A.C. Edge, A mechanism for stimulating AGN feedback by lifting gas in massive galaxies. Astrophys. J. 830, 79 (2016).  https://doi.org/10.3847/0004-637X/830/2/79 CrossRefADSGoogle Scholar
  189. A. Merloni, S. Heinz, T. di Matteo, A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).  https://doi.org/10.1046/j.1365-2966.2003.07017.x CrossRefADSGoogle Scholar
  190. F. Mernier, V. Biffi, H. Yamaguchi, P. Medvedev, A. Simionescu, S. Ettori, N. Werner, J.S. Kaastra, J. de Plaa, L. Gu, Enrichment of the hot intracluster medium: observations. Space Sci. Rev. 214(8), 129 (2018a).  https://doi.org/10.1007/s11214-018-0565-7 CrossRefADSGoogle Scholar
  191. F. Mernier, J. de Plaa, N. Werner, J.S. Kaastra, A.J.J. Raassen, L. Gu, J. Mao, I. Urdampilleta, N. Truong, A. Simionescu, Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies. Mon. Not. R. Astron. Soc. 478, 116–121 (2018b).  https://doi.org/10.1093/mnrasl/sly080 CrossRefADSGoogle Scholar
  192. M.J. Miller, J.N. Bregman, The structure of the Milky Way’s hot gas halo. Astrophys. J. 770, 118 (2013).  https://doi.org/10.1088/0004-637X/770/2/118 CrossRefADSGoogle Scholar
  193. M.J. Miller, J.N. Bregman, Constraining the Milky Way’s hot gas halo with O VII and O VIII emission lines. Astrophys. J. 800, 14 (2015).  https://doi.org/10.1088/0004-637X/800/1/14 CrossRefADSGoogle Scholar
  194. B.P. Moster, T. Naab, S.D.M. White, Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121–3138 (2013).  https://doi.org/10.1093/mnras/sts261 CrossRefADSGoogle Scholar
  195. T. Naab, J.P. Ostriker, Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 55, 59–109 (2017).  https://doi.org/10.1146/annurev-astro-081913-040019 CrossRefADSGoogle Scholar
  196. R. Narayan, I. Yi, Advection-dominated accretion: a self-similar solution. Astrophys. J. Lett. 428, 13–16 (1994).  https://doi.org/10.1086/187381 CrossRefADSGoogle Scholar
  197. J.F. Navarro, C.S. Frenk, S.D.M. White, A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).  https://doi.org/10.1086/304888 CrossRefADSGoogle Scholar
  198. A. Negri, L. Ciotti, S. Pellegrini, The effects of stellar dynamics on the X-ray emission of flat early-type galaxies. Mon. Not. R. Astron. Soc. 439, 823–844 (2014a).  https://doi.org/10.1093/mnras/stt2505 CrossRefADSGoogle Scholar
  199. A. Negri, S. Posacki, S. Pellegrini, L. Ciotti, The effects of galaxy shape and rotation on the X-ray haloes of early-type galaxies - II. Numerical simulations. Mon. Not. R. Astron. Soc. 445, 1351–1369 (2014b).  https://doi.org/10.1093/mnras/stu1834 CrossRefADSGoogle Scholar
  200. R.S. Nemmen, A. Tchekhovskoy, On the efficiency of jet production in radio galaxies. Mon. Not. R. Astron. Soc. 449, 316–327 (2015).  https://doi.org/10.1093/mnras/stv260 CrossRefADSGoogle Scholar
  201. P.E.J. Nulsen, Thermal instability in cooling flows. Mon. Not. R. Astron. Soc. 221, 377–392 (1986) CrossRefADSGoogle Scholar
  202. P. Nulsen, C. Jones, W. Forman, E. Churazov, B. McNamara, L. David, S. Murray, Radio mode outbursts in giant elliptical galaxies, in American Institute of Physics Conference Series, ed. by S. Heinz, E. Wilcots. American Institute of Physics Conference Series, vol. 1201 (2009), pp. 198–201.  https://doi.org/10.1063/1.3293033 CrossRefGoogle Scholar
  203. R.W. O’Connell, Far-ultraviolet radiation from elliptical galaxies. Annu. Rev. Astron. Astrophys. 37, 603–648 (1999).  https://doi.org/10.1146/annurev.astro.37.1.603 CrossRefADSGoogle Scholar
  204. A. Ogorzalek, I. Zhuravleva, S.W. Allen, C. Pinto, N. Werner, A.B. Mantz, R.E.A. Canning, A.C. Fabian, J.S. Kaastra, J. de Plaa, Improved measurements of turbulence in the hot gaseous atmospheres of nearby giant elliptical galaxies. Mon. Not. R. Astron. Soc. 472, 1659–1676 (2017).  https://doi.org/10.1093/mnras/stx2030 CrossRefADSGoogle Scholar
  205. H. Omma, J. Binney, G. Bryan, A. Slyz, Heating cooling flows with jets. Mon. Not. R. Astron. Soc. 348, 1105–1119 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07382.x CrossRefADSGoogle Scholar
  206. L. Oser, T. Naab, J.P. Ostriker, P.H. Johansson, The cosmological size and velocity dispersion evolution of massive early-type galaxies. Astrophys. J. 744, 63 (2012).  https://doi.org/10.1088/0004-637X/744/1/63 CrossRefADSGoogle Scholar
  207. E. O’Sullivan, T.J. Ponman, The isolated elliptical NGC 4555 observed with Chandra. Mon. Not. R. Astron. Soc. 354, 935–944 (2004).  https://doi.org/10.1111/j.1365-2966.2004.08257.x CrossRefADSGoogle Scholar
  208. E. O’Sullivan, A.J.R. Sanderson, T.J. Ponman, The dark haloes of early-type galaxies in low-density environments: XMM-Newton and Chandra observations of NGC 57, 7796 and IC 1531. Mon. Not. R. Astron. Soc. 380, 1409–1421 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12229.x CrossRefADSGoogle Scholar
  209. F. Paerels, A. Rasmussen, S. Kahn, J.W. Herder, C. Vries, X-ray absorption and emission spectroscopy of the intergalactic medium at small redshift, in XEUS—Studying the Evolution of the Hot Universe, ed. by G. Hasinger, T. Boller, A.N. Parmer (2003), p. 57 Google Scholar
  210. E.K. Panagoulia, A.C. Fabian, J.S. Sanders, A volume-limited sample of X-ray galaxy groups and clusters—I. Radial entropy and cooling time profiles. Mon. Not. R. Astron. Soc. 438, 2341–2354 (2014).  https://doi.org/10.1093/mnras/stt2349 CrossRefADSGoogle Scholar
  211. P. Panuzzo, R. Rampazzo, A. Bressan, O. Vega, F. Annibali, L.M. Buson, M.S. Clemens, W.W. Zeilinger, Nearby early-type galaxies with ionized gas. VI. The spitzer-IRS view. Basic data set analysis and empirical spectral classification. Astron. Astrophys. 528, 10 (2011).  https://doi.org/10.1051/0004-6361/201015908 CrossRefADSGoogle Scholar
  212. A. Pedlar, H.S. Ghataure, R.D. Davies, B.A. Harrison, R. Perley, P.C. Crane, S.W. Unger, The radio structure of NGC1275. Mon. Not. R. Astron. Soc. 246, 477 (1990) ADSGoogle Scholar
  213. S. Pellegrini, Hot gas flows on global and nuclear galactic scales, in Astrophys. Space Sci. Library, ed. by D.-W. Kim, S. Pellegrini. Astrophys. Space Sci. Library, vol. 378 (2012), p. 21.  https://doi.org/10.1007/978-1-4614-0580-1_2 CrossRefGoogle Scholar
  214. S. Pellegrini, L. Ciotti, A. Negri, J.P. Ostriker, Active galactic nuclei feedback and the origin and fate of the hot gas in early-type galaxies. Astrophys. J. 856, 115 (2018).  https://doi.org/10.3847/1538-4357/aaae07 CrossRefADSGoogle Scholar
  215. M. Pettini, A.E. Shapley, C.C. Steidel, J.-G. Cuby, M. Dickinson, A.F.M. Moorwood, K.L. Adelberger, M. Giavalisco, The rest-frame optical spectra of Lyman break galaxies: star formation, extinction, abundances, and kinematics. Astrophys. J. 554, 981–1000 (2001).  https://doi.org/10.1086/321403 CrossRefADSGoogle Scholar
  216. C. Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi, and H.E.S.S. Astrophys. J. 779, 10 (2013).  https://doi.org/10.1088/0004-637X/779/1/10 CrossRefADSGoogle Scholar
  217. C. Pfrommer, T.A. Enßlin, C.L. Sarazin, Unveiling the composition of radio plasma bubbles in galaxy clusters with the Sunyaev-Zel’dovich effect. Astron. Astrophys. 430, 799–810 (2005).  https://doi.org/10.1051/0004-6361:20041576 CrossRefADSGoogle Scholar
  218. C. Pinto, J.S. Sanders, N. Werner, J. de Plaa, A.C. Fabian, Y.-Y. Zhang, J.S. Kaastra, A. Finoguenov, J. Ahoranta, Chemical enrichment RGS cluster sample (CHEERS): constraints on turbulence. Astron. Astrophys. 575, 38 (2015).  https://doi.org/10.1051/0004-6361/201425278 CrossRefGoogle Scholar
  219. F. Pizzolato, N. Soker, On the nature of feedback heating in cooling flow clusters. Astrophys. J. 632, 821–830 (2005).  https://doi.org/10.1086/444344 CrossRefADSGoogle Scholar
  220. D. Prasad, P. Sharma, A. Babul, Cool core cycles: cold gas and AGN jet feedback in cluster cores. Astrophys. J. 811, 108 (2015).  https://doi.org/10.1088/0004-637X/811/2/108 CrossRefADSGoogle Scholar
  221. D. Prasad, P. Sharma, A. Babul, AGN jet-driven stochastic cold accretion in cluster cores. Mon. Not. R. Astron. Soc. 471, 1531–1542 (2017).  https://doi.org/10.1093/mnras/stx1698 CrossRefADSGoogle Scholar
  222. M.A. Prieto, J.A. Fernández-Ontiveros, S. Markoff, D. Espada, O. González-Martín, The central parsecs of M87: jet emission and an elusive accretion disc. Mon. Not. R. Astron. Soc. 457, 3801–3816 (2016).  https://doi.org/10.1093/mnras/stw166 CrossRefADSGoogle Scholar
  223. D.A. Prokhorov, E.M. Churazov, Counting gamma rays in the directions of galaxy clusters. Astron. Astrophys. 567, 93 (2014).  https://doi.org/10.1051/0004-6361/201322454 CrossRefADSGoogle Scholar
  224. D.A. Prokhorov, E.M. Churazov, Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles. Mon. Not. R. Astron. Soc. 470, 3388–3394 (2017).  https://doi.org/10.1093/mnras/stx1404 CrossRefADSGoogle Scholar
  225. D.A. Prokhorov, V. Antonuccio-Delogu, J. Silk, Comptonization of the cosmic microwave background by high energy particles residing in AGN cocoons. Astron. Astrophys. 520, 106 (2010).  https://doi.org/10.1051/0004-6361/200913920 CrossRefADSGoogle Scholar
  226. F.A. Pulido, B.R. McNamara, A.C. Edge, M.T. Hogan, A.N. Vantyghem, H.R. Russell, P.E.J. Nulsen, I. Babyk, P. Salomé, The origin of molecular clouds in central galaxies. Astrophys. J. 853, 177 (2018).  https://doi.org/10.3847/1538-4357/aaa54b CrossRefADSGoogle Scholar
  227. V. Quilis, I. Trujillo, Expected number of massive galaxy relics in the present day Universe. Astrophys. J. Lett. 773, 8 (2013).  https://doi.org/10.1088/2041-8205/773/1/L8 CrossRefADSGoogle Scholar
  228. D.A. Rafferty, B.R. McNamara, P.E.J. Nulsen, M.W. Wise, The feedback-regulated growth of black holes and bulges through gas accretion and starbursts in cluster central dominant galaxies. Astrophys. J. 652, 216–231 (2006).  https://doi.org/10.1086/507672 CrossRefADSGoogle Scholar
  229. D.A. Rafferty, B.R. McNamara, P.E.J. Nulsen, The regulation of cooling and star formation in luminous galaxies by active galactic nucleus feedback and the cooling-time/entropy threshold for the onset of star formation. Astrophys. J. 687, 899–918 (2008).  https://doi.org/10.1086/591240 CrossRefADSGoogle Scholar
  230. S.W. Randall, W.R. Forman, S. Giacintucci, P.E.J. Nulsen, M. Sun, C. Jones, E. Churazov, L.P. David, R. Kraft, M. Donahue, E.L. Blanton, A. Simionescu, N. Werner, Shocks and cavities from multiple outbursts in the galaxy group NGC 5813: a window to active galactic nucleus feedback. Astrophys. J. 726, 86 (2011).  https://doi.org/10.1088/0004-637X/726/2/86 CrossRefADSGoogle Scholar
  231. S.W. Randall, P.E.J. Nulsen, C. Jones, W.R. Forman, E. Bulbul, T.E. Clarke, R. Kraft, E.L. Blanton, L. David, N. Werner, M. Sun, M. Donahue, S. Giacintucci, A. Simionescu, A very deep Chandra observation of the galaxy group NGC 5813: AGN shocks, feedback, and outburst history. Astrophys. J. 805, 112 (2015).  https://doi.org/10.1088/0004-637X/805/2/112 CrossRefADSGoogle Scholar
  232. S.M. Rao, D.A. Turnshek, D.B. Nestor, Damped Ly\(\upalpha\) systems at \(z<1.65\): the expanded Sloan Digital Sky Survey Hubble Space Telescope sample. Astrophys. J. 636, 610–630 (2006).  https://doi.org/10.1086/498132 CrossRefGoogle Scholar
  233. J. Rasmussen, T.J. Ponman, Temperature and abundance profiles of hot gas in galaxy groups—II. Implications for feedback and ICM enrichment. Mon. Not. R. Astron. Soc. 399, 239–263 (2009).  https://doi.org/10.1111/j.1365-2966.2009.15244.x CrossRefADSGoogle Scholar
  234. M.J. Rees, J.P. Ostriker, Cooling, dynamics and fragmentation of massive gas clouds—clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 179, 541–559 (1977).  https://doi.org/10.1093/mnras/179.4.541 CrossRefADSGoogle Scholar
  235. M.J. Rees, M.C. Begelman, R.D. Blandford, E.S. Phinney, Ion-supported tori and the origin of radio jets. Nature 295, 17–21 (1982).  https://doi.org/10.1038/295017a0 CrossRefADSGoogle Scholar
  236. C.S. Reynolds, A.C. Fabian, A. Celotti, M.J. Rees, The matter content of the jet in M87: evidence for an electron-positron jet. Mon. Not. R. Astron. Soc. 283, 873–880 (1996).  https://doi.org/10.1093/mnras/283.3.873 CrossRefADSGoogle Scholar
  237. C.S. Reynolds, B. McKernan, A.C. Fabian, J.M. Stone, J.C. Vernaleo, Buoyant radio lobes in a viscous intracluster medium. Mon. Not. R. Astron. Soc. 357, 242–250 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08643.x CrossRefADSGoogle Scholar
  238. C.S. Reynolds, S.A. Balbus, A.A. Schekochihin, Inefficient driving of bulk turbulence by active galactic nuclei in a hydrodynamic model of the intracluster medium. Astrophys. J. 815, 41 (2015).  https://doi.org/10.1088/0004-637X/815/1/41 CrossRefADSGoogle Scholar
  239. H.R. Russell, A.C. Fabian, J.S. Sanders, R.M. Johnstone, K.M. Blundell, W.N. Brandt, C.S. Crawford, The X-ray luminous cluster underlying the bright radio-quiet quasar H1821+643. Mon. Not. R. Astron. Soc. 402, 1561–1579 (2010).  https://doi.org/10.1111/j.1365-2966.2009.16027.x CrossRefADSGoogle Scholar
  240. H.R. Russell, B.R. McNamara, A.C. Edge, M.T. Hogan, R.A. Main, A.N. Vantyghem, Radiative efficiency, variability and Bondi accretion on to massive black holes: the transition from radio AGN to quasars in brightest cluster galaxies. Mon. Not. R. Astron. Soc. 432, 530–553 (2013).  https://doi.org/10.1093/mnras/stt490 CrossRefADSGoogle Scholar
  241. H.R. Russell, A.C. Fabian, B.R. McNamara, A.E. Broderick, Inside the Bondi radius of M87. Mon. Not. R. Astron. Soc. 451, 588–600 (2015).  https://doi.org/10.1093/mnras/stv954 CrossRefADSGoogle Scholar
  242. H.R. Russell, M. McDonald, B.R. McNamara, A.C. Fabian, P.E.J. Nulsen, M.B. Bayliss, B.A. Benson, M. Brodwin, J.E. Carlstrom, A.C. Edge, J. Hlavacek-Larrondo, D.P. Marrone, C.L. Reichardt, J.D. Vieira, Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster. Astrophys. J. 836, 130 (2017).  https://doi.org/10.3847/1538-4357/836/1/130 CrossRefADSGoogle Scholar
  243. H.R. Russell, A.C. Fabian, B.R. McNamara, J.M. Miller, P.E.J. Nulsen, J.M. Piotrowska, C.S. Reynolds, The imprints of AGN feedback within a supermassive black hole’s sphere of influence. Mon. Not. R. Astron. Soc. (2018).  https://doi.org/10.1093/mnras/sty835 CrossRefGoogle Scholar
  244. M. Ruszkowski, M. Brüggen, M.C. Begelman, Cluster heating by viscous dissipation of sound waves. Astrophys. J. 611, 158–163 (2004).  https://doi.org/10.1086/422158 CrossRefADSGoogle Scholar
  245. M. Ruszkowski, T.A. Enßlin, M. Brüggen, S. Heinz, C. Pfrommer, Impact of tangled magnetic fields on fossil radio bubbles. Mon. Not. R. Astron. Soc. 378, 662–672 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11801.x CrossRefADSGoogle Scholar
  246. M. Ruszkowski, T.A. Enßlin, M. Brüggen, M.C. Begelman, E. Churazov, Cosmic ray confinement in fossil cluster bubbles. Mon. Not. R. Astron. Soc. 383, 1359–1365 (2008).  https://doi.org/10.1111/j.1365-2966.2007.12659.x CrossRefADSGoogle Scholar
  247. M. Ruszkowski, H.-Y.K. Yang, C.S. Reynolds, Cosmic-ray feedback heating of the intracluster medium. Astrophys. J. 844, 13 (2017).  https://doi.org/10.3847/1538-4357/aa79f8 CrossRefADSGoogle Scholar
  248. E.M. Sadler, O.E. Gerhard, How common are ‘dust-lanes’ in early-type galaxies? Mon. Not. R. Astron. Soc. 214, 177–187 (1985).  https://doi.org/10.1093/mnras/214.2.177 CrossRefADSGoogle Scholar
  249. P. Salomé, F. Combes, Y. Revaz, D. Downes, A.C. Edge, A.C. Fabian, A very extended molecular web around NGC 1275. Astron. Astrophys. 531, 85 (2011).  https://doi.org/10.1051/0004-6361/200811333 CrossRefADSGoogle Scholar
  250. J.S. Sanders, A.C. Fabian, A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 381, 1381–1399 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12347.x CrossRefADSGoogle Scholar
  251. J.S. Sanders, A.C. Fabian, Velocity width measurements of the coolest X-ray emitting material in the cores of clusters, groups and elliptical galaxies. Mon. Not. R. Astron. Soc. 429, 2727–2738 (2013).  https://doi.org/10.1093/mnras/sts543 CrossRefADSGoogle Scholar
  252. J.S. Sanders, A.C. Fabian, K.A. Frank, J.R. Peterson, H.R. Russell, Deep high-resolution X-ray spectra from cool-core clusters. Mon. Not. R. Astron. Soc. 402, 127–144 (2010).  https://doi.org/10.1111/j.1365-2966.2009.15902.x CrossRefADSGoogle Scholar
  253. J.S. Sanders, A.C. Fabian, R.K. Smith, Constraints on turbulent velocity broadening for a sample of clusters, groups and elliptical galaxies using XMM-Newton. Mon. Not. R. Astron. Soc. 410, 1797–1812 (2011).  https://doi.org/10.1111/j.1365-2966.2010.17561.x CrossRefADSGoogle Scholar
  254. C.L. Sarazin, J.O. Burns, K. Roettiger, B.R. McNamara, Comparison of the radio, optical, and X-ray structures of the cD galaxy in Abell 2597. Astrophys. J. 447, 559 (1995).  https://doi.org/10.1086/175899 CrossRefADSGoogle Scholar
  255. M. Sarzi, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Bureau, M. Cappellari, A. Crocker, R.L. Davies, T.A. Davis, P.T. de Zeeuw, P.-A. Duc, E. Emsellem, S. Khochfar, D. Krajnović, H. Kuntschner, P.-Y. Lablanche, R.M. McDermid, R. Morganti, T. Naab, T. Oosterloo, N. Scott, P. Serra, L.M. Young, A.-M. Weijmans, The ATLAS\(^{3D}\) project —XIX. The hot gas content of early-type galaxies: fast versus slow rotators. Mon. Not. R. Astron. Soc. 432, 1845–1861 (2013).  https://doi.org/10.1093/mnras/stt062 CrossRefGoogle Scholar
  256. S.Y. Sazonov, J.P. Ostriker, R.A. Sunyaev, Quasars: the characteristic spectrum and the induced radiative heating. Mon. Not. R. Astron. Soc. 347, 144–156 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07184.x CrossRefADSGoogle Scholar
  257. S.Y. Sazonov, J.P. Ostriker, L. Ciotti, R.A. Sunyaev, Radiative feedback from quasars and the growth of massive black holes in stellar spheroids. Mon. Not. R. Astron. Soc. 358, 168–180 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08763.x CrossRefADSGoogle Scholar
  258. E. Scannapieco, S.P. Oh, Quasar feedback: the missing link in structure formation. Astrophys. J. 608, 62–79 (2004).  https://doi.org/10.1086/386542 CrossRefADSGoogle Scholar
  259. E. Scannapieco, J. Silk, R. Bouwens, AGN feedback causes downsizing. Astrophys. J. Lett. 635, 13–16 (2005).  https://doi.org/10.1086/499271 CrossRefADSGoogle Scholar
  260. P. Sharma, M. McCourt, E. Quataert, I.J. Parrish, Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies. Mon. Not. R. Astron. Soc. 420, 3174–3194 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20246.x CrossRefADSGoogle Scholar
  261. A. Siemiginowska, C.C. Cheung, S. LaMassa, D.J. Burke, T.L. Aldcroft, J. Bechtold, M. Elvis, D.M. Worrall, X-ray cluster associated with the \(z = 1.063\) CSS quasar 3C 186: the jet is not frustrated. Astrophys. J. 632, 110–121 (2005).  https://doi.org/10.1086/432871 CrossRefGoogle Scholar
  262. A. Siemiginowska, D.J. Burke, T.L. Aldcroft, D.M. Worrall, S. Allen, J. Bechtold, T. Clarke, C.C. Cheung, High-redshift X-ray cooling-core cluster associated with the luminous radio-loud quasar 3C 186. Astrophys. J. 722, 102–111 (2010).  https://doi.org/10.1088/0004-637X/722/1/102 CrossRefADSGoogle Scholar
  263. J. Silk, On the fragmentation of cosmic gas clouds. I—The formation of galaxies and the first generation of stars. Astrophys. J. 211, 638–648 (1977).  https://doi.org/10.1086/154972 CrossRefADSGoogle Scholar
  264. J. Silk, M.J. Rees, Quasars and galaxy formation. Astron. Astrophys. 331, 1–4 (1998) ADSGoogle Scholar
  265. A. Simionescu, G. Tremblay, N. Werner, R.E.A. Canning, S.W. Allen, J.B.R. Oonk, ALMA observation of the disruption of molecular gas in M87. Mon. Not. R. Astron. Soc. 475, 3004–3009 (2018).  https://doi.org/10.1093/mnras/sty047 CrossRefADSGoogle Scholar
  266. S.L. Snowden, R. Egger, M.J. Freyberg, D. McCammon, P.P. Plucinsky, W.T. Sanders, J.H.M.M. Schmitt, J. Trümper, W. Voges, ROSAT survey diffuse X-ray background maps. II. Astrophys. J. 485, 125–135 (1997).  https://doi.org/10.1086/304399 CrossRefADSGoogle Scholar
  267. N. Soker, The jet feedback mechanism (JFM) in stars, galaxies and clusters. New Astron. Rev. 75, 1–23 (2016).  https://doi.org/10.1016/j.newar.2016.08.002 CrossRefADSGoogle Scholar
  268. N. Soker, F. Pizzolato, Feedback heating with slow jets in cooling flow clusters. Astrophys. J. 622, 847–852 (2005).  https://doi.org/10.1086/428112 CrossRefADSGoogle Scholar
  269. A. Soltan, Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115–122 (1982).  https://doi.org/10.1093/mnras/200.1.115 CrossRefADSGoogle Scholar
  270. R.S. Somerville, P.F. Hopkins, T.J. Cox, B.E. Robertson, L. Hernquist, A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 391, 481–506 (2008).  https://doi.org/10.1111/j.1365-2966.2008.13805.x CrossRefADSGoogle Scholar
  271. A. Spacek, E. Scannapieco, S. Cohen, B. Joshi, P. Mauskopf, Constraining AGN feedback in massive ellipticals with South Pole Telescope measurements of the thermal Sunyaev–Zel’dovich effect. Astrophys. J. 819, 128 (2016).  https://doi.org/10.3847/0004-637X/819/2/128 CrossRefADSGoogle Scholar
  272. A. Spacek, E. Scannapieco, S. Cohen, B. Joshi, P. Mauskopf, Searching for fossil evidence of AGN feedback in WISE-selected stripe-82 galaxies by measuring the thermal Sunyaev-Zeldovich effect with the Atacama Cosmology Telescope. Astrophys. J. 834, 102 (2017).  https://doi.org/10.3847/1538-4357/834/2/102 CrossRefADSGoogle Scholar
  273. A. Spacek, M.L.A. Richardson, E. Scannapieco, J. Devriendt, Y. Dubois, S. Peirani, C. Pichon, Using real and simulated measurements of the thermal Sunyaev Zeldovich effect to constrain models of AGN feedback. Astrophys. J. 865, 109 (2018).  https://doi.org/10.3847/1538-4357/aada01 CrossRefADSGoogle Scholar
  274. W.B. Sparks, H.C. Ford, A.L. Kinney, The dusty emission filaments of M87. Astrophys. J. 413, 531–541 (1993).  https://doi.org/10.1086/173022 CrossRefADSGoogle Scholar
  275. W.B. Sparks, J.E. Pringle, M. Donahue, R. Carswell, M. Voit, M. Cracraft, R.G. Martin, Discovery of C IV emission filaments in M87. Astrophys. J. Lett. 704, 20–24 (2009).  https://doi.org/10.1088/0004-637X/704/1/L20 CrossRefADSGoogle Scholar
  276. W.B. Sparks, J.E. Pringle, R.F. Carswell, M. Donahue, R. Martin, M. Voit, M. Cracraft, N. Manset, J.H. Hough, Hundred thousand degree gas in the Virgo cluster of galaxies. Astrophys. J. Lett. 750, 5 (2012).  https://doi.org/10.1088/2041-8205/750/1/L5 CrossRefADSGoogle Scholar
  277. D.K. Strickland, T.M. Heckman, Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M82. Astrophys. J. 697, 2030–2056 (2009).  https://doi.org/10.1088/0004-637X/697/2/2030 CrossRefADSGoogle Scholar
  278. Y. Su, J.A. Irwin, R.E. White III, M.C. Cooper, The scatter in the hot gas content of early-type galaxies. Astrophys. J. 806, 156 (2015).  https://doi.org/10.1088/0004-637X/806/2/156 CrossRefADSGoogle Scholar
  279. T. Suginohara, J.P. Ostriker, The effect of cooling on the density profile of hot gas in clusters of galaxies: is additional physics needed? Astrophys. J. 507, 16–23 (1998).  https://doi.org/10.1086/306326 CrossRefADSGoogle Scholar
  280. M. Sun, Hot gas in galaxy groups: recent observations. New J. Phys. 14(4), 045004 (2012).  https://doi.org/10.1088/1367-2630/14/4/045004 CrossRefADSGoogle Scholar
  281. M. Sun, C. Jones, W. Forman, A. Vikhlinin, M. Donahue, M. Voit, X-ray thermal coronae of galaxies in hot clusters: ubiquity of embedded mini-cooling cores. Astrophys. J. 657, 197–231 (2007).  https://doi.org/10.1086/510895 CrossRefADSGoogle Scholar
  282. X. Tang, E. Churazov, Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters. Mon. Not. R. Astron. Soc. 468, 3516–3532 (2017).  https://doi.org/10.1093/mnras/stx590 CrossRefADSGoogle Scholar
  283. G.B. Taylor, F. Govoni, S.W. Allen, A.C. Fabian, Magnetic fields in the 3C 129 cluster. Mon. Not. R. Astron. Soc. 326, 2–10 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04587.x CrossRefADSGoogle Scholar
  284. G.B. Taylor, A.C. Fabian, G. Gentile, S.W. Allen, C. Crawford, J.S. Sanders, Fields and filaments in the core of the Centaurus cluster. Mon. Not. R. Astron. Soc. 382, 67–72 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12368.x CrossRefADSGoogle Scholar
  285. P. Temi, F. Brighenti, W.G. Mathews, Far-infrared spitzer observations of elliptical galaxies: evidence for extended diffuse dust. Astrophys. J. 660, 1215–1231 (2007a).  https://doi.org/10.1086/513690 CrossRefADSGoogle Scholar
  286. P. Temi, F. Brighenti, W.G. Mathews, Spitzer observations of transient, extended dust in two elliptical galaxies: new evidence of recent feedback energy release in galactic cores. Astrophys. J. 666, 222–230 (2007b).  https://doi.org/10.1086/520123 CrossRefADSGoogle Scholar
  287. P. Temi, A. Amblard, M. Gitti, F. Brighenti, M. Gaspari, W.G. Mathews, L. David, ALMA observations of molecular clouds in three group-centered elliptical galaxies: NGC 5846, NGC 4636, and NGC 5044. Astrophys. J. 858, 17 (2018).  https://doi.org/10.3847/1538-4357/aab9b0 CrossRefADSGoogle Scholar
  288. T. Tepper-García, J. Bland-Hawthorn, R.S. Sutherland, The Magellanic stream: break-up and accretion onto the hot galactic corona. Astrophys. J. 813, 94 (2015).  https://doi.org/10.1088/0004-637X/813/2/94 CrossRefADSGoogle Scholar
  289. R.J. Thacker, E. Scannapieco, H.M.P. Couchman, Quasars: what turns them off? Astrophys. J. 653, 86–100 (2006).  https://doi.org/10.1086/508650 CrossRefADSGoogle Scholar
  290. C. Thom, J. Tumlinson, J.K. Werk, J.X. Prochaska, B.D. Oppenheimer, M.S. Peeples, T.M. Tripp, N.S. Katz, J.M. O’Meara, A.B. Ford, R. Davé, K.R. Sembach, D.H. Weinberg, Not dead yet: cool circumgalactic gas in the halos of early-type galaxies. Astrophys. J. Lett. 758, 41 (2012).  https://doi.org/10.1088/2041-8205/758/2/L41 CrossRefADSGoogle Scholar
  291. D. Thomas, C. Maraston, R. Bender, C. Mendes de Oliveira, The epochs of early-type galaxy formation as a function of environment. Astrophys. J. 621, 673–694 (2005).  https://doi.org/10.1086/426932 CrossRefADSGoogle Scholar
  292. R. Tojeiro, W.J. Percival, A.F. Heavens, R. Jimenez, The stellar evolution of luminous red galaxies, and its dependence on colour, redshift, luminosity and modelling. Mon. Not. R. Astron. Soc. 413, 434–460 (2011).  https://doi.org/10.1111/j.1365-2966.2010.18148.x CrossRefADSGoogle Scholar
  293. P. Tozzi, C. Norman, The evolution of X-ray clusters and the entropy of the intracluster medium. Astrophys. J. 546, 63–84 (2001).  https://doi.org/10.1086/318237 CrossRefADSGoogle Scholar
  294. G.R. Tremblay, J.B.R. Oonk, F. Combes, P. Salomé, C.P. O’Dea, S.A. Baum, G.M. Voit, M. Donahue, B.R. McNamara, T.A. Davis, M.A. McDonald, A.C. Edge, T.E. Clarke, R. Galván-Madrid, M.N. Bremer, L.O.V. Edwards, A.C. Fabian, S. Hamer, Y. Li, A. Maury, H.R. Russell, A.C. Quillen, C.M. Urry, J.S. Sanders, M.W. Wise, Cold, clumpy accretion onto an active supermassive black hole. Nature 534, 218–221 (2016).  https://doi.org/10.1038/nature17969 CrossRefADSGoogle Scholar
  295. T. Treu, R.S. Ellis, T.X. Liao, P.G. van Dokkum, Keck spectroscopy of distant GOODS spheroidal galaxies: downsizing in a hierarchical universe. Astrophys. J. Lett. 622, 5–8 (2005).  https://doi.org/10.1086/429374 CrossRefADSGoogle Scholar
  296. I. Trujillo, N.M. Förster Schreiber, G. Rudnick, M. Barden, M. Franx, H.-W. Rix, J.A.R. Caldwell, D.H. McIntosh, S. Toft, B. Häussler, A. Zirm, P.G. van Dokkum, I. Labbé, A. Moorwood, H. Röttgering, A. van der Wel, P. van der Werf, L. van Starkenburg, The size evolution of galaxies since \(z \sim 3\): combining SDSS, GEMS, and FIRES. Astrophys. J. 650, 18–41 (2006).  https://doi.org/10.1086/506464 CrossRefGoogle Scholar
  297. I. Trujillo, C.J. Conselice, K. Bundy, M.C. Cooper, P. Eisenhardt, R.S. Ellis, Strong size evolution of the most massive galaxies since \(z\sim2\). Mon. Not. R. Astron. Soc. 382, 109–120 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12388.x CrossRefGoogle Scholar
  298. I. Trujillo, A. Ferré-Mateu, M. Balcells, A. Vazdekis, P. Sánchez-Blázquez, NGC 1277: a massive compact relic galaxy in the nearby Universe. Astrophys. J. Lett. 780, 20 (2014).  https://doi.org/10.1088/2041-8205/780/2/L20 CrossRefADSGoogle Scholar
  299. J. Tumlinson, C. Thom, J.K. Werk, J.X. Prochaska, T.M. Tripp, N. Katz, R. Davé, B.D. Oppenheimer, J.D. Meiring, A.B. Ford, J.M. O’Meara, M.S. Peeples, K.R. Sembach, D.H. Weinberg, The COS-halos survey: rationale, design, and a census of circumgalactic neutral hydrogen. Astrophys. J. 777, 59 (2013).  https://doi.org/10.1088/0004-637X/777/1/59 CrossRefADSGoogle Scholar
  300. P.G. van Dokkum, M. Franx, N.M. Förster Schreiber, G.D. Illingworth, E. Daddi, K.K. Knudsen, I. Labbé, A. Moorwood, H.-W. Rix, H. Röttgering, G. Rudnick, I. Trujillo, P. van der Werf, A. van der Wel, L. van Starkenburg, S. Wuyts, Stellar populations and kinematics of red galaxies at z > 2: implications for the formation of massive galaxies. Astrophys. J. 611, 703–724 (2004).  https://doi.org/10.1086/422308 CrossRefADSGoogle Scholar
  301. S. Veilleux, G. Cecil, J. Bland-Hawthorn, Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005).  https://doi.org/10.1146/annurev.astro.43.072103.150610 CrossRefADSGoogle Scholar
  302. S. Veilleux, D.-C. Kim, C.Y. Peng, L.C. Ho, L.J. Tacconi, K.M. Dasyra, R. Genzel, D. Lutz, D.B. Sanders, A deep Hubble Space Telescope H-band imaging survey of massive gas-rich mergers. Astrophys. J. 643, 707–723 (2006).  https://doi.org/10.1086/503188 CrossRefADSGoogle Scholar
  303. A.A. Vikhlinin, A.V. Kravtsov, M.L. Markevich, R.A. Sunyaev, E.M. Churazov, Clusters of galaxies. Phys. Usp. 57, 317–341 (2014).  https://doi.org/10.3367/UFNe.0184.201404a.0339 CrossRefADSGoogle Scholar
  304. G.M. Voit, A role for turbulence in circumgalactic precipitation. ArXiv e-prints (2018) Google Scholar
  305. G.M. Voit, M. Donahue, Cooling time, freefall time, and precipitation in the cores of ACCEPT galaxy clusters. Astrophys. J. Lett. 799, 1 (2015).  https://doi.org/10.1088/2041-8205/799/1/L1 CrossRefADSGoogle Scholar
  306. G.M. Voit, S.T. Kay, G.L. Bryan, The baseline intracluster entropy profile from gravitational structure formation. Mon. Not. R. Astron. Soc. 364, 909–916 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09621.x CrossRefADSGoogle Scholar
  307. G.M. Voit, G.L. Bryan, B.W. O’Shea, M. Donahue, Precipitation-regulated star formation in galaxies. Astrophys. J. Lett. 808, 30 (2015a).  https://doi.org/10.1088/2041-8205/808/1/L30 CrossRefADSGoogle Scholar
  308. G.M. Voit, M. Donahue, G.L. Bryan, M. McDonald, Regulation of star formation in giant galaxies by precipitation, feedback and conduction. Nature 519, 203–206 (2015b).  https://doi.org/10.1038/nature14167 CrossRefADSGoogle Scholar
  309. G.M. Voit, M. Donahue, B.W. O’Shea, G.L. Bryan, M. Sun, N. Werner, Supernova sweeping and black hole feedback in elliptical galaxies. Astrophys. J. Lett. 803, 21 (2015c).  https://doi.org/10.1088/2041-8205/803/2/L21 CrossRefADSGoogle Scholar
  310. H.J. Völk, F.A. Aharonian, D. Breitschwerdt, The nonthermal energy content and gamma-ray emission of starburst galaxies and clusters of galaxies. Space Sci. Rev. 75, 279–297 (1996).  https://doi.org/10.1007/BF00195040 CrossRefADSGoogle Scholar
  311. J.L. Walsh, A.J. Barth, L.C. Ho, M. Sarzi, The M87 black hole mass from gas-dynamical models of space telescope imaging spectrograph observations. Astrophys. J. 770, 86 (2013).  https://doi.org/10.1088/0004-637X/770/2/86 CrossRefADSGoogle Scholar
  312. B.J. Weiner, A.L. Coil, J.X. Prochaska, J.A. Newman, M.C. Cooper, K. Bundy, C.J. Conselice, A.A. Dutton, S.M. Faber, D.C. Koo, J.M. Lotz, G.H. Rieke, K.H.R. Rubin, Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at \(z = 1.4\). Astrophys. J. 692, 187–211 (2009).  https://doi.org/10.1088/0004-637X/692/1/187 CrossRefGoogle Scholar
  313. N. Werner, I. Zhuravleva, E. Churazov, A. Simionescu, S.W. Allen, W. Forman, C. Jones, J.S. Kaastra, Constraints on turbulent pressure in the X-ray haloes of giant elliptical galaxies from resonant scattering. Mon. Not. R. Astron. Soc. 398, 23–32 (2009).  https://doi.org/10.1111/j.1365-2966.2009.14860.x CrossRefADSGoogle Scholar
  314. N. Werner, A. Simionescu, E.T. Million, S.W. Allen, P.E.J. Nulsen, A. von der Linden, S.M. Hansen, H. Böhringer, E. Churazov, A.C. Fabian, W.R. Forman, C. Jones, J.S. Sanders, G.B. Taylor, Feedback under the microscope-II. Heating, gas uplift and mixing in the nearest cluster core. Mon. Not. R. Astron. Soc. 407, 2063–2074 (2010).  https://doi.org/10.1111/j.1365-2966.2010.16755.x CrossRefADSGoogle Scholar
  315. N. Werner, S.W. Allen, A. Simionescu, On the thermodynamic self-similarity of the nearest, most relaxed, giant ellipticals. Mon. Not. R. Astron. Soc. 425, 2731–2740 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21245.x CrossRefADSGoogle Scholar
  316. N. Werner, J.B.R. Oonk, R.E.A. Canning, S.W. Allen, A. Simionescu, J. Kos, R.J. van Weeren, A.C. Edge, A.C. Fabian, A. von der Linden, P.E.J. Nulsen, C.S. Reynolds, M. Ruszkowski, The nature of filamentary cold gas in the core of the Virgo cluster. Astrophys. J. 767, 153 (2013).  https://doi.org/10.1088/0004-637X/767/2/153 CrossRefADSGoogle Scholar
  317. N. Werner, J.B.R. Oonk, M. Sun, P.E.J. Nulsen, S.W. Allen, R.E.A. Canning, A. Simionescu, A. Hoffer, T. Connor, M. Donahue, A.C. Edge, A.C. Fabian, A. von der Linden, C.S. Reynolds, M. Ruszkowski, The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback. Mon. Not. R. Astron. Soc. 439, 2291–2306 (2014).  https://doi.org/10.1093/mnras/stu006 CrossRefADSGoogle Scholar
  318. N. Werner, K. Lakhchaura, R.E.A. Canning, M. Gaspari, A. Simionescu, Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies. Mon. Not. R. Astron. Soc. (2018).  https://doi.org/10.1093/mnras/sty862 CrossRefGoogle Scholar
  319. S.D.M. White, C.S. Frenk, Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991).  https://doi.org/10.1086/170483 CrossRefADSGoogle Scholar
  320. S.D.M. White, M.J. Rees, Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).  https://doi.org/10.1093/mnras/183.3.341 CrossRefADSGoogle Scholar
  321. J. Wiener, S.P. Oh, F. Guo, Cosmic ray streaming in clusters of galaxies. Mon. Not. R. Astron. Soc. 434, 2209–2228 (2013).  https://doi.org/10.1093/mnras/stt1163 CrossRefADSGoogle Scholar
  322. K.-W. Wong, J.A. Irwin, M. Yukita, E.T. Million, W.G. Mathews, J.N. Bregman, Resolving the Bondi accretion flow toward the supermassive black hole of NGC 3115 with Chandra. Astrophys. J. Lett. 736, 23 (2011).  https://doi.org/10.1088/2041-8205/736/1/L23 CrossRefADSGoogle Scholar
  323. K.-W. Wong, J.A. Irwin, R.V. Shcherbakov, M. Yukita, E.T. Million, J.N. Bregman, The megasecond Chandra X-ray visionary project observation of NGC 3115: witnessing the flow of hot gas within the Bondi radius. Astrophys. J. 780, 9 (2014).  https://doi.org/10.1088/0004-637X/780/1/9 CrossRefADSGoogle Scholar
  324. H.-Y.K. Yang, C.S. Reynolds, How AGN jets heat the intracluster medium—insights from hydrodynamic simulations. Astrophys. J. 829, 90 (2016).  https://doi.org/10.3847/0004-637X/829/2/90 CrossRefADSGoogle Scholar
  325. R.M. Yates, P.A. Thomas, B.M.B. Henriques, Iron in galaxy groups and clusters: confronting galaxy evolution models with a newly homogenized data set. Mon. Not. R. Astron. Soc. 464, 3169–3193 (2017).  https://doi.org/10.1093/mnras/stw2361 CrossRefADSGoogle Scholar
  326. A. Yıldırım, R.C.E. van den Bosch, G. van de Ven, I. Martín-Navarro, J.L. Walsh, B. Husemann, K. Gültekin, K. Gebhardt, The structural and dynamical properties of compact elliptical galaxies. Mon. Not. R. Astron. Soc. 468, 4216–4245 (2017).  https://doi.org/10.1093/mnras/stx732 CrossRefADSGoogle Scholar
  327. L.M. Young, M. Bureau, T.A. Davis, F. Combes, R.M. McDermid, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Cappellari, R.L. Davies, P.T. de Zeeuw, E. Emsellem, S. Khochfar, D. Krajnović, H. Kuntschner, P.-Y. Lablanche, R. Morganti, T. Naab, T. Oosterloo, M. Sarzi, N. Scott, P. Serra, A.-M. Weijmans, The ATLAS\(^{3D}\) project—IV. The molecular gas content of early-type galaxies. Mon. Not. R. Astron. Soc. 414, 940–967 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18561.x CrossRefGoogle Scholar
  328. F. Yuan, R. Narayan, Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529–588 (2014).  https://doi.org/10.1146/annurev-astro-082812-141003 CrossRefADSGoogle Scholar
  329. F.S. Zahedy, H.-W. Chen, M. Rauch, A. Zabludoff, HST detection of extended neutral hydrogen in a massive elliptical at \(z = 0.4\). Astrophys. J. Lett. 846, 29 (2017).  https://doi.org/10.3847/2041-8213/aa88a2 CrossRefGoogle Scholar
  330. C. Zhang, E. Churazov, A.A. Schekochihin, Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. Mon. Not. R. Astron. Soc. (2018).  https://doi.org/10.1093/mnras/sty1269 CrossRefGoogle Scholar
  331. Z. Zheng, A.L. Coil, I. Zehavi, Galaxy evolution from halo occupation distribution modeling of DEEP2 and SDSS galaxy clustering. Astrophys. J. 667, 760–779 (2007).  https://doi.org/10.1086/521074 CrossRefADSGoogle Scholar
  332. I. Zhuravleva, E. Churazov, A.A. Schekochihin, S.W. Allen, P. Arévalo, A.C. Fabian, W.R. Forman, J.S. Sanders, A. Simionescu, R. Sunyaev, A. Vikhlinin, N. Werner, Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014).  https://doi.org/10.1038/nature13830 CrossRefADSGoogle Scholar
  333. E.G. Zweibel, V.V. Mirnov, M. Ruszkowski, C.S. Reynolds, H.-Y.K. Yang, A.C. Fabian, Acoustic disturbances in galaxy clusters. Astrophys. J. 858, 5 (2018).  https://doi.org/10.3847/1538-4357/aab9ae CrossRefADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • N. Werner
    • 1
    • 2
    • 3
    Email author
  • B. R. McNamara
    • 4
  • E. Churazov
    • 5
    • 6
  • E. Scannapieco
    • 7
  1. 1.MTA-Eötvös University Lendület Hot Universe and Astrophysics Research GroupBudapestHungary
  2. 2.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  4. 4.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  5. 5.Max-Planck-Institut fur AstrophysikGarchingGermany
  6. 6.Space Research InstituteMoscowRussia
  7. 7.School of Earth and Space ExplorationArizona State UniversityTempeUSA

Personalised recommendations