Advertisement

Space Science Reviews

, 214:129 | Cite as

Enrichment of the Hot Intracluster Medium: Observations

  • F. MernierEmail author
  • V. Biffi
  • H. Yamaguchi
  • P. Medvedev
  • A. Simionescu
  • S. Ettori
  • N. Werner
  • J. S. Kaastra
  • J. de Plaa
  • L. Gu
Article
Part of the following topical collections:
  1. Clusters of Galaxies: Physics and Cosmology

Abstract

Four decades ago, the firm detection of an Fe-K emission feature in the X-ray spectrum of the Perseus cluster revealed the presence of iron in its hot intracluster medium (ICM). With more advanced missions successfully launched over the last 20 years, this discovery has been extended to many other metals and to the hot atmospheres of many other galaxy clusters, groups, and giant elliptical galaxies, as evidence that the elemental bricks of life—synthesized by stars and supernovae—are also found at the largest scales of the Universe. Because the ICM, emitting in X-rays, is in collisional ionisation equilibrium, its elemental abundances can in principle be accurately measured. These abundance measurements, in turn, are valuable to constrain the physics and environmental conditions of the Type Ia and core-collapse supernovae that exploded and enriched the ICM over the entire cluster volume. On the other hand, the spatial distribution of metals across the ICM constitutes a remarkable signature of the chemical history and evolution of clusters, groups, and ellipticals. Here, we summarise the most significant achievements in measuring elemental abundances in the ICM, from the very first attempts up to the era of XMM-Newton, Chandra, and Suzaku and the unprecedented results obtained by Hitomi. We also discuss the current systematic limitations of these measurements and how the future missions XRISM and Athena will further improve our current knowledge of the ICM enrichment.

Keywords

Galaxies: clusters Galaxies: abundances X-rays: galaxies: clusters 

Notes

Acknowledgements

We thank the anonymous referee for his/her valuable comments which helped to improve this review. This work was supported by the Lendület LP2016-11 grant awarded by the Hungarian Academy of Sciences. P.M. acknowledges support from Russian Science Foundation (grant 14-22-00271). A.S. is grateful for the support from the Women In Science Excel (WISE) programme of the NWO, and thanks the Kavli Institute for the Physics and Mathematics of the Universe for their continued hospitality. S.E. acknowledges financial contribution from the contracts NARO15 ASI-INAF I/037/12/0, ASI 2015-046-R.0 and ASI-INAF n.2017-14-H.0. SRON is supported financially by NWO, the Netherlands Organization for Scientific Research.

References

  1. S.W. Allen, A.C. Fabian, A ROSAT PSPC investigation of the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 269, 409 (1994).  https://doi.org/10.1093/mnras/269.2.409 ADSCrossRefGoogle Scholar
  2. M.E. Anderson, J.N. Bregman, S.C. Butler, C.R. Mullis, Redshift evolution in the iron abundance of the intracluster medium. Astrophys. J. 698, 317–323 (2009).  https://doi.org/10.1088/0004-637X/698/1/317 ADSCrossRefGoogle Scholar
  3. M.E. Anderson, E. Churazov, J.N. Bregman, A deep XMM-Newton study of the hot gaseous halo around NGC 1961. Mon. Not. R. Astron. Soc. 455, 227–243 (2016).  https://doi.org/10.1093/mnras/stv2314 ADSCrossRefGoogle Scholar
  4. S. Andreon, The enrichment history of the intracluster medium: a Bayesian approach. Astron. Astrophys. 546, 6 (2012).  https://doi.org/10.1051/0004-6361/201219194 ADSCrossRefGoogle Scholar
  5. N. Arimoto, Y. Yoshii, Chemical and photometric properties of a galactic wind model for elliptical galaxies. Astron. Astrophys. 173, 23–38 (1987) ADSGoogle Scholar
  6. M. Arnaud, R. Rothenflug, O. Boulade, L. Vigroux, E. Vangioni-Flam, Some Constraints on the Origin of the Iron Enriched Intracluster Medium. Astron. Astrophys. 254, 49 (1992) ADSGoogle Scholar
  7. E. Aver, K.A. Olive, E.D. Skillman, The effects of He I \(\lambda\)10830 on helium abundance determinations. J. Cosmol. Astropart. Phys. 7, 011 (2015).  https://doi.org/10.1088/1475-7516/2015/07/011 ADSCrossRefGoogle Scholar
  8. A. Baldi, S. Ettori, S. Molendi, I. Balestra, F. Gastaldello, P. Tozzi, An XMM-Newton spatially-resolved study of metal abundance evolution in distant galaxy clusters. Astron. Astrophys. 537, 142 (2012).  https://doi.org/10.1051/0004-6361/201117836 ADSCrossRefGoogle Scholar
  9. I. Balestra, P. Tozzi, S. Ettori, P. Rosati, S. Borgani, V. Mainieri, C. Norman, M. Viola, Tracing the evolution in the iron content of the intra-cluster medium. Astron. Astrophys. 462, 429–442 (2007).  https://doi.org/10.1051/0004-6361:20065568 ADSCrossRefGoogle Scholar
  10. D. Barret, T. Lam Trong, J.-W. den Herder, L. Piro, M. Cappi, J. Houvelin, R. Kelley, J.M. Mas-Hesse, K. Mitsuda, S. Paltani, G. Rauw, A. Rozanska, J. Wilms, S. Bandler, M. Barbera, X. Barcons, E. Bozzo, M.T. Ceballos, I. Charles, E. Costantini, A. Decourchelle, R. den Hartog, L. Duband, J.-M. Duval, F. Fiore, F. Gatti, A. Goldwurm, B. Jackson, P. Jonker, C. Kilbourne, C. Macculi, M. Mendez, S. Molendi, P. Orleanski, F. Pajot, E. Pointecouteau, F. Porter, G.W. Pratt, D. Prêle, L. Ravera, K. Sato, J. Schaye, K. Shinozaki, T. Thibert, L. Valenziano, V. Valette, J. Vink, N. Webb, M. Wise, N. Yamasaki, F. Douchin, J.-M. Mesnager, B. Pontet, A. Pradines, G. Branduardi-Raymont, E. Bulbul, M. Dadina, S. Ettori, A. Finoguenov, Y. Fukazawa, A. Janiuk, J. Kaastra, P. Mazzotta, J. Miller, G. Miniutti, Y. Naze, F. Nicastro, S. Scioritino, A. Simonescu, J.M. Torrejon, B. Frezouls, H. Geoffray, P. Peille, C. Aicardi, J. André, C. Daniel, A. Clénet, C. Etcheverry, E. Gloaguen, G. Hervet, A. Jolly, A. Ledot, I. Paillet, R. Schmisser, B. Vella, J.-C. Damery, K. Boyce, M. Dipirro, S. Lotti, D. Schwander, S. Smith, B.-J. Van Leeuwen, H. van Weers, N. Clerc, B. Cobo, T. Dauser, C. Kirsch, E. Cucchetti, M. Eckart, P. Ferrando, L. Natalucci, The ATHENA X-ray integral field unit (X-IFU), in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, 2018, p. 106991.  https://doi.org/10.1117/12.2312409 CrossRefGoogle Scholar
  11. W.H. Baumgartner, M. Loewenstein, D.J. Horner, R.F. Mushotzky, Intermediate-element abundances in galaxy clusters. Astrophys. J. 620, 680–696 (2005).  https://doi.org/10.1086/427158 ADSCrossRefGoogle Scholar
  12. T. Bensby, S. Feltzing, M.S. Oey, Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 562, 71 (2014).  https://doi.org/10.1051/0004-6361/201322631 ADSCrossRefGoogle Scholar
  13. T. Berlok, M.E. Pessah, Plasma instabilities in the context of current helium sedimentation models: dynamical implications for the ICM in galaxy clusters. Astrophys. J. 813, 22 (2015).  https://doi.org/10.1088/0004-637X/813/1/22 ADSCrossRefGoogle Scholar
  14. T. Berlok, M.E. Pessah, On helium mixing in quasi-global simulations of the intracluster medium. Astrophys. J. 833, 164 (2016).  https://doi.org/10.3847/1538-4357/833/2/164 ADSCrossRefGoogle Scholar
  15. V. Biffi, F. Mernier, P. Medvedev, Enrichment of the hot intracluster medium: numerical simulations. ArXiv:1811.01955 (2018)
  16. V. Biffi, S. Planelles, S. Borgani, D. Fabjan, E. Rasia, G. Murante, L. Tornatore, K. Dolag, G.L. Granato, M. Gaspari, A.M. Beck, The history of chemical enrichment in the intracluster medium from cosmological simulations. Mon. Not. R. Astron. Soc. 468, 531–548 (2017).  https://doi.org/10.1093/mnras/stx444 ADSCrossRefGoogle Scholar
  17. V. Biffi, S. Planelles, S. Borgani, E. Rasia, G. Murante, D. Fabjan, M. Gaspari, The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations. Mon. Not. R. Astron. Soc. 476, 2689–2703 (2018).  https://doi.org/10.1093/mnras/sty363 ADSCrossRefGoogle Scholar
  18. Á. Bogdán, H. Bourdin, W.R. Forman, R.P. Kraft, M. Vogelsberger, L. Hernquist, V. Springel, Probing the hot X-ray corona around the massive spiral galaxy, NGC 6753, using deep XMM-Newton observations. Astrophys. J. 850, 98 (2017).  https://doi.org/10.3847/1538-4357/aa9523 ADSCrossRefGoogle Scholar
  19. H. Böhringer, N. Werner, X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron. Astrophys. Rev. 18, 127–196 (2010).  https://doi.org/10.1007/s00159-009-0023-3 ADSCrossRefGoogle Scholar
  20. H. Böhringer, E. Belsole, J. Kennea, K. Matsushita, S. Molendi, D.M. Worrall, R.F. Mushotzky, M. Ehle, M. Guainazzi, I. Sakelliou, G. Stewart, W.T. Vestrand, S. Dos Santos, XMM-Newton observations of M 87 and its X-ray halo. Astron. Astrophys. 365, 181–187 (2001).  https://doi.org/10.1051/0004-6361:20000092 ADSCrossRefGoogle Scholar
  21. H. Böhringer, K. Matsushita, E. Churazov, A. Finoguenov, Y. Ikebe, Implications of the central metal abundance peak in cooling core clusters of galaxies. Astron. Astrophys. 416, 21–25 (2004).  https://doi.org/10.1051/0004-6361:20040047 ADSCrossRefGoogle Scholar
  22. J.N. Bregman, M.E. Anderson, X. Dai, Metal production in galaxy clusters: the non-galactic component. Astrophys. J. Lett. 716, 63–67 (2010).  https://doi.org/10.1088/2041-8205/716/1/L63 ADSCrossRefGoogle Scholar
  23. G.E. Bulbul, R.K. Smith, A. Foster, J. Cottam, M. Loewenstein, R. Mushotzky, R. Shafer, High-resolution XMM-Newton spectroscopy of the cooling flow cluster A3112. Astrophys. J. 747, 32 (2012).  https://doi.org/10.1088/0004-637X/747/1/32 ADSCrossRefGoogle Scholar
  24. D.A. Buote, X-ray evidence for multiphase hot gas with nearly solar Fe abundances in the brightest groups of galaxies. Mon. Not. R. Astron. Soc. 311, 176–200 (2000).  https://doi.org/10.1046/j.1365-8711.2000.03046.x ADSCrossRefGoogle Scholar
  25. D.A. Buote, C.R. Canizares, Geometrical evidence for dark matter: X-ray constraints on the mass of the elliptical galaxy NGC 720. Astrophys. J. 427, 86–111 (1994).  https://doi.org/10.1086/174123 ADSCrossRefGoogle Scholar
  26. D.A. Buote, A.C. Fabian, X-ray spectral analysis of elliptical galaxies from ASCA: the Fe abundance in a multiphase medium. Mon. Not. R. Astron. Soc. 296, 977–994 (1998).  https://doi.org/10.1046/j.1365-8711.1998.01478.x ADSCrossRefGoogle Scholar
  27. D.A. Buote, A.D. Lewis, F. Brighenti, W.G. Mathews, XMM-Newton and Chandra observations of the galaxy group NGC 5044, II: metal abundances and supernova fraction. Astrophys. J. 595, 151–166 (2003).  https://doi.org/10.1086/377256 ADSCrossRefGoogle Scholar
  28. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).  https://doi.org/10.1103/RevModPhys.29.547 ADSCrossRefGoogle Scholar
  29. J.M. Burgers, Flow Equations for Composite Gases 1969 zbMATHGoogle Scholar
  30. A.G.W. Cameron, Nuclear reactions in stars and nucleogenesis. Publ. Astron. Soc. Pac. 69, 201 (1957).  https://doi.org/10.1086/127051 ADSCrossRefGoogle Scholar
  31. C.R. Canizares, G.W. Clark, T.H. Markert, C. Berg, M. Smedira, D. Bardas, H. Schnopper, K. Kalata, High-resolution X-ray spectroscopy of M87 with the Einstein observatory—the detection of an O VIII emission line. Astrophys. J. Lett. 234, 33–37 (1979).  https://doi.org/10.1086/183104 ADSCrossRefGoogle Scholar
  32. B.D.G. Chandran, S.C. Cowley, Thermal conduction in a tangled magnetic field. Phys. Rev. Lett. 80, 3077–3080 (1998).  https://doi.org/10.1103/PhysRevLett.80.3077 ADSCrossRefGoogle Scholar
  33. A. Chieffi, M. Limongi, Explosive yields of massive stars from \(Z = 0\) to \(Z = Z_{\mathrm{solar}}\). Astrophys. J. 608, 405–410 (2004).  https://doi.org/10.1086/392523 ADSCrossRefGoogle Scholar
  34. E. Churazov, W. Forman, C. Jones, H. Böhringer, XMM-Newton observations of the Perseus cluster, I: the temperature and surface brightness structure. Astrophys. J. 590, 225–237 (2003).  https://doi.org/10.1086/374923 ADSCrossRefGoogle Scholar
  35. E. Churazov, W. Forman, C. Jones, R. Sunyaev, H. Böhringer, XMM-Newton observations of the Perseus cluster—II. Evidence for gas motions in the core. Mon. Not. R. Astron. Soc. 347, 29–35 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07201.x ADSCrossRefGoogle Scholar
  36. L. Chuzhoy, A. Loeb, Element segregation in giant galaxies and X-ray clusters. Mon. Not. R. Astron. Soc. 349, 13–17 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07688.x ADSCrossRefGoogle Scholar
  37. L. Ciotti, A. D’Ercole, S. Pellegrini, A. Renzini, Winds, outflows, and inflows in X-ray elliptical galaxies, I. Astrophys. J. 376, 380 (1991).  https://doi.org/10.1086/170289 ADSCrossRefGoogle Scholar
  38. A. Coc, E. Vangioni, Primordial nucleosynthesis. Int. J. Mod. Phys. E 26, 1741002 (2017).  https://doi.org/10.1142/S0218301317410026 ADSCrossRefGoogle Scholar
  39. C. Conroy, P.G. van Dokkum, The stellar initial mass function in early-type galaxies from absorption line spectroscopy, II: results. Astrophys. J. 760, 71 (2012).  https://doi.org/10.1088/0004-637X/760/1/71 ADSCrossRefGoogle Scholar
  40. C. Conroy, G.J. Graves, P.G. van Dokkum, Early-type galaxy archeology: ages, abundance ratios, and effective temperatures from full-spectrum fitting. Astrophys. J. 780, 33 (2014).  https://doi.org/10.1088/0004-637X/780/1/33 ADSCrossRefGoogle Scholar
  41. E. Cucchetti, E. Pointecouteau, P. Peille, N. Clerc, E. Rasia, V. Biffi, S. Borgani, L. Tornatore, K. Dolag, M. Roncarelli, M. Gaspari, S. Ettori, E. Bulbul, T. Dauser, J. Wilms, F. Pajot, D. Barret, Athena X-IFU synthetic observations of galaxy clusters to probe the chemical enrichment of the universe. ArXiv:1809.08903 (2018)
  42. S. De Grandi, S. Molendi, Metallicity gradients in X-ray clusters of galaxies. Astrophys. J. 551, 153–159 (2001).  https://doi.org/10.1086/320098 ADSCrossRefGoogle Scholar
  43. S. De Grandi, S. Molendi, Metal abundances in the cool cores of galaxy clusters. Astron. Astrophys. 508, 565–574 (2009).  https://doi.org/10.1051/0004-6361/200912745 ADSCrossRefGoogle Scholar
  44. S. De Grandi, S. Ettori, M. Longhetti, S. Molendi, On the iron content in rich nearby clusters of galaxies. Astron. Astrophys. 419, 7–18 (2004).  https://doi.org/10.1051/0004-6361:20034228 ADSCrossRefGoogle Scholar
  45. S. De Grandi, J.S. Santos, M. Nonino, S. Molendi, P. Tozzi, M. Rossetti, A. Fritz, P. Rosati, On the Fe abundance peak formation in cool-core clusters of galaxies: hints from cluster WARPJ1415.1+3612 at \(z = 1.03\). Astron. Astrophys. 567, 102 (2014).  https://doi.org/10.1051/0004-6361/201423928 CrossRefGoogle Scholar
  46. S. De Grandi, D. Eckert, S. Molendi, M. Girardi, E. Roediger, M. Gaspari, F. Gastaldello, S. Ghizzardi, M. Nonino, M. Rossetti, A textbook example of ram-pressure stripping in the Hydra A/A780 cluster. Astron. Astrophys. 592, 154 (2016).  https://doi.org/10.1051/0004-6361/201526641 CrossRefGoogle Scholar
  47. J. de Plaa, The origin of the chemical elements in cluster cores. Astron. Nachr. 334, 416 (2013).  https://doi.org/10.1002/asna.201211870 ADSCrossRefGoogle Scholar
  48. J. de Plaa, F. Mernier, Future perspectives for abundance measurements in clusters of galaxies with XMM-Newton. Astron. Nachr. 338, 299–304 (2017).  https://doi.org/10.1002/asna.201713346 ADSCrossRefGoogle Scholar
  49. J. de Plaa, N. Werner, A.M. Bykov, J.S. Kaastra, M. Méndez, J. Vink, J.A.M. Bleeker, M. Bonamente, J.R. Peterson, Chemical evolution in Sérsic 159-03 observed with XMM-Newton. Astron. Astrophys. 452, 397–412 (2006).  https://doi.org/10.1051/0004-6361:20053864 ADSCrossRefGoogle Scholar
  50. J. de Plaa, N. Werner, J.A.M. Bleeker, J. Vink, J.S. Kaastra, M. Méndez, Constraining supernova models using the hot gas in clusters of galaxies. Astron. Astrophys. 465, 345–355 (2007).  https://doi.org/10.1051/0004-6361:20066382 ADSCrossRefGoogle Scholar
  51. J. de Plaa, J.S. Kaastra, N. Werner, C. Pinto, P. Kosec, Y.-Y. Zhang, F. Mernier, L. Lovisari, H. Akamatsu, G. Schellenberger, F. Hofmann, T.H. Reiprich, A. Finoguenov, J. Ahoranta, J.S. Sanders, A.C. Fabian, O. Pols, A. Simionescu, J. Vink, H. Böhringer, CHEERS: the chemical evolution RGS sample. Astron. Astrophys. 607, 98 (2017).  https://doi.org/10.1051/0004-6361/201629926 CrossRefGoogle Scholar
  52. D. Eckert, S. Molendi, M. Owers, M. Gaspari, T. Venturi, L. Rudnick, S. Ettori, S. Paltani, F. Gastaldello, M. Rossetti, The stripping of a galaxy group diving into the massive cluster A2142. Astron. Astrophys. 570, 119 (2014).  https://doi.org/10.1051/0004-6361/201424259 ADSCrossRefGoogle Scholar
  53. S. Ettori, A.C. Fabian, Effects of sedimented helium on the X-ray properties of galaxy clusters. Mon. Not. R. Astron. Soc. 369, 42–46 (2006).  https://doi.org/10.1111/j.1745-3933.2006.00170.x ADSCrossRefGoogle Scholar
  54. S. Ettori, A. Baldi, I. Balestra, F. Gastaldello, S. Molendi, P. Tozzi, The evolution of the spatially resolved metal abundance in galaxy clusters up to \(z = 1.4\). Astron. Astrophys. 578, 46 (2015).  https://doi.org/10.1051/0004-6361/201425470 ADSCrossRefGoogle Scholar
  55. C. Ezer, E. Bulbul, E. Nihal Ercan, R.K. Smith, M.W. Bautz, M. Loewenstein, M. McDonald, E.D. Miller, Uniform contribution of supernova explosions to the chemical enrichment of Abell 3112 out to \(R _{200}\). Astrophys. J. 836, 110 (2017).  https://doi.org/10.3847/1538-4357/836/1/110 ADSCrossRefGoogle Scholar
  56. A.C. Fabian, J.E. Pringle, On the spatial distribution of heavy elements in X-ray emitting clusters of galaxies. Mon. Not. R. Astron. Soc. 181, 5–7 (1977).  https://doi.org/10.1093/mnras/181.1.5P ADSCrossRefGoogle Scholar
  57. M. Fink, M. Kromer, I.R. Seitenzahl, F. Ciaraldi-Schoolmann, F.K. Röpke, S.A. Sim, R. Pakmor, A.J. Ruiter, W. Hillebrandt, Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for type Ia supernovae. Mon. Not. R. Astron. Soc. 438, 1762–1783 (2014).  https://doi.org/10.1093/mnras/stt2315 ADSCrossRefGoogle Scholar
  58. A. Finoguenov, C. Jones, SN IA enrichment in virgo early-type galaxies from ROSAT and ASCA observations. Astrophys. J. 539, 603–617 (2000).  https://doi.org/10.1086/309243 ADSCrossRefGoogle Scholar
  59. A. Finoguenov, T.J. Ponman, Constraining the role of type IA and type II supernovae in galaxy groups by spatially resolved analysis of ROSAT and ASCA observations. Mon. Not. R. Astron. Soc. 305, 325–337 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02403.x ADSCrossRefGoogle Scholar
  60. A. Finoguenov, L.P. David, T.J. Ponman, An ASCA study of the heavy-element distribution in clusters of galaxies. Astrophys. J. 544, 188–203 (2000).  https://doi.org/10.1086/317173 ADSCrossRefGoogle Scholar
  61. A. Finoguenov, K. Matsushita, H. Böhringer, Y. Ikebe, M. Arnaud, X-ray evidence for spectroscopic diversity of type Ia supernovae: XMM observation of the elemental abundance pattern in M 87. Astron. Astrophys. 381, 21–31 (2002).  https://doi.org/10.1051/0004-6361:20011477 ADSCrossRefGoogle Scholar
  62. D.A. Forbes, A. Alabi, A.J. Romanowsky, D.-W. Kim, J.P. Brodie, G. Fabbiano, The SLUGGS survey: revisiting the correlation between X-ray luminosity and total mass of massive early-type galaxies. Mon. Not. R. Astron. Soc. 464, 26–30 (2017).  https://doi.org/10.1093/mnrasl/slw176 ADSCrossRefGoogle Scholar
  63. A.R. Foster, L. Ji, R.K. Smith, N.S. Brickhouse, Updated Atomic Data and Calculations for X-Ray Spectroscopy. Astrophys. J. 756, 128 (2012).  https://doi.org/10.1088/0004-637X/756/2/128 ADSCrossRefGoogle Scholar
  64. M. Friedmann, D. Maoz, The rate of Type-Ia supernovae in galaxy clusters out to redshift 1.75. ArXiv e-prints (2018) Google Scholar
  65. Y. Fujita, N. Tawa, K. Hayashida, M. Takizawa, H. Matsumoto, N. Okabe, T.H. Reiprich, High metallicity of the X-ray gas up to the virial radius of a binary cluster of galaxies: evidence of galactic superwinds at high-redshift. Publ. Astron. Soc. Jpn. 60, 343–349 (2008).  https://doi.org/10.1093/pasj/60.sp1.S343 ADSCrossRefGoogle Scholar
  66. Y. Fukazawa, T. Ohashi, A.C. Fabian, C.R. Canizares, Y. Ikebe, K. Makishima, R.F. Mushotzky, K. Yamashita, Metal concentration and X-ray cool spectral component in the central region of the Centaurus cluster of galaxies. Publ. Astron. Soc. Jpn. 46, 55–58 (1994) ADSGoogle Scholar
  67. Y. Fukazawa, K. Makishima, T. Tamura, H. Ezawa, H. Xu, Y. Ikebe, K. Kikuchi, T. Ohashi, ASCA Measurements of Silicon and Iron Abundances in the Intracluster Medium. Publ. Astron. Soc. Jpn. 50, 187–193 (1998).  https://doi.org/10.1093/pasj/50.1.187 ADSCrossRefGoogle Scholar
  68. F. Gastaldello, S. Ettori, I. Balestra, F. Brighenti, D.A. Buote, S. de Grandi, S. Ghizzardi, M. Gitti, P. Tozzi, Apparent high metallicity in 3-4 keV galaxy clusters: the inverse iron-bias in action in the case of the merging cluster Abell 2028. Astron. Astrophys. 522, 34 (2010).  https://doi.org/10.1051/0004-6361/201014279 ADSCrossRefGoogle Scholar
  69. M. Gendron-Marsolais, R.P. Kraft, A. Bogdan, J. Hlavacek-Larrondo, W.R. Forman, C. Jones, Y. Su, P. Nulsen, S.W. Randall, E. Roediger, Uplift, Feedback, and Buoyancy: Radio Lobe Dynamics in NGC 4472. Astrophys. J. 848, 26 (2017).  https://doi.org/10.3847/1538-4357/aa8a6f ADSCrossRefGoogle Scholar
  70. S. Ghizzardi, S. De Grandi, S. Molendi, Metal distribution in sloshing galaxy clusters: the case of A496. Astron. Astrophys. 570, 117 (2014).  https://doi.org/10.1051/0004-6361/201424016 CrossRefGoogle Scholar
  71. M.R. Gilfanov, R.A. Syunyaev, Intracluster Gravitational Separation of Deuterium and Helium in Rich Galaxy Clusters. Sov. Astron. Lett. 10, 137–140 (1984) ADSGoogle Scholar
  72. A.H. Gonzalez, D. Zaritsky, A.I. Zabludoff, A Census of Baryons in Galaxy Clusters and Groups. Astrophys. J. 666, 147–155 (2007).  https://doi.org/10.1086/519729 ADSCrossRefGoogle Scholar
  73. P. Goudfrooij, J.M.D. Kruijssen, The Optical Colors of Giant Elliptical Galaxies and their Metal-Rich Globular Clusters Indicate a Bottom-Heavy Initial Mass Function. Astrophys. J. 762, 107 (2013).  https://doi.org/10.1088/0004-637X/762/2/107 ADSCrossRefGoogle Scholar
  74. A.D. Goulding, J.E. Greene, C.-P. Ma, M. Veale, A. Bogdan, K. Nyland, J.P. Blakeslee, N.J. McConnell, J. Thomas, The MASSIVE Survey. IV. The X-ray Halos of the Most Massive Early-type Galaxies in the Nearby Universe. Astrophys. J. 826, 167 (2016).  https://doi.org/10.3847/0004-637X/826/2/167 ADSCrossRefGoogle Scholar
  75. M.L. Graham, D.J. Sand, C.J. Bildfell, C.J. Pritchet, D. Zaritsky, H. Hoekstra, D.W. Just, S. Herbert-Fort, S. Sivanandam, R.J. Foley, The Type II Supernova Rate in z ~0.1 Galaxy Clusters from the Multi-Epoch Nearby Cluster Survey. Astrophys. J. 753, 68 (2012).  https://doi.org/10.1088/0004-637X/753/1/68 ADSCrossRefGoogle Scholar
  76. Y.G. Grange, J. de Plaa, J.S. Kaastra, N. Werner, F. Verbunt, F. Paerels, C.P. de Vries, The metal contents of two groups of galaxies. Astron. Astrophys. 531, 15 (2011).  https://doi.org/10.1051/0004-6361/201016187 CrossRefGoogle Scholar
  77. L. Gu, I. Zhuravleva, E. Churazov, F. Paerels, J. Kaastra, H. Yamaguchi, X-ray spectroscopy of galaxy clusters: beyond the CIE modeling. ArXiv:1811.02101 (2018)
  78. K. Hawkins, T. Masseron, P. Jofré, G. Gilmore, Y. Elsworth, S. Hekker, An accurate and self-consistent chemical abundance catalogue for the APOGEE/Kepler sample. Astron. Astrophys. 594, 43 (2016).  https://doi.org/10.1051/0004-6361/201628812 ADSCrossRefGoogle Scholar
  79. Hitomi Collaboration, F. Aharonian, H. Akamatsu, F. Akimoto, S.W. Allen, L. Angelini, M. Audard, H. Awaki, M. Axelsson, A. Bamba, M.W. Bautz, R. Blandford, L.W. Brenneman, G.V. Brown, E. Bulbul, E.M. Cackett, M. Chernyakova, M.P. Chiao, P.S. Coppi, E. Costantini, J. de Plaa, J.-W. den Herder, C. Done, T. Dotani, K. Ebisawa, M.E. Eckart, T. Enoto, Y. Ezoe, A.C. Fabian, C. Ferrigno, A.R. Foster, R. Fujimoto, Y. Fukazawa, A. Furuzawa, M. Galeazzi, L.C. Gallo, P. Gandhi, M. Giustini, A. Goldwurm, L. Gu, M. Guainazzi, Y. Haba, K. Hagino, K. Hamaguchi, I.M. Harrus, I. Hatsukade, K. Hayashi, T. Hayashi, K. Hayashida, J.S. Hiraga, A. Hornschemeier, A. Hoshino, J.P. Hughes, Y. Ichinohe, R. Iizuka, H. Inoue, Y. Inoue, M. Ishida, K. Ishikawa, Y. Ishisaki, M. Iwai, J. Kaastra, T. Kallman, T. Kamae, J. Kataoka, S. Katsuda, N. Kawai, R.L. Kelley, C.A. Kilbourne, T. Kitaguchi, S. Kitamoto, T. Kitayama, T. Kohmura, M. Kokubun, K. Koyama, S. Koyama, P. Kretschmar, H.A. Krimm, A. Kubota, H. Kunieda, P. Laurent, S.-H. Lee, M.A. Leutenegger, O. Limousine, M. Loewenstein, K.S. Long, D. Lumb, G. Madejski, Y. Maeda, D. Maier, K. Makishima, M. Markevitch, H. Matsumoto, K. Matsushita, D. McCammon, B.R. McNamara, M. Mehdipour, E.D. Miller, J.M. Miller, S. Mineshige, K. Mitsuda, I. Mitsuishi, T. Miyazawa, T. Mizuno, H. Mori, K. Mori, K. Mukai, H. Murakami, R.F. Mushotzky, T. Nakagawa, H. Nakajima, T. Nakamori, S. Nakashima, K. Nakazawa, K.K. Nobukawa, M. Nobukawa, H. Noda, H. Odaka, T. Ohashi, M. Ohno, T. Okajima, N. Ota, M. Ozaki, F. Paerels, S. Paltani, R. Petre, C. Pinto, F.S. Porter, K. Pottschmidt, C.S. Reynolds, S. Safi-Harb, S. Saito, K. Sakai, T. Sasaki, G. Sato, K. Sato, R. Sato, M. Sawada, N. Schartel, P.J. Serlemitsos, H. Seta, M. Shidatsu, A. Simionescu, R.K. Smith, Y. Soong, L. Stawarz, Y. Sugawara, S. Sugita, A. Szymkowiak, H. Tajima, H. Takahashi, T. Takahashi, S. Takeda, Y. Takei, T. Tamagawa, T. Tamura, T. Tanaka, Y. Tanaka, Y.T. Tanaka, M.S. Tashiro, Y. Tawara, Y. Terada, Y. Terashima, F. Tombesi, H. Tomida, Y. Tsuboi, M. Tsujimoto, H. Tsunemi, T. Go Tsuru, H. Uchida, H. Uchiyama, Y. Uchiyama, S. Ueda, Y. Ueda, S. Uno, C.M. Urry, E. Ursino, C.P. de Vries, S. Watanabe, N. Werner, D.R. Wik, D.R. Wilkins, B.J. Williams, S. Yamada, H. Yamaguchi, K. Yamaoka, N.Y. Yamasaki, M. Yamauchi, S. Yamauchi, T. Yaqoob, Y. Yatsu, D. Yonetoku, I. Zhuravleva, A. Zoghbi, Solar abundance ratios of the iron-peak elements in the Perseus cluster. Nature 551, 478–480 (2017).  https://doi.org/10.1038/nature24301 ADSCrossRefGoogle Scholar
  80. Hitomi Collaboration, F. Aharonian, H. Akamatsu, F. Akimoto, S.W. Allen, L. Angelini, M. Audard, H. Awaki, M. Axelsson, A. Bamba, M.W. Bautz, R. Blandford, L.W. Brenneman, G.V. Brown, E. Bulbul, E.M. Cackett, M. Chernyakova, M.P. Chiao, P.S. Coppi, E. Costantini, J. de Plaa, C.P. de Vries, J.-W. den Herder, C. Done, T. Dotani, K. Ebisawa, M.E. Eckart, T. Enoto, Y. Ezoe, A.C. Fabian, C. Ferrigno, A.R. Foster, R. Fujimoto, Y. Fukazawa, A. Furuzawa, M. Galeazzi, L.C. Gallo, P. Gandhi, M. Giustini, A. Goldwurm, L. Gu, M. Guainazzi, Y. Haba, K. Hagino, K. Hamaguchi, I.M. Harrus, I. Hatsukade, K. Hayashi, T. Hayashi, K. Hayashida, N. Hell, J.S. Hiraga, A. Hornschemeier, A. Hoshino, J.P. Hughes, Y. Ichinohe, R. Iizuka, H. Inoue, Y. Inoue, M. Ishida, K. Ishikawa, Y. Ishisaki, M. Iwai, J. Kaastra, T. Kallman, T. Kamae, J. Kataoka, S. Katsuda, N. Kawai, R.L. Kelley, C.A. Kilbourne, T. Kitaguchi, S. Kitamoto, T. Kitayama, T. Kohmura, M. Kokubun, K. Koyama, S. Koyama, P. Kretschmar, H.A. Krimm, A. Kubota, H. Kunieda, P. Laurent, S.-H. Lee, M.A. Leutenegger, O. Limousin, M. Loewenstein, K.S. Long, D. Lumb, G. Madejski, Y. Maeda, D. Maier, K. Makishima, M. Markevitch, H. Matsumoto, K. Matsushita, D. McCammon, B.R. McNamara, M. Mehdipour, E.D. Miller, J.M. Miller, S. Mineshige, K. Mitsuda, I. Mitsuishi, T. Miyazawa, T. Mizuno, H. Mori, K. Mori, K. Mukai, H. Murakami, R.F. Mushotzky, T. Nakagawa, H. Nakajima, T. Nakamori, S. Nakashima, K. Nakazawa, K.K. Nobukawa, M. Nobukawa, H. Noda, H. Odaka, T. Ohashi, M. Ohno, T. Okajima, N. Ota, M. Ozaki, F. Paerels, S. Paltani, R. Petre, C. Pinto, F.S. Porter, K. Pottschmidt, C.S. Reynolds, S. Safi-Harb, S. Saito, K. Sakai, T. Sasaki, G. Sato, K. Sato, R. Sato, M. Sawada, N. Schartel, P.J. Serlemtsos, H. Seta, M. Shidatsu, A. Simionescu, R.K. Smith, Y. Soong, Ł. Stawarz, Y. Sugawara, S. Sugita, A. Szymkowiak, H. Tajima, H. Takahashi, T. Takahashi, S. Takeda, Y. Takei, T. Tamagawa, T. Tamura, T. Tanaka, Y. Tanaka, Y.T. Tanaka, M.S. Tashiro, Y. Tawara, Y. Terada, Y. Terashima, F. Tombesi, H. Tomida, Y. Tsuboi, M. Tsujimoto, H. Tsunemi, T.G. Tsuru, H. Uchida, H. Uchiyama, Y. Uchiyama, S. Ueda, Y. Ueda, S. Uno, C.M. Urry, E. Ursino, S. Watanabe, N. Werner, D.R. Wilkins, B.J. Williams, S. Yamada, H. Yamaguchi, K. Yamaoka, N.Y. Yamasaki, M. Yamauchi, S. Yamauchi, T. Yaqoob, Y. Yatsu, D. Yonetoku, I. Zhuravleva, A. Zoghbi, A.J.J. Raassen, Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi. Publ. Astron. Soc. Jpn. 70, 12 (2018a).  https://doi.org/10.1093/pasj/psx156 ADSCrossRefGoogle Scholar
  81. Hitomi Collaboration, F. Aharonian, H. Akamatsu, F. Akimoto, S.W. Allen, L. Angelini, M. Audard, H. Awaki, M. Axelsson, A. Bamba, M.W. Bautz, R. Blandford, L.W. Brenneman, G.V. Brown, E. Bulbul, E.M. Cackett, M. Chernyakova, M.P. Chiao, P.S. Coppi, E. Costantini, J. de Plaa, C.P. de Vries, J.-W. den Herder, C. Done, T. Dotani, K. Ebisawa, M.E. Eckart, T. Enoto, Y. Ezoe, A.C. Fabian, C. Ferrigno, A.R. Foster, R. Fujimoto, Y. Fukazawa, M. Furukawa, A. Furuzawa, M. Galeazzi, L.C. Gallo, P. Gandhi, M. Giustini, A. Goldwurm, L. Gu, M. Guainazzi, Y. Haba, K. Hagino, K. Hamaguchi, I.M. Harrus, I. Hatsukade, K. Hayashi, T. Hayashi, K. Hayashida, J.S. Hiraga, A. Hornschemeier, A. Hoshino, J.P. Hughes, Y. Ichinohe, R. Iizuka, H. Inoue, Y. Inoue, M. Ishida, K. Ishikawa, Y. Ishisaki, M. Iwai, J. Kaastra, T. Kallman, T. Kamae, J. Kataoka, S. Katsuda, N. Kawai, R.L. Kelley, C.A. Kilbourne, T. Kitaguchi, S. Kitamoto, T. Kitayama, T. Kohmura, M. Kokubun, K. Koyama, S. Koyama, P. Kretschmar, H.A. Krimm, A. Kubota, H. Kunieda, P. Laurent, S.-H. Lee, M.A. Leutenegger, O.O. Limousin, M. Loewenstein, K.S. Long, D. Lumb, G. Madejski, Y. Maeda, D. Maier, K. Makishima, M. Markevitch, H. Matsumoto, K. Matsushita, D. McCammon, B.R. McNamara, M. Mehdipour, E.D. Miller, J.M. Miller, S. Mineshige, K. Mitsuda, I. Mitsuishi, T. Miyazawa, T. Mizuno, H. Mori, K. Mori, K. Mukai, H. Murakami, R.F. Mushotzky, T. Nakagawa, H. Nakajima, T. Nakamori, S. Nakashima, K. Nakazawa, K.K. Nobukawa, M. Nobukawa, H. Noda, H. Odaka, A. Ogorzalek, T. Ohashi, M. Ohno, T. Okajima, N. Ota, M. Ozaki, F. Paerels, S. Paltani, R. Petre, C. Pinto, F.S. Porter, K. Pottschmidt, C.S. Reynolds, S. Safi-Harb, S. Saito, K. Sakai, T. Sasaki, G. Sato, K. Sato, R. Sato, M. Sawada, N. Schartel, P.J. Serlemtsos, H. Seta, M. Shidatsu, A. Simionescu, R.K. Smith, Y. Soong, Ł. Stawarz, Y. Sugawara, S. Sugita, A. Szymkowiak, H. Tajima, H. Takahashi, T. Takahashi, S. Takeda, Y. Takei, T. Tamagawa, T. Tamura, T. Tanaka, Y. Tanaka, Y.T. Tanaka, M.S. Tashiro, Y. Tawara, Y. Terada, Y. Terashima, F. Tombesi, H. Tomida, Y. Tsuboi, M. Tsujimoto, H. Tsunemi, T.G. Tsuru, H. Uchida, H. Uchiyama, Y. Uchiyama, S. Ueda, Y. Ueda, S. Uno, C.M. Urry, E. Ursino, S. Watanabe, N. Werner, D.R. Wilkins, B.J. Williams, S. Yamada, H. Yamaguchi, K. Yamaoka, N.Y. Yamasaki, M. Yamauchi, S. Yamauchi, T. Yaqoob, Y. Yatsu, D. Yonetoku, I. Zhuravleva, A. Zoghbi, Measurements of resonant scattering in the Perseus Cluster core with Hitomi SXS. Publ. Astron. Soc. Jpn. 70, 10 (2018b).  https://doi.org/10.1093/pasj/psx127 ADSCrossRefGoogle Scholar
  82. D.A. Howell, Type Ia supernovae as stellar endpoints and cosmological tools. Nat. Commun. 2, 350 (2011).  https://doi.org/10.1038/ncomms1344 ADSCrossRefGoogle Scholar
  83. Y. Ichinohe, N. Werner, A. Simionescu, S.W. Allen, R.E.A. Canning, S. Ehlert, F. Mernier, T. Takahashi, The growth of the galaxy cluster Abell 85: mergers, shocks, stripping and seeding of clumping. Mon. Not. R. Astron. Soc. 448, 2971–2986 (2015).  https://doi.org/10.1093/mnras/stv217 ADSCrossRefGoogle Scholar
  84. K. Iwamoto, F. Brachwitz, K. Nomoto, N. Kishimoto, H. Umeda, W.R. Hix, F.-K. Thielemann, Nucleosynthesis in chandrasekhar mass models for type IA supernovae and constraints on progenitor systems and burning-front propagation. Astrophys. J. Suppl. Ser. 125, 439–462 (1999).  https://doi.org/10.1086/313278 ADSCrossRefGoogle Scholar
  85. Y.I. Izotov, T.X. Thuan, N.G. Guseva, A new determination of the primordial He abundance using the He I \(\lambda\)10830 Å emission line: cosmological implications. Mon. Not. R. Astron. Soc. 445, 778–793 (2014).  https://doi.org/10.1093/mnras/stu1771 ADSCrossRefGoogle Scholar
  86. H.R. Jacobson, S. Keller, A. Frebel, A.R. Casey, M. Asplund, M.S. Bessell, G.S. Da Costa, K. Lind, A.F. Marino, J.E. Norris, J.M. Peña, B.P. Schmidt, P. Tisserand, J.M. Walsh, D. Yong, Q. Yu, High-resolution spectroscopic study of extremely metal-poor star candidates from the SkyMapper survey. Astrophys. J. 807, 171 (2015).  https://doi.org/10.1088/0004-637X/807/2/171 ADSCrossRefGoogle Scholar
  87. R.M. Johnstone, S.W. Allen, A.C. Fabian, J.S. Sanders, Chandra observations of Abell 2199. Mon. Not. R. Astron. Soc. 336, 299–308 (2002).  https://doi.org/10.1046/j.1365-8711.2002.05743.x ADSCrossRefGoogle Scholar
  88. A. Juráňová, N. Werner, M. Gaspari, K. Lakhchaura, P.E.J. Nulsen, M. Sun, R.E.A. Canning, S.W. Allen, A. Simionescu, J.B.R. Oonk, T. Connor, M. Donahue, Cooling in the X-ray halo of the rotating, massive early-type galaxy NGC 7049. ArXiv:1808.05761 (2018)
  89. J.S. Kaastra, R. Mewe, H. Nieuwenhuijzen, SPEX: a new code for spectral analysis of X & UV spectra, in UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas, ed. by K. Yamashita, T. Watanabe, 1996, pp. 411–414 Google Scholar
  90. J.S. Kaastra, F.B.S. Paerels, F. Durret, S. Schindler, P. Richter, Thermal radiation processes. Space Sci. Rev. 134, 155–190 (2008).  https://doi.org/10.1007/s11214-008-9310-y ADSCrossRefGoogle Scholar
  91. W. Kapferer, C. Ferrari, W. Domainko, M. Mair, T. Kronberger, S. Schindler, S. Kimeswenger, E. van Kampen, D. Breitschwerdt, M. Ruffert, Simulations of galactic winds and starbursts in galaxy clusters. Astron. Astrophys. 447, 827–842 (2006).  https://doi.org/10.1051/0004-6361:20053975 ADSCrossRefGoogle Scholar
  92. F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, The s process: nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83, 157–194 (2011).  https://doi.org/10.1103/RevModPhys.83.157 ADSCrossRefGoogle Scholar
  93. A.I. Karakas, Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 403, 1413–1425 (2010).  https://doi.org/10.1111/j.1365-2966.2009.16198.x ADSCrossRefGoogle Scholar
  94. C.C. Kirkpatrick, B.R. McNamara, Hot outflows in galaxy clusters. Mon. Not. R. Astron. Soc. 452, 4361–4376 (2015).  https://doi.org/10.1093/mnras/stv1574 ADSCrossRefGoogle Scholar
  95. C.C. Kirkpatrick, B.R. McNamara, K.W. Cavagnolo, Anisotropic metal-enriched outflows driven by active galactic nuclei in clusters of galaxies. Astrophys. J. Lett. 731, 23 (2011).  https://doi.org/10.1088/2041-8205/731/2/L23 ADSCrossRefGoogle Scholar
  96. C.C. Kirkpatrick, M. Gitti, K.W. Cavagnolo, B.R. McNamara, L.P. David, P.E.J. Nulsen, M.W. Wise, Direct evidence for outflow of metal-enriched gas along the radio jets of Hydra A. Astrophys. J. Lett. 707, 69–72 (2009).  https://doi.org/10.1088/0004-637X/707/1/L69 ADSCrossRefGoogle Scholar
  97. C. Kobayashi, H. Umeda, K. Nomoto, N. Tominaga, T. Ohkubo, Galactic chemical evolution: carbon through zinc. Astrophys. J. 653, 1145–1171 (2006).  https://doi.org/10.1086/508914 ADSCrossRefGoogle Scholar
  98. S. Konami, K. Matsushita, R. Nagino, T. Tamagawa, Abundance patterns in the interstellar medium of early-type galaxies observed with Suzaku. Astrophys. J. 783, 8 (2014).  https://doi.org/10.1088/0004-637X/783/1/8 ADSCrossRefGoogle Scholar
  99. S.M. Lea, R. Mushotzky, S.S. Holt, Einstein Observatory solid state spectrometer observations of M87 and the Virgo cluster. Astrophys. J. 262, 24–32 (1982).  https://doi.org/10.1086/160392 ADSCrossRefGoogle Scholar
  100. A. Leccardi, S. Molendi, Radial metallicity profiles for a large sample of galaxy clusters observed with XMM-Newton. Astron. Astrophys. 487, 461–466 (2008).  https://doi.org/10.1051/0004-6361:200810113 ADSCrossRefGoogle Scholar
  101. S.-C. Leung, K. Nomoto, Explosive nucleosynthesis in near-Chandrasekhar mass white dwarf models for type Ia supernovae: dependence on model parameters. ArXiv e-prints (2017) Google Scholar
  102. A. Liu, P. Tozzi, H. Yu, S. De Grandi, S. Ettori, Spatial distribution of metals in the ICM: evolution of the iron excess in relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 481, 361–372 (2018).  https://doi.org/10.1093/mnras/sty2294 ADSCrossRefGoogle Scholar
  103. K. Lodders, H. Palme, H.-P. Gail, Abundances of the elements in the solar system. Landolt Börnstein (2009).  https://doi.org/10.1007/978-3-540-88055-4_34 CrossRefGoogle Scholar
  104. M. Loewenstein, On iron enrichment, star formation, and type Ia supernovae in galaxy clusters. Astrophys. J. 648, 230–249 (2006).  https://doi.org/10.1086/505648 ADSCrossRefGoogle Scholar
  105. M. Loewenstein, Perspectives on intracluster enrichment and the stellar initial mass function in elliptical galaxies. Astrophys. J. 773, 52 (2013).  https://doi.org/10.1088/0004-637X/773/1/52 ADSCrossRefGoogle Scholar
  106. M. Loewenstein, R.F. Mushotzky, Measurement of the elemental abundances in four rich clusters of galaxies, II: the initial mass function and mass loss in elliptical galaxies, enrichment, and energetics in the ICM. Astrophys. J. 466, 695 (1996).  https://doi.org/10.1086/177542 ADSCrossRefGoogle Scholar
  107. M. Loewenstein, R.F. Mushotzky, T. Tamura, Y. Ikebe, K. Makishima, K. Matsushita, H. Awaki, P.J. Serlemitsos, Discovery and implications of very low metal abundances in NGC 1404 and NGC 4374. Astrophys. J. Lett. 436, 75–78 (1994).  https://doi.org/10.1086/187636 ADSCrossRefGoogle Scholar
  108. L. Lovisari, T. Reiprich, The non-uniformity of Galaxy cluster metallicity profiles (2018). arXiv:1811.05987v1 [astro-ph.CO]
  109. L. Lovisari, S. Schindler, W. Kapferer, Inhomogeneous metal distribution in the intracluster medium. Astron. Astrophys. 528, 60 (2011).  https://doi.org/10.1051/0004-6361/201015400 ADSCrossRefGoogle Scholar
  110. K. Maeda, F.K. Röpke, M. Fink, W. Hillebrandt, C. Travaglio, F.-K. Thielemann, Nucleosynthesis in two-dimensional delayed detonation models of type Ia supernova explosions. Astrophys. J. 712, 624–638 (2010).  https://doi.org/10.1088/0004-637X/712/1/624 ADSCrossRefGoogle Scholar
  111. F. Mannucci, D. Maoz, K. Sharon, M.T. Botticella, M. Della Valle, A. Gal-Yam, N. Panagia, The supernova rate in local galaxy clusters. Mon. Not. R. Astron. Soc. 383, 1121–1130 (2008).  https://doi.org/10.1111/j.1365-2966.2007.12603.x ADSCrossRefGoogle Scholar
  112. A.B. Mantz, S.W. Allen, R.G. Morris, A. Simionescu, O. Urban, N. Werner, I. Zhuravleva, The metallicity of the intracluster medium over cosmic time: further evidence for early enrichment. Mon. Not. R. Astron. Soc. 472, 2877–2888 (2017).  https://doi.org/10.1093/mnras/stx2200 ADSCrossRefGoogle Scholar
  113. J. Mao, J. de Plaa, J.S. Kaastra, C. Pinto, L. Gu, F. Mernier, H.-L. Yan, Y.-Y. Zhang, H. Akamatsu, Nitrogen abundance in the X-ray halos of clusters and groups of galaxies. ArXiv:1809.04870 (2018)
  114. D. Maoz, O. Graur, Star formation, supernovae, iron, and \(\alpha\): consistent cosmic and galactic histories. Astrophys. J. 848, 25 (2017).  https://doi.org/10.3847/1538-4357/aa8b6e ADSCrossRefGoogle Scholar
  115. D. Maoz, F. Mannucci, Type-Ia supernova rates and the progenitor problem: a review. Proc. Astron. Soc. Aust. 29, 447–465 (2012).  https://doi.org/10.1071/AS11052 ADSCrossRefGoogle Scholar
  116. D. Maoz, F. Mannucci, G. Nelemans, Observational clues to the progenitors of type Ia supernovae. Annu. Rev. Astron. Astrophys. 52, 107–170 (2014).  https://doi.org/10.1146/annurev-astro-082812-141031 ADSCrossRefGoogle Scholar
  117. M. Markevitch, Helium abundance in galaxy clusters and Sunyaev-Zeldovich effect. ArXiv e-prints (2007) Google Scholar
  118. M. Markevitch, A. Vikhlinin, Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1–53 (2007).  https://doi.org/10.1016/j.physrep.2007.01.001 ADSCrossRefGoogle Scholar
  119. W.G. Mathews, Interstellar events in elliptical galaxies. Astrophys. J. 354, 468 (1990).  https://doi.org/10.1086/168708 ADSCrossRefGoogle Scholar
  120. K. Matsushita, Radial profiles of Fe abundance in the intracluster medium of nearby clusters observed with XMM-Newton. Astron. Astrophys. 527, 134 (2011).  https://doi.org/10.1051/0004-6361/200913432 ADSCrossRefGoogle Scholar
  121. K. Matsushita, A. Finoguenov, H. Böhringer, XMM observation of M 87, II: abundance structure of the interstellar and intergalactic medium. Astron. Astrophys. 401, 443–461 (2003).  https://doi.org/10.1051/0004-6361:20021791 ADSCrossRefGoogle Scholar
  122. K. Matsushita, T. Ohashi, K. Makishima, Metal abundances in the hot interstellar medium in early-type galaxies observed with ASCA. Publ. Astron. Soc. Jpn. 52, 685–710 (2000).  https://doi.org/10.1093/pasj/52.4.685 ADSCrossRefGoogle Scholar
  123. K. Matsushita, Y. Fukazawa, J.P. Hughes, T. Kitaguchi, K. Makishima, K. Nakazawa, T. Ohashi, N. Ota, T. Tamura, M. Tozuka, T.G. Tsuru, Y. Urata, N.Y. Yamasaki, Suzaku observation of the metallicity distribution in the intracluster medium of the fornax cluster. Publ. Astron. Soc. Jpn. 59, 327–338 (2007).  https://doi.org/10.1093/pasj/59.sp1.S327 ADSCrossRefGoogle Scholar
  124. K. Matsushita, E. Sakuma, T. Sasaki, K. Sato, A. Simionescu, Metal-mass-to-light ratios of the Perseus cluster out to the virial radius. Astrophys. J. 764, 147 (2013).  https://doi.org/10.1088/0004-637X/764/2/147 ADSCrossRefGoogle Scholar
  125. B.J. Maughan, C. Jones, W. Forman, L. Van Speybroeck, Images, structural properties, and metal abundances of galaxy clusters observed with Chandra ACIS-I at \(0.1 < z < 1.3\). Astrophys. J. Suppl. Ser. 174, 117–135 (2008).  https://doi.org/10.1086/521225 ADSCrossRefGoogle Scholar
  126. M. McDonald, E. Bulbul, T. de Haan, E.D. Miller, B.A. Benson, L.E. Bleem, M. Brodwin, J.E. Carlstrom, I. Chiu, W.R. Forman, J. Hlavacek-Larrondo, G.P. Garmire, N. Gupta, J.J. Mohr, C.L. Reichardt, A. Saro, B. Stalder, A.A. Stark, J.D. Vieira, the evolution of the intracluster medium metallicity in Sunyaev Zeldovich-selected galaxy clusters at \(0 < z < 1.5\). Astrophys. J. 826, 124 (2016).  https://doi.org/10.3847/0004-637X/826/2/124 ADSCrossRefGoogle Scholar
  127. M. McDonald, M. Gaspari, B.R. McNamara, G.R. Tremblay, Revisiting the cooling flow problem in galaxies, groups, and clusters of galaxies. ArXiv e-prints (2018) Google Scholar
  128. P.S. Medvedev, S.Y. Sazonov, M.R. Gilfanov, Diffusion of elements in the interstellar medium in early-type galaxies. Astron. Lett. 43, 285–303 (2017).  https://doi.org/10.1134/S1063773717050024 ADSCrossRefGoogle Scholar
  129. P. Medvedev, M. Gilfanov, S. Sazonov, P. Shtykovskiy, Impact of thermal diffusion and other abundance anomalies on cosmological uses of galaxy clusters. Mon. Not. R. Astron. Soc. 440, 2464–2473 (2014).  https://doi.org/10.1093/mnras/stu434 ADSCrossRefGoogle Scholar
  130. F. Mernier, J. de Plaa, L. Lovisari, C. Pinto, Y.-Y. Zhang, J.S. Kaastra, N. Werner, A. Simionescu, Abundance and temperature distributions in the hot intra-cluster gas of Abell 4059. Astron. Astrophys. 575, 37 (2015).  https://doi.org/10.1051/0004-6361/201425282 CrossRefGoogle Scholar
  131. F. Mernier, J. de Plaa, C. Pinto, J.S. Kaastra, P. Kosec, Y.-Y. Zhang, J. Mao, N. Werner, Origin of central abundances in the hot intra-cluster medium, I: individual and average abundance ratios from XMM-Newton EPIC. Astron. Astrophys. 592, 157 (2016a).  https://doi.org/10.1051/0004-6361/201527824 CrossRefGoogle Scholar
  132. F. Mernier, J. de Plaa, C. Pinto, J.S. Kaastra, P. Kosec, Y.-Y. Zhang, J. Mao, N. Werner, O.R. Pols, J. Vink, Origin of central abundances in the hot intra-cluster medium, II: chemical enrichment and supernova yield models. Astron. Astrophys. 595, 126 (2016b).  https://doi.org/10.1051/0004-6361/201628765 CrossRefGoogle Scholar
  133. F. Mernier, J. de Plaa, J.S. Kaastra, Y.-Y. Zhang, H. Akamatsu, L. Gu, P. Kosec, J. Mao, C. Pinto, T.H. Reiprich, J.S. Sanders, A. Simionescu, N. Werner, Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals. Astron. Astrophys. 603, 80 (2017).  https://doi.org/10.1051/0004-6361/201630075 CrossRefGoogle Scholar
  134. F. Mernier, J. de Plaa, N. Werner, J.S. Kaastra, A.J.J. Raassen, L. Gu, J. Mao, I. Urdampilleta, N. Truong, A. Simionescu, Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies. Mon. Not. R. Astron. Soc. 478, 116–121 (2018a).  https://doi.org/10.1093/mnrasl/sly080 ADSCrossRefGoogle Scholar
  135. F. Mernier, N. Werner, J. de Plaa, J.S. Kaastra, A.J.J. Raassen, L. Gu, J. Mao, I. Urdampilleta, A. Simionescu, Solar chemical composition in the hot gas of cool-core ellipticals, groups, and clusters of galaxies. Mon. Not. R. Astron. Soc. 480, 95–100 (2018b).  https://doi.org/10.1093/mnrasl/sly134 ADSCrossRefGoogle Scholar
  136. R. Mewe, J.R. Lemen, G.H.J. van den Oord, Calculated X-radiation from optically thin plasmas, VI: improved calculations for continuum emission and approximation formulae for nonrelativistic average Gaunt factors. Astron. Astrophys. Suppl. Ser. 65, 511–536 (1986) ADSGoogle Scholar
  137. E.T. Million, S.W. Allen, N. Werner, G.B. Taylor, Ram-pressure stripping of the cool core of the Ophiuchus cluster. Mon. Not. R. Astron. Soc. 405, 1624–1633 (2010).  https://doi.org/10.1111/j.1365-2966.2010.16596.x ADSCrossRefGoogle Scholar
  138. R.J. Mitchell, J.L. Culhane, P.J.N. Davison, J.C. Ives, Ariel 5 observations of the X-ray spectrum of the Perseus cluster. Mon. Not. R. Astron. Soc. 175, 29–34 (1976) ADSCrossRefGoogle Scholar
  139. S. Molendi, F. Gastaldello, On the metal abundance in the core of M 87. Astron. Astrophys. 375, 14–17 (2001).  https://doi.org/10.1051/0004-6361:20010871 ADSCrossRefGoogle Scholar
  140. S. Molendi, D. Eckert, S. De Grandi, S. Ettori, F. Gastaldello, S. Ghizzardi, G.W. Pratt, M. Rossetti, A critical assessment of the metal content of the intracluster medium. Astron. Astrophys. 586, 32 (2016).  https://doi.org/10.1051/0004-6361/201527356 CrossRefGoogle Scholar
  141. S. Molendi, F. Pizzolato, Is the gas in cooling flows multiphase? Astrophys. J. 560, 194–200 (2001).  https://doi.org/10.1086/322387 ADSCrossRefGoogle Scholar
  142. B.J. Morsony, C. Heath, J.C. Workman, Modelling increased metal production in galaxy clusters with pair-instability supernovae. Mon. Not. R. Astron. Soc. 441, 2134–2147 (2014).  https://doi.org/10.1093/mnras/stu502 ADSCrossRefGoogle Scholar
  143. H. Murakami, M. Komiyama, K. Matsushita, R. Nagino, T. Sato, K. Sato, M. Kawaharada, K. Nakazawa, T. Ohashi, Y. Takei, Suzaku and XMM-Newton observations of the Fornax cluster: temperature and metallicity distribution. Publ. Astron. Soc. Jpn. 63, 963–977 (2011).  https://doi.org/10.1093/pasj/63.sp3.S963 ADSCrossRefGoogle Scholar
  144. R.F. Mushotzky, S.S. Holt, E.A. Boldt, P.J. Serlemitsos, B.W. Smith, Observation of the core of the Perseus cluster with the Einstein solid state spectrometer - Cooling gas and elemental abundances. Astrophys. J. Lett. 244, 47–51 (1981).  https://doi.org/10.1086/183477 ADSCrossRefGoogle Scholar
  145. R. Mushotzky, M. Loewenstein, K.A. Arnaud, T. Tamura, Y. Fukazawa, K. Matsushita, K. Kikuchi, I. Hatsukade, Measurement of the elemental abundances in four rich clusters of galaxies, I: observations. Astrophys. J. 466, 686 (1996).  https://doi.org/10.1086/177541 ADSCrossRefGoogle Scholar
  146. M. Nagashima, C.G. Lacey, C.M. Baugh, C.S. Frenk, S. Cole, The metal enrichment of the intracluster medium in hierarchical galaxy formation models. Mon. Not. R. Astron. Soc. 358, 1247–1266 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08766.x ADSCrossRefGoogle Scholar
  147. R. Narayan, M.V. Medvedev, Thermal conduction in clusters of galaxies. Astrophys. J. Lett. 562, 129–132 (2001).  https://doi.org/10.1086/338325 ADSCrossRefGoogle Scholar
  148. D.M. Neumann, M. Arnaud, R. Gastaud, N. Aghanim, D. Lumb, U.G. Briel, W.T. Vestrand, G.C. Stewart, S. Molendi, J.P.D. Mittaz, The NGC 4839 group falling into the Coma cluster observed by XMM-Newton. Astron. Astrophys. 365, 74–79 (2001).  https://doi.org/10.1051/0004-6361:20000182 ADSCrossRefGoogle Scholar
  149. K. Nomoto, S.-C. Leung, Single degenerate models for type Ia supernovae: progenitor’s evolution and nucleosynthesis yields. Space Sci. Rev. 214, 67 (2018).  https://doi.org/10.1007/s11214-018-0499-0 ADSCrossRefGoogle Scholar
  150. K. Nomoto, C. Kobayashi, N. Tominaga, Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).  https://doi.org/10.1146/annurev-astro-082812-140956 ADSCrossRefGoogle Scholar
  151. K. Nomoto, N. Tominaga, H. Umeda, C. Kobayashi, K. Maeda, Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl. Phys. A 777, 424–458 (2006).  https://doi.org/10.1016/j.nuclphysa.2006.05.008 ADSCrossRefGoogle Scholar
  152. E. O’Sullivan, L.P. David, J.M. Vrtilek, The impact of sloshing on the intragroup medium and old radio lobe of NGC 5044. Mon. Not. R. Astron. Soc. 437, 730–739 (2014).  https://doi.org/10.1093/mnras/stt1926 ADSCrossRefGoogle Scholar
  153. R. Pakmor, M. Kromer, S. Taubenberger, S.A. Sim, F.K. Röpke, W. Hillebrandt, Normal type Ia supernovae from violent mergers of white dwarf binaries. Astrophys. J. Lett. 747, 10 (2012).  https://doi.org/10.1088/2041-8205/747/1/L10 ADSCrossRefGoogle Scholar
  154. E.K. Panagoulia, A.C. Fabian, J.S. Sanders, Searching for the missing iron mass in the core of the Centaurus cluster. Mon. Not. R. Astron. Soc. 433, 3290–3296 (2013).  https://doi.org/10.1093/mnras/stt969 ADSCrossRefGoogle Scholar
  155. E.K. Panagoulia, J.S. Sanders, A.C. Fabian, A volume-limited sample of X-ray galaxy groups and clusters, III: central abundance drops. Mon. Not. R. Astron. Soc. 447, 417–436 (2015).  https://doi.org/10.1093/mnras/stu2469 ADSCrossRefGoogle Scholar
  156. F. Peng, D. Nagai, Effect of helium sedimentation on X-ray measurements of galaxy clusters. Astrophys. J. 693, 839–846 (2009).  https://doi.org/10.1088/0004-637X/693/1/839 ADSCrossRefGoogle Scholar
  157. K. Perrett, M. Sullivan, A. Conley, S. González-Gaitán, R. Carlberg, D. Fouchez, P. Ripoche, J.D. Neill, P. Astier, D. Balam, C. Balland, S. Basa, J. Guy, D. Hardin, I.M. Hook, D.A. Howell, R. Pain, N. Palanque-Delabrouille, C. Pritchet, N. Regnault, J. Rich, V. Ruhlmann-Kleider, S. Baumont, C. Lidman, S. Perlmutter, E.S. Walker, Evolution in the volumetric type Ia supernova rate from the supernova legacy survey. Astron. J. 144, 59 (2012).  https://doi.org/10.1088/0004-6256/144/2/59 ADSCrossRefGoogle Scholar
  158. M. Pignatari, F. Herwig, R. Hirschi, M. Bennett, G. Rockefeller, C. Fryer, F.X. Timmes, C. Ritter, A. Heger, S. Jones, U. Battino, A. Dotter, R. Trappitsch, S. Diehl, U. Frischknecht, A. Hungerford, G. Magkotsios, C. Travaglio, P. Young, NuGrid stellar data set, I: stellar yields from H to Bi for stars with metallicities \(Z = 0.02\) and \(Z = 0.01\). Astrophys. J. Suppl. Ser. 225, 24 (2016).  https://doi.org/10.3847/0067-0049/225/2/24 ADSCrossRefGoogle Scholar
  159. Planck Collaboration, P.A.R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A.J. Banday, R.B. Barreiro, J.G. Bartlettet al., Planck 2015 results, XIII: cosmological parameters. Astron. Astrophys. 594, 13 (2016).  https://doi.org/10.1051/0004-6361/201525830 CrossRefGoogle Scholar
  160. E. Pointecouteau, T.H. Reiprich, C. Adami, M. Arnaud, V. Biffi, S. Borgani, K. Borm, H. Bourdin, M. Brueggen, E. Bulbul, N. Clerc, J.H. Croston, K. Dolag, S. Ettori, A. Finoguenov, J. Kaastra, L. Lovisari, B. Maughan, P. Mazzotta, F. Pacaud, J. de Plaa, G.W. Pratt, M. Ramos-Ceja, E. Rasia, J. Sanders, Y.-Y. Zhang, S. Allen, H. Boehringer, G. Brunetti, D. Elbaz, R. Fassbender, H. Hoekstra, H. Hildebrandt, G. Lamer, D. Marrone, J. Mohr, S. Molendi, J. Nevalainen, T. Ohashi, N. Ota, M. Pierre, K. Romer, S. Schindler, T. Schrabback, A. Schwope, R. Smith, V. Springel, A. von der Linden, The hot and energetic universe: the evolution of galaxy groups and clusters. ArXiv e-prints (2013) Google Scholar
  161. L. Portinari, A. Moretti, C. Chiosi, J. Sommer-Larsen, Can a “standard” initial mass function explain the metal enrichment in clusters of galaxies? Astrophys. J. 604, 579–595 (2004).  https://doi.org/10.1086/382126 ADSCrossRefGoogle Scholar
  162. D.A. Rafferty, L. Bîrzan, P.E.J. Nulsen, B.R. McNamara, W.N. Brandt, M.W. Wise, H.J.A. Röttgering, A deep Chandra observation of the active galactic nucleus outburst and merger in Hickson compact group 62. Mon. Not. R. Astron. Soc. 428, 58–70 (2013).  https://doi.org/10.1093/mnras/sts007 ADSCrossRefGoogle Scholar
  163. E. Rasia, P. Mazzotta, H. Bourdin, S. Borgani, L. Tornatore, S. Ettori, K. Dolag, L. Moscardini, X-MAS2: study systematics on the ICM metallicity measurements. Astrophys. J. 674, 728–741 (2008).  https://doi.org/10.1086/524345 ADSCrossRefGoogle Scholar
  164. E. Rasia, S. Borgani, G. Murante, S. Planelles, A.M. Beck, V. Biffi, C. Ragone-Figueroa, G.L. Granato, L.K. Steinborn, K. Dolag, Cool core clusters from cosmological simulations. Astrophys. J. Lett. 813, 17 (2015).  https://doi.org/10.1088/2041-8205/813/1/L17 ADSCrossRefGoogle Scholar
  165. J. Rasmussen, T.J. Ponman, Temperature and abundance profiles of hot gas in galaxy groups, I: results and statistical analysis. Mon. Not. R. Astron. Soc. 380, 1554–1572 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12191.x ADSCrossRefGoogle Scholar
  166. J. Rasmussen, T.J. Ponman, Temperature and abundance profiles of hot gas in galaxy groups, II: implications for feedback and ICM enrichment. Mon. Not. R. Astron. Soc. 399, 239–263 (2009).  https://doi.org/10.1111/j.1365-2966.2009.15244.x ADSCrossRefGoogle Scholar
  167. H. Reggiani, J. Meléndez, C. Kobayashi, A. Karakas, V. Placco, Constraining cosmic scatter in the galactic halo through a differential analysis of metal-poor stars. Astron. Astrophys. 608, 46 (2017).  https://doi.org/10.1051/0004-6361/201730750 ADSCrossRefGoogle Scholar
  168. T.H. Reiprich, K. Basu, S. Ettori, H. Israel, L. Lovisari, S. Molendi, E. Pointecouteau, M. Roncarelli, Outskirts of galaxy clusters. Space Sci. Rev. 177, 195–245 (2013).  https://doi.org/10.1007/s11214-013-9983-8 ADSCrossRefGoogle Scholar
  169. A. Renzini, S. Andreon, Chemical evolution on the scale of clusters of galaxies: a conundrum? Mon. Not. R. Astron. Soc. 444, 3581–3591 (2014).  https://doi.org/10.1093/mnras/stu1689 ADSCrossRefGoogle Scholar
  170. A. Renzini, L. Ciotti, A. D’Ercole, S. Pellegrini, Production and circulation of iron in elliptical galaxies and clusters of galaxies. Astrophys. J. 419, 52 (1993).  https://doi.org/10.1086/173458 ADSCrossRefGoogle Scholar
  171. C.S. Reynolds, E.A. Casper, S. Heinz, A deep Chandra observation of Abell 4059: a new face to “radio-mode” AGN feedback? Astrophys. J. 679, 1181–1191 (2008).  https://doi.org/10.1086/587456 ADSCrossRefGoogle Scholar
  172. C. Ritter, F. Herwig, S. Jones, M. Pignatari, C. Fryer, R. Hirschi, NuGrid stellar data set, II: stellar yields from H to Bi for stellar models with Mzams \(= 1\) to 25 Msun and \(Z = 0.0001\) to 0.02. ArXiv e-prints (2017) Google Scholar
  173. E.E. Salpeter, The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).  https://doi.org/10.1086/145971 ADSCrossRefGoogle Scholar
  174. J.S. Sanders, A.C. Fabian, Spatially resolved X-ray spectroscopy of the core of the Centaurus cluster. Mon. Not. R. Astron. Soc. 331, 273–283 (2002).  https://doi.org/10.1046/j.1365-8711.2002.05211.x ADSCrossRefGoogle Scholar
  175. J.S. Sanders, A.C. Fabian, Enrichment in the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 371, 1483–1496 (2006a).  https://doi.org/10.1111/j.1365-2966.2006.10779.x ADSCrossRefGoogle Scholar
  176. J.S. Sanders, A.C. Fabian, Resonance scattering, absorption and off-centre abundance peaks in clusters of galaxies. Mon. Not. R. Astron. Soc. 370, 63–73 (2006b).  https://doi.org/10.1111/j.1365-2966.2006.10497.x ADSCrossRefGoogle Scholar
  177. J.S. Sanders, A.C. Fabian, A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 381, 1381–1399 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12347.x ADSCrossRefGoogle Scholar
  178. J.S. Sanders, A.C. Fabian, Revealing O VII from stacked X-ray grating spectra of clusters, groups and elliptical galaxies. Mon. Not. R. Astron. Soc. 412, 35–39 (2011).  https://doi.org/10.1111/j.1745-3933.2010.01000.x ADSCrossRefGoogle Scholar
  179. J.S. Sanders, A.C. Fabian, S.W. Allen, R.G. Morris, J. Graham, R.M. Johnstone, Cool X-ray emitting gas in the core of the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 385, 1186–1200 (2008).  https://doi.org/10.1111/j.1365-2966.2008.12952.x ADSCrossRefGoogle Scholar
  180. J.S. Sanders, A.C. Fabian, K.A. Frank, J.R. Peterson, H.R. Russell, Deep high-resolution X-ray spectra from cool-core clusters. Mon. Not. R. Astron. Soc. 402, 127–144 (2010).  https://doi.org/10.1111/j.1365-2966.2009.15902.x ADSCrossRefGoogle Scholar
  181. J.S. Sanders, A.C. Fabian, G.B. Taylor, H.R. Russell, K.M. Blundell, R.E.A. Canning, J. Hlavacek-Larrondo, S.A. Walker, C.K. Grimes, A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 457, 82–109 (2016).  https://doi.org/10.1093/mnras/stv2972 ADSCrossRefGoogle Scholar
  182. A.J.R. Sanderson, E. O’Sullivan, T.J. Ponman, A statistically selected Chandra sample of 20 galaxy clusters, II: Gas properties and cool core/non-cool core bimodality. Mon. Not. R. Astron. Soc. 395, 764–776 (2009).  https://doi.org/10.1111/j.1365-2966.2009.14613.x ADSCrossRefGoogle Scholar
  183. C.L. Sarazin, X-ray emission from clusters of galaxies. Rev. Mod. Phys. 58, 1–115 (1986).  https://doi.org/10.1103/RevModPhys.58.1 ADSCrossRefGoogle Scholar
  184. M. Sarzi, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Bureau, M. Cappellari, A. Crocker, R.L. Davies, T.A. Davis, P.T. de Zeeuw, P.-A. Duc, E. Emsellem, S. Khochfar, D. Krajnović, H. Kuntschner, P.-Y. Lablanche, R.M. McDermid, R. Morganti, T. Naab, T. Oosterloo, N. Scott, P. Serra, L.M. Young, A.-M. Weijmans, The ATLAS\(^{3\mathrm{D}}\) project, XIX: the hot gas content of early-type galaxies: fast versus slow rotators. Mon. Not. R. Astron. Soc. 432, 1845–1861 (2013).  https://doi.org/10.1093/mnras/stt062 ADSCrossRefGoogle Scholar
  185. T. Sasaki, K. Matsushita, K. Sato, Metal distributions out to 0.5 \(r _{180}\) in the intracluster medium of four galaxy groups observed with Suzaku. Astrophys. J. 781, 36 (2014).  https://doi.org/10.1088/0004-637X/781/1/36 ADSCrossRefGoogle Scholar
  186. K. Sato, K. Tokoi, K. Matsushita, Y. Ishisaki, N.Y. Yamasaki, M. Ishida, T. Ohashi, Type Ia and II supernovae contributions to metal enrichment in the intracluster medium observed with Suzaku. Astrophys. J. Lett. 667, 41–44 (2007).  https://doi.org/10.1086/522031 ADSCrossRefGoogle Scholar
  187. K. Sato, K. Matsushita, F. Gastaldello, Temperature and metallicity in the intra-cluster medium of Abell 262 observed with Suzaku. Publ. Astron. Soc. Jpn. 61, 365–376 (2009a).  https://doi.org/10.1093/pasj/61.sp1.S365 ADSCrossRefGoogle Scholar
  188. K. Sato, K. Matsushita, Y. Ishisaki, N.Y. Yamasaki, M. Ishida, T. Ohashi, Suzaku observation of group of galaxies NGC 507: temperature and metal distributions in the intra-cluster medium. Publ. Astron. Soc. Jpn. 61, 353–363 (2009b).  https://doi.org/10.1093/pasj/61.sp1.S353 ADSCrossRefGoogle Scholar
  189. G. Schellenberger, T.H. Reiprich, L. Lovisari, J. Nevalainen, L. David, XMM-Newton and Chandra cross-calibration using HIFLUGCS galaxy clusters. Systematic temperature differences and cosmological impact. Astron. Astrophys. 575, 30 (2015).  https://doi.org/10.1051/0004-6361/201424085 ADSCrossRefGoogle Scholar
  190. S. Schindler, A. Diaferio, Metal enrichment processes. Space Sci. Rev. 134, 363–377 (2008).  https://doi.org/10.1007/s11214-008-9321-8 ADSCrossRefGoogle Scholar
  191. I.R. Seitenzahl, F. Ciaraldi-Schoolmann, F.K. Röpke, M. Fink, W. Hillebrandt, M. Kromer, R. Pakmor, A.J. Ruiter, S.A. Sim, S. Taubenberger, Three-dimensional delayed-detonation models with nucleosynthesis for type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 1156–1172 (2013).  https://doi.org/10.1093/mnras/sts402 ADSCrossRefGoogle Scholar
  192. P.J. Serlemitsos, B.W. Smith, E.A. Boldt, S.S. Holt, J.H. Swank, X-radiation from clusters of galaxies—spectral evidence for a hot evolved gas. Astrophys. J. Lett. 211, 63–66 (1977).  https://doi.org/10.1086/182342 ADSCrossRefGoogle Scholar
  193. K. Sharon, A. Gal-Yam, D. Maoz, A.V. Filippenko, R.J. Foley, J.M. Silverman, H. Ebeling, C.-J. Ma, E.O. Ofek, J.-P. Kneib, M. Donahue, R.S. Ellis, W.L. Freedman, R.P. Kirshner, J.S. Mulchaey, V.L. Sarajedini, G.M. Voit, The type Ia supernova rate in redshift 0.5–0.9 galaxy clusters. Astrophys. J. 718, 876–893 (2010).  https://doi.org/10.1088/0004-637X/718/2/876 ADSCrossRefGoogle Scholar
  194. K.J. Shen, D. Kasen, B.J. Miles, D.M. Townsley, Sub-Chandrasekhar-mass white dwarf detonations revisited. Astrophys. J. 854, 52 (2018).  https://doi.org/10.3847/1538-4357/aaa8de ADSCrossRefGoogle Scholar
  195. P. Shtykovskiy, M. Gilfanov, Thermal diffusion in the intergalactic medium of clusters of galaxies. Mon. Not. R. Astron. Soc. 401, 1360–1368 (2010).  https://doi.org/10.1111/j.1365-2966.2009.15735.x ADSCrossRefGoogle Scholar
  196. A. Simionescu, N. Werner, A. Finoguenov, H. Böhringer, M. Brüggen, Metal-rich multi-phase gas in M 87. AGN-driven metal transport, magnetic-field supported multi-temperature gas, and constraints on non-thermal emission observed with XMM-Newton. Astron. Astrophys. 482, 97–112 (2008).  https://doi.org/10.1051/0004-6361:20078749 ADSCrossRefGoogle Scholar
  197. A. Simionescu, N. Werner, H. Böhringer, J.S. Kaastra, A. Finoguenov, M. Brüggen, P.E.J. Nulsen, Chemical enrichment in the cluster of galaxies Hydra A. Astron. Astrophys. 493, 409–424 (2009).  https://doi.org/10.1051/0004-6361:200810225 ADSCrossRefGoogle Scholar
  198. A. Simionescu, N. Werner, W.R. Forman, E.D. Miller, Y. Takei, H. Böhringer, E. Churazov, P.E.J. Nulsen, Metal transport by gas sloshing in M87. Mon. Not. R. Astron. Soc. 405, 91–99 (2010).  https://doi.org/10.1111/j.1365-2966.2010.16450.x ADSCrossRefGoogle Scholar
  199. A. Simionescu, N. Werner, O. Urban, S.W. Allen, Y. Ichinohe, I. Zhuravleva, A uniform contribution of core-collapse and type Ia supernovae to the chemical enrichment pattern in the outskirts of the Virgo cluster. Astrophys. J. Lett. 811, 25 (2015).  https://doi.org/10.1088/2041-8205/811/2/L25 ADSCrossRefGoogle Scholar
  200. A. Simionescu, N. Werner, A. Mantz, S.W. Allen, O. Urban, Witnessing the growth of the nearest galaxy cluster: thermodynamics of the Virgo cluster outskirts. Mon. Not. R. Astron. Soc. 469, 1476–1495 (2017).  https://doi.org/10.1093/mnras/stx919 ADSCrossRefGoogle Scholar
  201. A. Simionescu, S. Nakashima, H. Yamaguchi, K. Matsushita, F. Mernier, N. Werner, T. Tamura, K. Nomoto, J. de Plaa, A. Bamba, E. Bulbul, Y. Ezoe, A.C. Fabian, Y. Fukazawa, L. Gu, Y. Ichinohe, M.N. Ishigaki, J.S. Kaastra, C. Kilbourne, T. Kitayama, S.-C. Leung, M. Leutenegger, M. Loewenstein, Y. Maeda, E.D. Miller, R.F. Mushotzky, H. Noda, C. Pinto, F.S. Porter, S. Safi-Harb, K. Sato, T. Takahashi, S. Ueda, S. Zha, Constraints on the chemical enrichment history of the Perseus cluster of galaxies from high-resolution X-ray spectroscopy. ArXiv e-prints (2018) Google Scholar
  202. S.L. Snowden, R.F. Mushotzky, K.D. Kuntz, D.S. Davis, A catalog of galaxy clusters observed by XMM-Newton. Astron. Astrophys. 478, 615–658 (2008).  https://doi.org/10.1051/0004-6361:20077930 ADSCrossRefGoogle Scholar
  203. Y. Su, P.E.J. Nulsen, R.P. Kraft, E. Roediger, J.A. ZuHone, C. Jones, W.R. Forman, A. Sheardown, J.A. Irwin, S.W. Randall, Gas sloshing regulates and records the evolution of the Fornax cluster. Astrophys. J. 851, 69 (2017).  https://doi.org/10.3847/1538-4357/aa989e ADSCrossRefGoogle Scholar
  204. T. Sukhbold, T. Ertl, S.E. Woosley, J.M. Brown, H.-T. Janka, Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821, 38 (2016).  https://doi.org/10.3847/0004-637X/821/1/38 ADSCrossRefGoogle Scholar
  205. M. Sun, Hot gas in galaxy groups: recent observations. New J. Phys. 14(4), 045004 (2012).  https://doi.org/10.1088/1367-2630/14/4/045004 ADSCrossRefGoogle Scholar
  206. M. Sun, M. Donahue, E. Roediger, P.E.J. Nulsen, G.M. Voit, C. Sarazin, W. Forman, C. Jones, Spectacular X-ray tails, intracluster star formation, and ULXs in A3627. Astrophys. J. 708, 946–964 (2010).  https://doi.org/10.1088/0004-637X/708/2/946 ADSCrossRefGoogle Scholar
  207. T. Tamura, J.A.M. Bleeker, J.S. Kaastra, C. Ferrigno, S. Molendi, XMM-Newton observations of the cluster of galaxies Abell 496. Measurements of the elemental abundances in the intracluster medium. Astron. Astrophys. 379, 107–114 (2001).  https://doi.org/10.1051/0004-6361:20011317 ADSCrossRefGoogle Scholar
  208. T. Tamura, J.S. Kaastra, K. Makishima, I. Takahashi, High resolution soft X-ray spectroscopy of the elliptical galaxy NGC 5044. Results from the reflection grating spectrometer on-board XMM-Newton. Astron. Astrophys. 399, 497–504 (2003).  https://doi.org/10.1051/0004-6361:20021775 ADSCrossRefGoogle Scholar
  209. T. Tamura, Y. Maeda, K. Mitsuda, A.C. Fabian, J.S. Sanders, A. Furuzawa, J.P. Hughes, R. Iizuka, K. Matsushita, T. Tamagawa, X-ray spectroscopy of the core of the Perseus cluster with Suzaku: elemental abundances in the intracluster medium. Astrophys. J. Lett. 705, 62–66 (2009).  https://doi.org/10.1088/0004-637X/705/1/L62 ADSCrossRefGoogle Scholar
  210. M. Tashiro, H. Maejima, K. Toda, R. Kelley, L. Reichenthal, J. Lobell, R. Petre, M. Guainazzi, E. Costantini, M. Edison, R. Fujimoto, M. Grim, K. Hayashida, J.-W. den Herder, Y. Ishisaki, S. Paltani, K. Matsushita, K. Mori, G. Sneiderman, Y. Takei, Y. Terada, H. Tomida, H. Akamatsu, L. Angelini, Y. Arai, H. Awaki, I. Babyk, A. Bamba, P. Barfknecht, K. Barnstable, T. Bialas, B. Blagojevic, J. Bonafede, C. Brambora, L. Brenneman, G. Brown, K. Brown, L. Burns, E. Canavan, T. Carnahan, M. Chiao, B. Comber, L. Corrales, C. de Vries, J. Dercksen, M. Diaz-Trigo, T. Dillard, M. DiPirro, C. Done, T. Dotani, K. Ebisawa, M. Eckart, T. Enoto, Y. Ezoe, C. Ferrigno, Y. Fukazawa, Y. Fujita, A. Furuzawa, L. Gallo, S. Graham, L. Gu, K. Hagino, K. Hamaguchi, I. Hatsukade, D. Hawes, T. Hayashi, C. Hegarty, N. Hell, J. Hiraga, E. Hodges-Kluck, M. Holland, A. Hornschemeier, A. Hoshino, Y. Ichinohe, R. Iizuka, K. Ishibashi, M. Ishida, K. Ishikawa, K. Ishimura, B. James, T. Kallman, E. Kara, S. Katsuda, S. Kenyon, C. Kilbourne, M. Kimball, T. Kitaguti, S. Kitamoto, S. Kobayashi, T. Kohmura, S. Koyama, A. Kubota, M. Leutenegger, T. Lockard, M. Loewenstein, Y. Maeda, L. Marbley, M. Markevitch, H. Matsumoto, K. Matsuzaki, D. McCammon, B. McNamara, J. Miko, E. Miller, J. Miller, K. Minesugi, I. Mitsuishi, T. Mizuno, H. Mori, K. Mukai, H. Murakami, R. Mushotzky, H. Nakajima, H. Nakamura, S. Nakashima, K. Nakazawa, C. Natsukari, K. Nigo, Y. Nishioka, K. Nobukawa, M. Nobukawa, H. Noda, H. Odaka, M. Ogawa, T. Ohashi, M. Ohno, M. Ohta, T. Okajima, A. Okamoto, M. Onizuka, N. Ota, M. Ozaki, P. Plucinsky, F.S. Porter, K. Pottschmidt, K. Sato, R. Sato, M. Sawada, H. Seta, K. Shelton, Y. Shibano, M. Shida, M. Shidatsu, P. Shirron, A. Simionescu, R. Smith, K. Someya, Y. Soong, Y. Suagawara, A. Szymkowiak, H. Takahashi, T. Tamagawa, T. Tamura, T. Tanaka, Y. Terashima, Y. Tsuboi, M. Tsujimoto, H. Tsunemi, T. Tsuru, H. Uchida, H. Uchiyama, Y. Ueda, S. Uno, T. Walsh, S. Watanabe, B. Williams, R. Wolfs, M. Wright, S. Yamada, H. Yamaguchi, K. Yamaoka, N. Yamasaki, S. Yamauchi, M. Yamauchi, K. Yanagase, T. Yaqoob, S. Yasuda, N. Yoshioka, J. Zabala, Z. Irina, Concept of the X-ray astronomy recovery mission, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, 2018, p. 1069922.  https://doi.org/10.1117/12.2309455 CrossRefGoogle Scholar
  211. F.-K. Thielemann, M. Eichler, I.V. Panov, B. Wehmeyer, Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. Sci. 67, 253–274 (2017).  https://doi.org/10.1146/annurev-nucl-101916-123246 ADSCrossRefGoogle Scholar
  212. F.-K. Thielemann, J. Isern, A. Perego, P. von Ballmoos, Nucleosynthesis in supernovae. Space Sci. Rev. 214, 62 (2018).  https://doi.org/10.1007/s11214-018-0494-5 ADSCrossRefGoogle Scholar
  213. S. Thölken, L. Lovisari, T.H. Reiprich, J. Hasenbusch, X-ray analysis of the galaxy group UGC 03957 beyond R200 with Suzaku. Astron. Astrophys. 592, 37 (2016).  https://doi.org/10.1051/0004-6361/201527608 ADSCrossRefGoogle Scholar
  214. D. Thomas, C. Maraston, R. Bender, C. Mendes de Oliveira, The epochs of early-type galaxy formation as a function of environment. Astrophys. J. 621, 673–694 (2005).  https://doi.org/10.1086/426932 ADSCrossRefGoogle Scholar
  215. P. Tozzi, P. Rosati, S. Ettori, S. Borgani, V. Mainieri, C. Norman, Iron Abundance in the intracluster medium at high redshift. Astrophys. J. 593, 705–720 (2003).  https://doi.org/10.1086/376731 ADSCrossRefGoogle Scholar
  216. N. Truong, E. Rasia, V. Biffi, F. Mernier, N. Werner, M. Gaspari, S. Borgani, S. Planelles, D. Fabjan, G. Murante, Mass-metallicity relation from cosmological hydrodynamical simulations and X-ray observations of galaxy groups and clusters. ArXiv e-prints (2018) Google Scholar
  217. B.A. Twarog, The chemical evolution of the solar neighborhood, II: the age-metallicity relation and the history of star formation in the galactic disk. Astrophys. J. 242, 242–259 (1980).  https://doi.org/10.1086/158460 ADSCrossRefGoogle Scholar
  218. O. Urban, N. Werner, S.W. Allen, A. Simionescu, A. Mantz, A uniform metallicity in the outskirts of massive, nearby galaxy clusters. Mon. Not. R. Astron. Soc. 470, 4583–4599 (2017).  https://doi.org/10.1093/mnras/stx1542 ADSCrossRefGoogle Scholar
  219. P.G. van Dokkum, C. Conroy, A substantial population of low-mass stars in luminous elliptical galaxies. Nature 468, 940–942 (2010).  https://doi.org/10.1038/nature09578 ADSCrossRefGoogle Scholar
  220. L. Vigroux, On the iron abundance in clusters of galaxies. Astron. Astrophys. 56, 473 (1977) ADSGoogle Scholar
  221. A. Vikhlinin, A. Kravtsov, W. Forman, C. Jones, M. Markevitch, S.S. Murray, L. Van Speybroeck, Chandra sample of nearby relaxed galaxy clusters: mass, gas fraction, and mass-temperature relation. Astrophys. J. 640, 691–709 (2006).  https://doi.org/10.1086/500288 ADSCrossRefGoogle Scholar
  222. J. Vink, Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev. 20, 49 (2012).  https://doi.org/10.1007/s00159-011-0049-1 ADSCrossRefGoogle Scholar
  223. S. Walker, A. Simionescu, D. Nagai, N. Okabe, D. Eckert, T. Mroczkowski, H. Akamatsu, S. Ettori, V. Ghirardini, The physics of galaxy cluster outskirts. ArXiv:1810.00890 (2018)
  224. N. Werner, H. Böhringer, J.S. Kaastra, J. de Plaa, A. Simionescu, J. Vink, XMM-Newton high-resolution spectroscopy reveals the chemical evolution of M 87. Astron. Astrophys. 459, 353–360 (2006a).  https://doi.org/10.1051/0004-6361:20065678 ADSCrossRefGoogle Scholar
  225. N. Werner, J. de Plaa, J.S. Kaastra, J. Vink, J.A.M. Bleeker, T. Tamura, J.R. Peterson, F. Verbunt, XMM-Newton spectroscopy of the cluster of galaxies 2A 0335+096. Astron. Astrophys. 449, 475–491 (2006b).  https://doi.org/10.1051/0004-6361:20053868 ADSCrossRefGoogle Scholar
  226. N. Werner, F. Durret, T. Ohashi, S. Schindler, R.P.C. Wiersma, Observations of metals in the intra-cluster medium. Space Sci. Rev. 134, 337–362 (2008).  https://doi.org/10.1007/s11214-008-9320-9 ADSCrossRefGoogle Scholar
  227. N. Werner, O. Urban, A. Simionescu, S.W. Allen, A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies. Nature 502, 656–658 (2013).  https://doi.org/10.1038/nature12646 ADSCrossRefGoogle Scholar
  228. N. Werner, B.R. McNamara, E. Churazov, E. Scannapieco, Hot atmospheres, cold gas, AGN feedback and the evolution of early type galaxies: a topical perspective (2018). arXiv:1811.05004
  229. R.P.C. Wiersma, J. Schaye, T. Theuns, C. Dalla Vecchia, L. Tornatore, Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations. Mon. Not. R. Astron. Soc. 399, 574–600 (2009).  https://doi.org/10.1111/j.1365-2966.2009.15331.x ADSCrossRefGoogle Scholar
  230. H. Xu, S.M. Kahn, J.R. Peterson, E. Behar, F.B.S. Paerels, R.F. Mushotzky, J.G. Jernigan, A.C. Brinkman, K. Makishima, High-resolution observations of the elliptical galaxy NGC 4636 with the reflection grating spectrometer on board XMM-Newton. Astrophys. J. 579, 600–606 (2002).  https://doi.org/10.1086/342828 ADSCrossRefGoogle Scholar
  231. H. Yamaguchi, C. Badenes, R. Petre, T. Nakano, D. Castro, T. Enoto, J.S. Hiraga, J.P. Hughes, Y. Maeda, M. Nobukawa, S. Safi-Harb, P.O. Slane, R.K. Smith, H. Uchida, Discriminating the progenitor type of supernova remnants with iron K-shell emission. Astrophys. J. 785, 27 (2014).  https://doi.org/10.1088/2041-8205/785/2/L27 ADSCrossRefGoogle Scholar
  232. R.M. Yates, P.A. Thomas, B.M.B. Henriques, Iron in galaxy groups and clusters: confronting galaxy evolution models with a newly homogenized data set. Mon. Not. R. Astron. Soc. 464, 3169–3193 (2017).  https://doi.org/10.1093/mnras/stw2361 ADSCrossRefGoogle Scholar
  233. D. Zaritsky, A.H. Gonzalez, A.I. Zabludoff, Intracluster stars and the chemical enrichment of the intracluster medium. Astrophys. J. Lett. 613, 93–96 (2004).  https://doi.org/10.1086/425253 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Lendület Hot Universe Research GroupMTA-Eötvös UniversityBudapestHungary
  2. 2.Institute of PhysicsEötvös UniversityBudapestHungary
  3. 3.SRON Netherlands Institute for Space ResearchUtrechtThe Netherlands
  4. 4.Physics Department, Astronomy UnitTrieste UniversityTriesteItaly
  5. 5.Observatory of TriesteINAFTriesteItaly
  6. 6.Institute of Space and Astronautical Science (ISAS)JAXASagamihara, KanagawaJapan
  7. 7.Space Research Institute of the Russian Academy of Sciences (IKI)MoscowRussia
  8. 8.Kavli Institute for the Physics and Mathematics of the UniverseThe University of TokyoKashiwa, ChibaJapan
  9. 9.Osservatorio di Astrofisica e Scienza dello SpazioINAFBolognaItaly
  10. 10.Sezione di BolognaINFNBolognaItaly
  11. 11.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  12. 12.School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  13. 13.Leiden ObservatoryLeiden UniversityLeidenThe Netherlands
  14. 14.High Energy Astrophysics LaboratoryRIKENWako, SaitamaJapan

Personalised recommendations