Advertisement

Space Science Reviews

, 214:133 | Cite as

The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight

  • J. Clinton
  • D. Giardini
  • M. Böse
  • S. Ceylan
  • M. van Driel
  • F. Euchner
  • R. F. Garcia
  • S. Kedar
  • A. Khan
  • S. C. Stähler
  • B. Banerdt
  • P. Lognonne
  • E. Beucler
  • I. Daubar
  • M. Drilleau
  • M. Golombek
  • T. Kawamura
  • M. Knapmeyer
  • B. Knapmeyer-Endrun
  • D. Mimoun
  • A. Mocquet
  • M. Panning
  • C. Perrin
  • N. A. Teanby
Article
  • 28 Downloads
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

The InSight mission expects to operate a geophysical observatory on Mars for at least two Earth years from late 2018. InSight includes a seismometer package, SEIS. The Marsquake Service (MQS) is created to provide a first manual review of the seismic data returned from Mars. The MQS will detect, locate, quantify and classify seismic events, whether tectonic or impact in origin. A suite of new and adapted methodologies have been developed to allow location and quantification of seismic events at the global scale using a single station, and a software framework has been developed that supports these methods. This paper describes the expected signals that will be recorded by SEIS, the methods used for their identification and interpretation, and reviews the planned MQS operational procedures. For each seismic event, the MQS will locate events using all available body and surface phases, using the best estimates of the Martian structure, which will become more accurate as more Martian marsquakes are identified and located. The MQS will curate the Mars seismicity catalogue, with all events being relocated to use revised suites of structure models as they are introduced.

Keywords

InSight SEIS Marsquakes Martian seismicity Impacts Seismicity catalogue 

Notes

Acknowledgements

The authors would like to thank the editor and two reviewers who provided careful and critical reviews that substantially improved the manuscript. This work was jointly funded by (1) Swiss National Science Foundation and French Agence Nationale de la Recherche (SNF-ANR project 157133 “Seismology on Mars”) and (2) Swiss State Secretariat for Education, Research and Innovation (SEFRI project “MarsQuake Service—Preparatory Phase”). Additional support came from the Swiss National Supercomputing Centre (CSCS) under project ID s682. Some of the research described in this article was supported by the InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We also thank A.-C. Plesa and V. Tsai for discussions on Mars seismicity and comments on an earlier draft. This article is InSight Contribution Number 57.

References

  1. M. Afanasiev, C. Boehm, M. van Driel, L. Krischer, M. Rietmann, D.A. May, M.G. Knepley, A. Fichtner, Modular and flexible spectral-element waveform modeling in two and three dimensions. Geophys. J. Int. (2018).  https://doi.org/10.1093/gji/ggy469/5174970 CrossRefGoogle Scholar
  2. K. Aki, Characterization of barriers on an earthquake fault. J. Geophys. Res. 84, 6140–6148 (1979) ADSCrossRefGoogle Scholar
  3. D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksöz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewickz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Res. 82(28), 4524–4546 (1977) ADSCrossRefGoogle Scholar
  4. R.C. Anderson, J.M. Dohm, M.P. Golombek, A.F. Haldemann, B.J. Franklin, K.L. Tanaka, J. Lias, B. Peer, Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res., Planets 106(E9), 20563–20585 (2001) ADSCrossRefGoogle Scholar
  5. R.C. Anderson, J.M. Dohm, A.F.C. Haldemann, E. Pounders, M. Golombek, A. Castano, Centers of tectonic activity in the eastern hemisphere of Mars. Icarus 195, 537–546 (2008).  https://doi.org/10.1016/j.icarus.2007.12.027 ADSCrossRefGoogle Scholar
  6. W.B. Banerdt, M.P. Golombek, K.L. Tanaka, Stress and tectonics on Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 249–297. Chap. 8 Google Scholar
  7. W.B. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S.W. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T. van Zoest, R. Weber, M.A. Wieczorek, R. Garcia, K. Hurst, InSight: a Discovery Mission to explore the interior of Mars, in Lunar and Planetary Science Conference (2013). Lunar and Planetary Inst. Technical Report, 44,1915 Google Scholar
  8. D. Banfield, J.A. Rodriguez-Manfredi, C.T. Russell, K.M. Rowe, D. Leneman, H.R. Lai, P.R. Cruce, J.D. Means, C.L. Johnson, S.P. Joy, P.J. Chi, I.G. Mikellides, S. Carpenter, S. Navarro, E. Sebastian, J. Gomez-Elvira, J. Torres, L. Mora, V. Peinado, A. Lepinette, K. Hurst, P. Lognonné, S.E. Smrekar, W.B. Banerdt, InSight Auxiliary Payload Sensor Suite (APSS). Space Sci. Rev. (2018, this issue).  https://doi.org/10.1007/s11214-018-0570-x. CrossRefGoogle Scholar
  9. D. Baratoux, H. Samuel, C. Michaut, M.J. Toplis, M. Monnereau, M. Wieczorek, R. Garcia, K. Kurita, Petrological constraints on the density of the Martian crust. J. Geophys. Res., Planets 119, 1707–1727 (2014).  https://doi.org/10.1002/2014JE004642 ADSCrossRefGoogle Scholar
  10. A. Barka, K. Kadinsky-Cade, Strike-slip fault geometry in Turkey. Tectonics 7, 663–684 (1988).  https://doi.org/10.1029/TC007i003p00663 ADSCrossRefGoogle Scholar
  11. G.P. Biasi, S.G. Wesnousky, Bends and ends of surface ruptures. Bull. Seismol. Soc. Am. 107(6), 2543–2560 (2017).  https://doi.org/10.1785/0120160292 CrossRefGoogle Scholar
  12. F. Bissig, A. Khan, M. van Driel, S. Stahler, D. Giardini, M. Panning, M. Drilleau, P. Lognonné, T.V. Gudkova, V.N. Zharkov, W.B. Banerdt, On the detectability and use of normal modes for determining interior structure of Mars. Space Sci. Rev. (2018).  https://doi.org/10.1007/s11214-018-0547-9 CrossRefGoogle Scholar
  13. E. Bozdağ, Y. Ruan, N. Metthez, A. Khan, K. Leng, M. van Driel, M. Wieczorek, A. Rivoldini, C.S. Larmat, D. Giardini, J. Tromp, P. Lognonné, B.W. Banerdt, Simulations of seismic wave propagation on Mars. Space Sci. Rev. (2017).  https://doi.org/10.1007/s11214-017-0350-z CrossRefGoogle Scholar
  14. M. Böse, J. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, P. Lognonné, W.B. Banerdt, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. 262, 48–65 (2017).  https://doi.org/10.1016/j.pepi.2016.11.003 ADSCrossRefGoogle Scholar
  15. M. Böse, D. Giardini, S. Stähler, S. Ceylan, J. Clinton, M. van Driel, A. Khan, F. Euchner, P. Lognonné, B. Banerdt, Magnitude scales for marsquakes. Bull. Seismol. Soc. Am. (2018).  https://doi.org/10.1785/0120180037 CrossRefGoogle Scholar
  16. R.C. Bulow, C.L. Johnson, B.G. Bills, P.M. Shearer, Temporal and spatial properties of some deep moonquake clusters. J. Geophys. Res. 112, E09003 (2007).  https://doi.org/10.1029/2006JE002847 ADSCrossRefGoogle Scholar
  17. D.M. Burr, J.A. Grier, A.S. McEwen, L.P. Keszthelyi, Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus 159, 53–73 (2002).  https://doi.org/10.1006/icar.2002.6921 ADSCrossRefGoogle Scholar
  18. S. Ceylan, M. van Driel, F. Euchner, A. Khan, J. Clinton, L. Krischer, M. Böse, S. Stähler, D. Giardini, From initial models of seismicity, structure and noise to synthetic seismograms for Mars. Space Sci. Rev. 211, 595 (2017).  https://doi.org/10.1007/s11214-017-0378-0 ADSCrossRefGoogle Scholar
  19. E. Chael, An automated Rayleigh-wave detection algorithm. Bull. Seismol. Soc. Am. 87, 157–163 (1997) Google Scholar
  20. J. Clinton, D. Giardini, P. Lognonné, B. Banerdt, M. van Driel, M. Drilleau, N. Murdoch, M. Panning, R. Garcia, D. Mimoun, M. Golombek, J. Tromp, R. Weber, M. Böse, S. Ceylan, I. Daubar, B. Kenda, A. Khan, L. Perrin, A. Spiga, Preparing for InSight: an invitation to participate in a blind test for Martian seismicity. Seismol. Res. Lett. 88, 1290–1302 (2017).  https://doi.org/10.1785/0220170094 CrossRefGoogle Scholar
  21. M.R. Cooper, R.L. Kovach, Energy, frequency, and distance of moonquakes at the Apollo 17 site, in Proc. 6th. Lunar Conf. (1975), pp. 2863–2879 Google Scholar
  22. H.P. Crotwell, T.J. Owens, J. Ritsema, The TauP toolkit: flexible seismic travel-time and ray-path utilities. Seismol. Res. Lett. 70, 154–160 (1999) CrossRefGoogle Scholar
  23. I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current Martian cratering rate. Icarus 225, 506–516 (2013).  https://doi.org/10.1016/j.icarus.2013.04.009 ADSCrossRefGoogle Scholar
  24. I.J. Daubar, M.P. Golombek, A.S. McEwen, S. Byrne, M.A. Kreslavsky, N.C. Schmerr, M.E. Banks, Measurement of the current Martian cratering size frequency distribution, predictions for and expected improvements from InSight, in Lunar and Planetary Science Conference, vol. 46 (2015). Abstract 2468 Google Scholar
  25. I.J. Daubar, M.E. Banks, N.C. Schmerr, M.P. Golombek, W.K. Hartmann, E.C.S. Joseph, K. Miljković, O.P. Popova, N.A. Teanby, Crater clusters on Mars: implications for atmospheric fragmentation, impactor properties, and seismic detectability, in Lunar and Planetary Science Conference, vol. 48 (2017). Abstract 2544 Google Scholar
  26. I.J. Daubar et al., Impact-seismic investigations of the InSight mission. Space Sci. Rev. (2018).  https://doi.org/10.1007/s11214-018-0562-x CrossRefGoogle Scholar
  27. J.-L. Dimech, B. Knapmeyer-Endrun, D. Phillips, R.C. Weber, Preliminary analysis of newly recovered Apollo 17 seismic data. Results Phys. 7, 4457–4458 (2017) ADSCrossRefGoogle Scholar
  28. G. Dreibus, H. Wänke, Accretion of the Earth and the inner planets, in Proc. 27th International Geol. Conf., vol. 11 (1984), pp. 1–20 Google Scholar
  29. F. Duennebier, G.H. Sutton, Thermal moonquakes. J. Geophys. Res. 79(29), 4351–4363 (1974) ADSCrossRefGoogle Scholar
  30. A.M. Dziewonski, T.-A. Chou, J.H. Woodhouse, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86, 2825–2852 (1981).  https://doi.org/10.1029/JB086iB04p02825 ADSCrossRefGoogle Scholar
  31. G. Ekström, M. Nettles, A.M. Dziewonski, The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9 (2012).  https://doi.org/10.1016/j.pepi.2012.04.002 ADSCrossRefGoogle Scholar
  32. R.F. Garcia, L. Schardong, S. Chevrot, A nonlinear method to estimate source parameters, amplitude, and travel times of teleseismic body waves. Bull. Seismol. Soc. Am. (2013).  https://doi.org/10.1785/0120120160 CrossRefGoogle Scholar
  33. C. Godano, F. Pingue, Is the seismic moment-frequency relation universal? Geophys. J. Int. 142, 193–198 (2000) ADSCrossRefGoogle Scholar
  34. N.R. Goins, A.R. Lazarewicz, Martian seismicity. Geophys. Res. Lett. 6, 368–370 (1979).  https://doi.org/10.1029/GL006i005p00368 ADSCrossRefGoogle Scholar
  35. N.R. Goins, A.M. Dainty, M.N. Toksöz, Seismic energy release of the Moon. J. Geophys. Res. 86, 378–388 (1981) ADSCrossRefGoogle Scholar
  36. M.P. Golombek, W.B. Banerdt, K.L. Tanaka, D.M. Tralli, A prediction of Mars seismicity from surface faulting. Science 258(5084), 979–981 (1992).  https://doi.org/10.1126/science.258.5084.979 ADSCrossRefGoogle Scholar
  37. M.P. Golombek, Constraints on the largest marsquake, in Lunar Planet. Sci. Conf., vol. XXV (1994), pp. 441–442 Google Scholar
  38. M.P. Golombek, A revision of Mars seismicity from surface faulting, in Lunar Planet. Sci. Conf., vol. XXXIII (2002). Abstract 1244 Google Scholar
  39. M.P. Golombek, R.J. Phillips, Mars tectonics, in Planetary Tectonics, ed. by T.R. Watters, R.A. Schultz (Cambridge University Press, Cambridge, 2010), pp. 183–232 Google Scholar
  40. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R.L. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017).  https://doi.org/10.1007/s11214-016-0321-9 ADSCrossRefGoogle Scholar
  41. M. Golombek, M. Grott, G. Kargl, J. Andrade, J. Marshall, N. Warner, N.A. Teanby, V. Ansan, E. Hauber, J. Voigt, R. Lichtenheldt, B. Knapmeyer-Endrun, I.J. Daubar, D. Kipp, N. Müller, P. Lognonné, C. Schmelzbach, D. Banfield, A. Trebi-Ollennu, J. Maki, S. Kedar, D. Mimoun, N. Murdoch, S. Piqueux, P. Delage, W.T. Pike, C. Charalambous, R. Lorenz, L. Fayon, A. Lucas, S. Rodriguez, P. Morgan, A. Spiga, M. Panning, T. Spohn, S. Smrekar, T. Gudkova, R. Garcia, D. Giardini, U. Christensen, T. Nicollier, D. Sollberger, J. Robertsson, K. Ali, B. Kenda, W.B. Banerdt, Geology and physical properties investigations by the InSight lander. Space Sci. Rev. (2018).  https://doi.org/10.1007/s11214-018-0512-7 CrossRefGoogle Scholar
  42. T.V. Gudkova, A.V. Batov, V.N. Zharkov, Model estimates of non-hydrostatic stresses in the Martian crust and mantle: 1. Two-level model. Sol. Syst. Res. 51(6), 457–478 (2017) ADSCrossRefGoogle Scholar
  43. W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005).  https://doi.org/10.1016/j.icarus.2004.11.023 ADSCrossRefGoogle Scholar
  44. W.K. Hartmann, M. Malin, A. McEwen, M. Carr, L. Soderblom, P. Thomas, E. Danielson, P. James, J. Veverka, Evidence for recent volcanism on Mars from crater counts. Nature 397, 586–589 (1999) ADSCrossRefGoogle Scholar
  45. J.W. Head III., M.A. Kreslavsky, S. Pratt, Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J. Geophys. Res. 107(E1), 5003 (2002).  https://doi.org/10.1029/2000JE001445 CrossRefGoogle Scholar
  46. C. Hibert, G. Ekström, C.P. Stark, Dynamics of the Bingham Canyon Mine landslides from seismic signal analysis. Geophys. Res. Lett. 41, 4535–4541 (2014).  https://doi.org/10.1002/2014GL060592 ADSCrossRefGoogle Scholar
  47. W.L. Jaeger, L.P. Keszthelyi, A.S. McEwen, C.M. Dundas, P.S. Russell, Athabasca Valles, Mars: a lava-draped channel system. Science 317, 1709–1711 (2007).  https://doi.org/10.1126/science.1143315 ADSCrossRefGoogle Scholar
  48. Y.Y. Kagan, Seismic moment-frequency relation for shallow earthquakes: regional comparison. J. Geophys. Res. 102(B2), 2835–2852 (1997) ADSCrossRefGoogle Scholar
  49. Y.Y. Kagan, Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int. 148, 520–541 (2002) ADSCrossRefGoogle Scholar
  50. S. Kedar, J. Andrade, B. Banerdt, P. Delage, M. Golombek, M. Grott, T. Hudson, A. Kiely, M. Knapmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonné, T. Pike, T. Spohn, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSight’s HP3 penetrator. Space Sci. Rev. 211, 315–337 (2017).  https://doi.org/10.1007/s11214-017-0391-3 ADSCrossRefGoogle Scholar
  51. B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R. Lorenz, D. Banfield, M. Golombek, Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. 211.1–4, 501–524 (2017).  https://doi.org/10.1007/s11214-017-0378-0 CrossRefGoogle Scholar
  52. A. Khan, J.A.D. Connolly, S.R. Taylor, Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth’s mantle. J. Geophys. Res. 113, B09308 (2008).  https://doi.org/10.1029/2007JB005239 ADSCrossRefGoogle Scholar
  53. A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016).  https://doi.org/10.1016/j.pepi.2016.05.017 ADSCrossRefGoogle Scholar
  54. A. Khan, C. Liebske, A. Rozel, A. Rivoldini, J.A.D. Connolly, A.-C. Plesa, D. Giardini, A geophysical perspective on the bulk composition of Mars. J. Geophys. Res. (2018).  https://doi.org/10.1002/2017JE005371 CrossRefGoogle Scholar
  55. M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111, E11006 (2006).  https://doi.org/10.1029/2006JE002708 ADSCrossRefGoogle Scholar
  56. B. Knapmeyer-Endrun, M.P. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed inSight Landing Site in Elysium Planitia, Mars. Space Sci. Rev. 211(1–4), 339–382 (2017).  https://doi.org/10.1007/s11214-016-0300-1 ADSCrossRefGoogle Scholar
  57. B. Knapmeyer-Endrun, C. Hammer, Identification of new events in the Apollo 16 lunar seismic data by hidden Markov model-based event detection and classification. J. Geophys. Res. 120, 1620–1645 (2015).  https://doi.org/10.1002/2015JE004862 CrossRefGoogle Scholar
  58. E. Larose, A. Khan, Y. Nakamura, M. Campillo, Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett. 32, L16201 (2005).  https://doi.org/10.1029/2005GL023518 ADSCrossRefGoogle Scholar
  59. K. Lodders, B. Fegley, An oxygen isotope model for the composition of Mars. Icarus 126, 373–394 (1997) ADSCrossRefGoogle Scholar
  60. P. Lognonné, W.B. Banerdt, D. Giardini, W.T. Pike, U. Christensen, P. Laudet, S. de Raucourt, P. Zweifel, S. Calcutt, M. Bierwirth, K.J. Hurst, F.I. Jpelaan, J.W. Umland, R. Llorca-Cejudo, S. Larson, R. Garcia, S. Kedar, B. Knapmeyer-Endrun, D. Mimoun, A. Mocquet, M.P. Panning, R.C. Weber, A. Sylvestre-Baron, G. Pont, N. Verdier, L. Kerjean, L.J. Facto, V. Gharakanian, J.E. Feldman, T.L. Hoffman, D.B. Klein, K. Klein, N.P. Onufer, J. Paredes-Garcia, M.P. Petkov, J.R. Willis, S.E. Smrekar, M. Drilleau, T. Gabsi, T. Nebut, O. Robert, S. Tillier, C. Moreau, M. Parise, G. Aveni, S. Ben Charef, Y. Bennour, T. Camus, P.A. Dandonneau, C. Desfoux, B. Lecomte, O. Pot, P. Revuz, D. Mance, J. ten Pierick, N.E. Bowles, C. Charalambous, A.K. Delahunty, J. Hurley, R. Irshad, H. Liu, A.G. Mukerherjee, I.M. Standley, A.E. Stott, J. Temple, T. Warren, M. Eberhardt, A. Kramer, W. Kühne, E.-P. Miettinen, M. Monecke, C. Aicardi, M. André, J. Baroukh, A. Borrien, A. Bouisset, P. Boutte, K. Brethomé, C. Brysbaert, T. Carlier, M. Deleuze, J.M. Desmarres, D. Dilhan, C. Doucet, D. Faye, N. Faye-Refalo, R. Gonzalez, C. Imbert, C. Larigauderie, E. Locatelli, L. Luno, J-R. Meyer, F. Mialhe, J.M. Mouret, M. Nonon, Y. Pahn, A. Paillet, P. Pasquier, G. Perez, R. Perez, L. Perrin, B. Pouilloux, A. Rosak, I. Savin de Larclause, J. Sicre, M. Sodki, N. Toulemont, B. Vella, C. Yana, F. Alibay, O. Avalos, M. Balzer, P. Bhandari, E. Blanco, B.D. Bone, J. Bousman, P. Bruneau, F. Calef, R.J. Calvet, S. D’Agostino, G. de los Santos, R. Deen, B. Denise, J. Ervin, N. Ferraro, H.E. Gengl, F. Grinblat, D. Hernandez, M. Hetzel, M. Johnson, L. Khachikyan, J. Lin, S. Madzunkov, S. Marshall, L. Mikellides, E.A. Miller, W. Raff, J. Singer, C. Sunday, J. Villalvazo, M.C. Wallace, D. Banfield, J.A. Rodriguez-Manfredi, C.T. Russell, A. Trebi-Ollennu, J.N. Maki, E. Beucler, M. Böse, C. Bonjour, J.L. Berenguer, S. Ceylan, J. Clinton, V. Conajero, I. Daubar, V. Dehant, P. Delage, F. Euchner, I. Estève, L. Fayon, L. Ferraioli, C. Johnson, J. Gagnepain-Beyneix, M. Golombek, A. Khan, T. Kawamura, B. Kenda, P. Labrot, N. Murdoch, C. Pardo, C. Perrin, L. Pou, A. Sauron, D. Savoie, S. Stähler, E. Stutzman, N.A. Teanby, J. Tromp, M. van Driel, M. Wieczorek, R. Widmer-Schnidrig, J. Wookey SEIS (eds.), The seismic experiment for internal structure of InSight. Space Sci. Rev. (2018, this issue) Google Scholar
  61. R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W.B. Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. 105(6), 3015–3023 (2015).  https://doi.org/10.1785/0120150133 CrossRefGoogle Scholar
  62. M.C. Malin, K.S. Edgett, L.V. Posiolova, S.M. McColley, E.Z.N. Dobrea, Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573–1577 (2006).  https://doi.org/10.1126/science.1135156 ADSCrossRefGoogle Scholar
  63. N. Mangold, P. Allemand, P.G. Thomas, G. Vidal, Chronology of compressional deformation on Mars: evidence for a single and global origin. Planet. Space Sci. 48, 1201–1211 (2000) ADSCrossRefGoogle Scholar
  64. I. Manighetti, M. Campillo, S. Bouley, F. Cotton, Earthquake scaling, fault segmentation, and structural maturity. Earth Planet. Sci. Lett. 253, 429–438 (2007).  https://doi.org/10.1016/j.epsl.2006.11.004 ADSCrossRefGoogle Scholar
  65. I. Manighetti, C. Caulet, D. De Barros, C. Perrin, F. Cappa, Y. Gaudemer, Generic along-strike segmentation of Afar normal faults, East Africa: implications on fault growth and stress heterogeneity on seismogenic fault planes. Geochem. Geophys. Geosyst. 16, 443–467 (2015).  https://doi.org/10.1002/2014GC005691 ADSCrossRefGoogle Scholar
  66. N. Mark, G.H. Sutton, Lunar shear velocity structure at Apollo Sites 12, 14, and 15. J. Geophys. Res. 80(35), 4932–4938 (1975).  https://doi.org/10.1029/JB080i035p04932 ADSCrossRefGoogle Scholar
  67. S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder camera. Geophys. Res. Lett. 26(18), 2781–2784 (1999).  https://doi.org/10.1029/1999GL008341 ADSCrossRefGoogle Scholar
  68. D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, W.B. Banerdt, The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci. Rev. 211(1–4), 383–428 (2017).  https://doi.org/10.1007/s11214-017-0409-x ADSCrossRefGoogle Scholar
  69. A. Mocquet, A search for the minimum number of stations needed for seismic networking on Mars. Planet. Space Sci. 47, 397–409 (1999) ADSCrossRefGoogle Scholar
  70. A. Mocquet, P. Vacher, O. Grasset, C. Sotin, Theoretical seismic models of Mars: the importance of the iron content of the mantle. Planet. Space Sci. 44, 1251–1268 (1996) ADSCrossRefGoogle Scholar
  71. J.W. Morgan, E. Anders, Chemical composition of Earth, Venus, and Mercury. Proc. Natl. Acad. Sci. USA 77(12), 6973–6977 (1980) ADSCrossRefGoogle Scholar
  72. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. (2017a).  https://doi.org/10.1007/s11214-017-0343-y CrossRefGoogle Scholar
  73. N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, D. Banfield, W.B. Banerdt, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2017b).  https://doi.org/10.1007/s11214-016-0311-y CrossRefGoogle Scholar
  74. Y. Nakamura, Shallow moonquakes: how they compare with earthquakes, in Proc. Lunar Planet. Sci. Conf., vol. 11 (1980), pp. 1847–1853 Google Scholar
  75. Y. Nakamura, J. Dorman, F. Duennebier, D. Lammlein, G. Latham, Shallow lunar structure determined from the passive seismic experiment. Earth Moon Planets 13, 57 (1975).  https://doi.org/10.1007/BF00567507 CrossRefGoogle Scholar
  76. Y. Nakamura, G. Latham, H. Dorman, A.B. Ibrahim, J. Koyama, P. Horvarth, Shallow moonquakes—depth, distribution and implications as to the present state of the lunar interior, in Proc. Lunar Planet. Sci. Conf., vol. 10 (1979), pp. 2299–2309 Google Scholar
  77. Y. Nakamura, G.V. Latham, H.J. Dorman, J.E. Harris, Passive seismic experiment, long-period event catalog. Final version, Tech. Rep. 18, Inst for Geophys. Univ. of Texas, Galveston (1981) Google Scholar
  78. G. Neukum, R. Jaumann, H. Hoffmann, E. Hauber, J.W. Head, A.T. Basilevsky, B.A. Ivanov, S.C. Werner, S. van Gasselt, J.B. Murray, T. McCord, Recent and episodic volcanic and glacial activity on Mars revealed by the high resolution stereo camera. Nature 432, 971–979 (2004).  https://doi.org/10.1038/nature03231 ADSCrossRefGoogle Scholar
  79. G.A. Neumann, M.T. Zuber, M.A. Wieczorek, P.J. McGovern, F.G. Lemoine, D.E. Smith, Crustal structure of Mars from gravity and topography. J. Geophys. Res. 109, E08002 (2004).  https://doi.org/10.1029/2004JE002262 ADSCrossRefGoogle Scholar
  80. T. Nissen-Meyer, M. van Driel, S.C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, A. Fournier, AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 5, 425–445 (2014).  https://doi.org/10.5194/se-5-425-2014 ADSCrossRefGoogle Scholar
  81. G. Nolet, A Breviary of Seismic Tomography (Cambridge University Press, Cambridge, 2008) CrossRefGoogle Scholar
  82. J. Oberst, Unusually high stress drops associated with shallow moonquakes. J. Geophys. Res. 92, 1397–1405 (1987) ADSCrossRefGoogle Scholar
  83. J. Oberst, Y. Nakamura, A search for clustering among the meteoroid impacts detected by the Apollo lunar seismic network. Icarus 91, 315–325 (1991) ADSCrossRefGoogle Scholar
  84. M.P. Panning, E. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015).  https://doi.org/10.1016/j.icarus.2014.10.035 ADSCrossRefGoogle Scholar
  85. M.P. Panning, P. Lognonné, W.B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, M. Drilleau, T. Gudkova, S. Hempel, A. Khan, V. Lekic, A.-C. Plesa, A. Rivoldini, N. Schmerr, Y. Ruan, O. Verhoeven, C. Gao, U. Christensen, J. Clinton, V. Dehant, D. Giardini, D. Mimoun, W.T. Pike, S. Smrekar, M. Wieczorek, M. Knapmeyer, J. Wookey, Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. (2017).  https://doi.org/10.1007/s11214-016-0317-5 CrossRefGoogle Scholar
  86. J. Peterson, Observations and modeling of seismic background noise. USGS Open File Report 93-322, available online: https://pubs.usgs.gov/of/1993/0322/report.pdf, 94 pages (1993)
  87. R.J. Phillips, Expected rates of Marsquakes, in Scientific Rationale and Requirements for a Global Seismic Network on Mars. LPI Tech. Rep. 91-02 LPI/TR-91-02, pp. 35–38, Lunar and Planet. Inst., Houston, TX (1991) Google Scholar
  88. J.B. Plescia, Recent flood lavas in the Elysium region of Mars. Icarus 88, 465–490 (1990) ADSCrossRefGoogle Scholar
  89. A.-C. Plesa, N. Tosi, M. Grott, D. Breuer, Thermal evolution and Urey ratio of Mars. J. Geophys. Res., Planets 120, 995–1010 (2015).  https://doi.org/10.1002/2014JE004748 ADSCrossRefGoogle Scholar
  90. A.C. Plesa, M. Grot, N. Tosi, D. Breuer, T. Spohn, M. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res. (2016).  https://doi.org/10.1002/2016JE005126 CrossRefGoogle Scholar
  91. A.-C. Plesa, M. Knapmeyer, M. Golombek, D. Breuer, M.Grott.N. Tosi, Present- day Mars’ seismicity predicted from 3-D thermal evolution models of interior dynamics (expanded abstract), in 48th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2017). Abstract #1906 Google Scholar
  92. A.-C. Plesa, M. Knapmeyer, M.P. Golombek, D. Breuer, M. Grott, P. Lognonne, N. Tosi, R.C. Weber, Present-day Mars’ seismicity predicted from 3D thermal evolution models of interior dynamics. Geophys. Res. Lett. 45, 2580–2589 (2018).  https://doi.org/10.1002/2017GL076124 ADSCrossRefGoogle Scholar
  93. A.T. Polit, R.A. Schultz, R. Soliva, Geometry, displacement–length scaling, and extensional strain of normal faults on Mars with inferences on mechanical stratigraphy of the Martian crust. J. Struct. Geol. 31, 662–673 (2009).  https://doi.org/10.1016/j.jsg.2009.03.016 ADSCrossRefGoogle Scholar
  94. C.F. Richter, An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am. 25(1), 1–32 (1935) Google Scholar
  95. A.T. Ringler, C.R. Hutt, Self-noise models of seismic instruments. Seismol. Res. Lett. 81(6), 972–983 (2010) CrossRefGoogle Scholar
  96. A. Rivoldini, T. van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011).  https://doi.org/10.1016/j.icarus.2011.03.024 ADSCrossRefGoogle Scholar
  97. G.P. Roberts, B. Matthews, C. Bristow, L. Guerrieri, J. Vetterlein, Possible evidence of paleo-marsquakes from fallen boulder populations, Cerberus Fossae, Mars. J. Geophys. Res. 117(E2), 003816 (2012) Google Scholar
  98. C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112(1–2), 43–54 (1999).  https://doi.org/10.1016/S0031-9201(98)00175-7 ADSCrossRefGoogle Scholar
  99. N.C. Schmerr, M.E. Banks, I.J. Daubar, The seismic signatures of impact events on Mars: implications for the InSight lander, in Lunar and Planetary Science Conference, vol. 47 (2016). Abstract 1320 Google Scholar
  100. G. Schubert, T. Spohn, Thermal history of Mars and the sulfur content of its core. J. Geophys. Res. 95, 14095–14104 (1990) ADSCrossRefGoogle Scholar
  101. G. Schubert, S.C. Solomon, D.L. Turcotte, M.J. Drake, N.H. Sleep, Origin and thermal evolution of Mars, in Mars, ed. by H. Kieffer, B. Jakosky, C. Snyder, M. Matthews (University of Arizona Press, Tucson, 1993), pp. 147–183 Google Scholar
  102. R.A. Schultz, Fault-population statistics at the Valles Marineris Extensional Province, Mars: implications for segment linkage, crustal strains, and its geodynamical development. Tectonophysics 316(1), 169–193 (2000) ADSCrossRefGoogle Scholar
  103. B.E. Shaw, Initiation propagation and termination of elastodynamic ruptures associated with segmentation of faults and shaking hazard. J. Geophys. Res. 111, B08302 (2006).  https://doi.org/10.1029/2005JB004093 ADSCrossRefGoogle Scholar
  104. K.J. Smart, D.A. Ferrill, S.L. Colton, En echelon segmentation of wrinkle ridges in Solis Planum, Mars, and implications for counter-clockwise rotation of shortening direction, in Lunar Planet. Sci. Conf., vol. 37 (2006), pp. 1–2 Google Scholar
  105. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally et al., Mars Orbiter laser altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23,689–23,722 (2001).  https://doi.org/10.1029/2000JE001364 ADSCrossRefGoogle Scholar
  106. F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res. 102, 1613–1636 (1997).  https://doi.org/10.1029/96JE03419 ADSCrossRefGoogle Scholar
  107. S.C. Solomon, D.L. Anderson, W.B. Banerdt, R.G. Butler, P.M. Davis, F.K. Duennebier, Y. Nakamura, E. Okal, R.J. Phillips, Scientific rationale and requirements for a global seismic network on Mars, LPI Tech. Rep. No. 91-02. Lunar and Planetary Institute, Houston, TX (1991) Google Scholar
  108. T. Spohn, M. Grott, S.E. Smerkar, C. Krause, T. Hudson (The HP3 Instrument Team) Measuring the Martian Heat Flow Using the Heat Flow and Physical Properties Package (HP3), in 45th Lunar and Planetary Science Conference, The Woodlands, TX, USA (2014) Google Scholar
  109. T. Spohn, M. Grott, S.E. Smrekar, J. Knollenberg, T.L. Hudson, C. Krause, N. Müller, J. Jänchen, A. Börner, T. Wippermann, O. Krömer, R. Lichtenheldt, L. Wisniewski, J. Grygorczuk, M. Fittock, S. Reershemius, T. Spröwitz, E. Kopp, I. Walter, A.-C. Plesa, D. Breuer, P. Morgan, W.B. Banerdt, The Heat Flow and Physical Properties Package (HP3) for the InSight Mission. Space Sci. Rev. 214(5), 1–33 (2018).  https://doi.org/10.1007/s11214-018-0531-4 CrossRefGoogle Scholar
  110. S.C. Stähler, K. Sigloch, Fully probabilistic seismic source inversion—Part 1: Efficient parameterisation. Solid Earth 5(2), 1055–1069 (2014).  https://doi.org/10.5194/se-5-1055-2014 ADSCrossRefGoogle Scholar
  111. S.C. Stähler, K. Sigloch, Fully probabilistic seismic source inversion—Part 2: Modelling errors and station covariances. Solid Earth 7(6), 1521–1536 (2016).  https://doi.org/10.5194/se-7-1521-2016 ADSCrossRefGoogle Scholar
  112. Standard for the Exchange of Earthquake Data (SEED) Manual (FDSN Publications, 2012) http://www.fdsn.org/media/_s/publications/SEEDManual_V2.4.pdf. Last accessed 15 Nov 2018
  113. M.W. Stirling, S.G. Wesnousky, K. Shimazaki, Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey. Geophys. J. Int. 124, 833–868 (1996).  https://doi.org/10.1111/j.1365-246X.1996.tb05641.x ADSCrossRefGoogle Scholar
  114. G.J. Taylor, The bulk composition of Mars. Geochemistry 73, 401–420 (2013) Google Scholar
  115. G.J. Taylor, W. Boynton, J. Brückner, H. Wänke, G. Dreibus, K. Kerry, J. Keller, R. Reedy, L. Evans, R. Starr, S. Squyres, S. Karunatillake, O. Gasnault, S. Maurice, C. d’Uston, P. Englert, J. Dohm, V. Baker, D. Hamara, D. Janes, A. Sprague, K. Kim, D. Drake, Bulk composition and early differentiation of Mars. J. Geophys. Res. 111, E03S10 (2006).  https://doi.org/10.1029/2005JE002645 CrossRefGoogle Scholar
  116. J. Taylor, N.A. Teanby, J. Wookey, Estimates of seismic activity in the Cerberus Fossae region of Mars. J. Geophys. Res. E 118, 2570–2581 (2013) ADSCrossRefGoogle Scholar
  117. N.A. Teanby, Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer. Icarus 256, 49–62 (2015).  https://doi.org/10.1016/j.icarus.2015.04.012 ADSCrossRefGoogle Scholar
  118. N.A. Teanby, J. Wookey, Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter. 186, 70–80 (2011).  https://doi.org/10.1016/j.pepi.2011.03.004 ADSCrossRefGoogle Scholar
  119. C. Tong, B.L.N. Kennett, Towards the identification of later seismic phases. Geophys. J. Int. 123, 948–958 (1995) ADSCrossRefGoogle Scholar
  120. M. van Driel, L. Krischer, S.C. Stähler, K. Hosseini, T. Nissen-Meyer, Instaseis: instant global seismograms based on a broadband waveform database. Solid Earth 6, 701–717 (2015).  https://doi.org/10.5194/se-6-701-2015 ADSCrossRefGoogle Scholar
  121. J. Vaucher, D. Baratoux, N. Mangold, P. Pinet, K. Kurita, M. Grégoire, The volcanic history of central Elysium Planitia: implications for Martian magmatism. Icarus 204, 418–442 (2009) ADSCrossRefGoogle Scholar
  122. O. Verhoeven, A. Rivoldini, P. Vacher, A. Mocquet, G. Choblet, M. Menvielle, V. Dehant, T. Van Hoolst, J. Sleewaegen, J.P. Barriot, P. Lognonné, Interior structure of terrestrial planets: modeling Mars’ mantle and its electromagnetic, geodetic, and seismic properties. J. Geophys. Res. 110, E04009 (2005).  https://doi.org/10.1029/2004JE002271 ADSCrossRefGoogle Scholar
  123. J. Vetterlein, G.P. Roberts, Structural evolution of the Northern Cerberus Fossae graben system, Elysium Planitia, Mars. J. Struct. Geol. 32, 394–406 (2010).  https://doi.org/10.1016/j.jsg.2009.11.004 ADSCrossRefGoogle Scholar
  124. R.C. Weber, B.G. Bills, C.L. Johnson, A simple physical model for deep moonquake occurrence times. Phys. Earth Planet. Inter. 182, 152–160 (2010).  https://doi.org/10.1016/j.pepi.2010.07.009 ADSCrossRefGoogle Scholar
  125. M.A. Wieczorek, M.T. Zuber, The thickness of the Martian crust: improved constraints from geoid-to-topography ratios. J. Geophys. Res. 109(E1), E01009 (2004).  https://doi.org/10.1029/2003JE002153 ADSCrossRefGoogle Scholar
  126. P. Withers, G.A. Neumann, Enigmatic northern plains of Mars. Nature 410, 651 (2001) ADSCrossRefGoogle Scholar
  127. M. Yamada, H. Kumagai, Y. Matsushi, T. Matsuzawa, Dynamic landslide processes revealed by broadband seismic records. Geophys. Res. Lett. 40, 2998–3002 (2013).  https://doi.org/10.1002/grl.50437 ADSCrossRefGoogle Scholar
  128. V.N. Zharkov, T.V. Gudkova, Construction of Martian interior model. Sol. Syst. Res. 39, 343 (2005).  https://doi.org/10.1007/s11208-005-0049-7 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • J. Clinton
    • 1
  • D. Giardini
    • 2
  • M. Böse
    • 1
    • 2
  • S. Ceylan
    • 2
  • M. van Driel
    • 2
  • F. Euchner
    • 2
  • R. F. Garcia
    • 3
  • S. Kedar
    • 4
  • A. Khan
    • 2
  • S. C. Stähler
    • 2
  • B. Banerdt
    • 4
  • P. Lognonne
    • 5
  • E. Beucler
    • 6
  • I. Daubar
    • 4
  • M. Drilleau
    • 5
  • M. Golombek
    • 4
  • T. Kawamura
    • 5
  • M. Knapmeyer
    • 7
  • B. Knapmeyer-Endrun
    • 8
  • D. Mimoun
    • 3
  • A. Mocquet
    • 6
  • M. Panning
    • 4
  • C. Perrin
    • 5
  • N. A. Teanby
    • 9
  1. 1.Swiss Seismological ServiceETH ZurichZurichSwitzerland
  2. 2.Institute of GeophysicsETH ZurichZurichSwitzerland
  3. 3.ISAE-SUPAEROToulouse UniversityToulouseFrance
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  5. 5.Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Paris VII–Denis Diderot UniversityCNRSParisFrance
  6. 6.Laboratoire de Planétologie et Géodynamique, University of NantesCNRS UMR 6112NantesFrance
  7. 7.DLR Institute of Planetary ResearchBerlinGermany
  8. 8.Seismological Observatory BensbergUniversity of CologneCologneGermany
  9. 9.School of Earth SciencesUniversity of BristolBristolUK

Personalised recommendations