Impact-Seismic Investigations of the InSight Mission
- 335 Downloads
- 2 Citations
Abstract
Impact investigations will be an important aspect of the InSight mission. One of the scientific goals of the mission is a measurement of the current impact rate at Mars. Impacts will additionally inform the major goal of investigating the interior structure of Mars.
In this paper, we review the current state of knowledge about seismic signals from impacts on the Earth, Moon, and laboratory experiments. We describe the generalized physical models that can be used to explain these signals. A discussion of the appropriate source time function for impacts is presented, along with spectral characteristics including the cutoff frequency and its dependence on impact momentum. Estimates of the seismic efficiency (ratio between seismic and impact energies) vary widely. Our preferred value for the seismic efficiency at Mars is \(5 \times 10^{- 4}\), which we recommend using until we can measure it during the InSight mission, when seismic moments are not used directly. Effects of the material properties at the impact point and at the seismometer location are considered. We also discuss the processes by which airbursts and acoustic waves emanate from bolides, and the feasibility of detecting such signals.
We then consider the case of impacts on Mars. A review is given of the current knowledge of present-day cratering on Mars: the current impact rate, characteristics of those impactors such as velocity and directions, and the morphologies of the craters those impactors create. Several methods of scaling crater size to impact energy are presented. The Martian atmosphere, although thin, will cause fragmentation of impactors, with implications for the resulting seismic signals.
We also benchmark several different seismic modeling codes to be used in analysis of impact detections, and those codes are used to explore the seismic amplitude of impact-induced signals as a function of distance from the impact site. We predict a measurement of the current impact flux will be possible within the timeframe of the prime mission (one Mars year) with the detection of ∼ a few to several tens of impacts. However, the error bars on these predictions are large.
Specific to the InSight mission, we list discriminators of seismic signals from impacts that will be used to distinguish them from marsquakes. We describe the role of the InSight Impacts Science Theme Group during mission operations, including a plan for possible night-time meteor imaging. The impacts detected by these methods during the InSight mission will be used to improve interior structure models, measure the seismic efficiency, and calculate the size frequency distribution of current impacts.
Keywords
InSight Mars Impact cratering SeismologyNotes
Acknowledgements
We are grateful to Jay Melosh and an unnamed reviewer for thoughtful and helpful comments. We appreciate the hard work of the engineering and operations teams who are making the InSight mission possible. Elizabeth Barrett provided valuable input. Thank you to Matthew Siegler for helping to address a reviewer comment. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. French co-authors thank the support of the French Space Agency CNES as well as ANR SIMARS. IPGP coauthors (IPGP contribution number 3988) also received support from the UnivEarth Labex at Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). N. Teanby and J. Wookey are funded by the UK Space Agency. Swiss co-authors recognize the support of the (1) Swiss National Science Foundation and French Agence Nationale de la Recherche (SNF-ANR project 157133 “Seismology on Mars”) and (2) Swiss State Secretariat for Education, Research and Innovation (SEFRI project “MarsQuake Service—Preparatory Phase”). We gratefully acknowledge the developers of the iSALE hydrocode. A portion of this work was performed using HPC resources of CINES (Centre Informatique National de l’Enseignement Supérieur) under the allocation A0030407341 made by GENCI (Grand Equipement National de Calcul Intensif). KM research is fully supported by the Australian Government (project numbers DE180100584 and DP180100661). This is InSight Contribution Number 47.
References
- K. Aki, P.G. Richards, Quantitative Seismology, 2nd edn. (University Science Books, Herndon, 2002), ISBN 0-935702-96-2, 704 pp. Google Scholar
- D.L. Anderson, F.K. Duennebier, G.V. Latham, M.F. Toksöz, R.L. Kovach, T.C. Knight, G. Sutton, The Viking seismic experiment. Science 194(4271), 1318–1321 (1976). https://doi.org/10.1126/science.194.4271.1318 ADSCrossRefGoogle Scholar
- N. Artemieva, E. Pierazzo, The Canyon Diablo impact event: projectile motion through the atmosphere. Meteorit. Planet. Sci. 44(1), 25–42 (2009) ADSGoogle Scholar
- B. Baldwin, Y. Sheaffer, Ablation and breakup of large meteoroids during atmospheric entry. J. Geophys. Res. 76(19), 4653–4668 (1971) ADSGoogle Scholar
- W.B. Banerdt et al., The InSight mission. Space Sci. Rev. (2018, this issue) Google Scholar
- W.B. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S.W. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T. van Zoest, R. Weber, M.A. Wieczorek, R. Garcia, K. Hurst, InSight: a discovery mission to explore the interior of Mars, in Lunar and Planetary Science Conference, Lunar and Planetary Inst. Technical Report 44 (2013), p. 1915 Google Scholar
- W.B. Banerdt, S.E. Smrekar, T. Hoffman, S. Spath, P. Lognonné, T. Spohn, H. Stone, J. Willis, J. Feldman, R. De Paula, R. Turner, S. Asmar, D. Banfield, U. Christensen, J. Clinton, V. Dehant, W. Folkner, R. Garcia, D. Giardini, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, B. Knapmeyer-Endrun, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, C. Russell, N. Teanby, J. Tromp, R. Weber, M. Wieczorek, K. Hurst, E. Barrett (The InSight Team), The InSight mission for 2018, in Lunar & Planetary Science Conference 48 (2017), abstract 1896 Google Scholar
- M.E. Banks, I.J. Daubar, N.C. Schmerr, M.P. Golombek, Predicted seismic signatures of recent dated Martian impact events: implications for the InSight lander, in Lunar and Planetary Science Conference 46 (2015), abstract 2679 Google Scholar
- G.D. Bart, P.L. Spinolo, Formation of airblast features associated with young Martian craters. Abstr. Program – Geol. Soc. Am. 45(7), 200-10 (2013) Google Scholar
- H.E. Bass, J.P. Chambers, Absorption of sound in the Martian atmosphere. J. Acoust. Soc. Am. 109, 2371 (2001). https://doi.org/10.1121/1.4744345 ADSCrossRefGoogle Scholar
- K.J. Becker et al., ISIS support for NASA mission instrument ground data processing systems, in Lunar Planet. Sci. XLIV, Houston, Texas (2013), abstract #2829 Google Scholar
- J.F. Bell, M.J. Wolff, M.C. Malin, W.M. Calvin, B.A. Cantor, M.A. Caplinger, P.C. Thomas, Mars Reconnaissance Orbiter Mars Color Imager (MARCI): instrument description, calibration, and performance. J. Geophys. Res. 114(E8), E08S92 (2009). https://doi.org/10.1029/2008JE003315 CrossRefGoogle Scholar
- A. Ben-Menahem, Source parameters of the Siberian explosion of June 30, 1908, from analysis and synthesis of seismic signals at four stations. Phys. Earth Planet. Inter. 11(1), 1–35 (1975). https://doi.org/10.1016/0031-9201(75)90072-2 ADSCrossRefGoogle Scholar
- P. Bézier, Définition numérique des courbes et surfaces I. Automatisme 11, 625–632 (1966) Google Scholar
- P. Bézier, Définition numérique des courbes et surfaces II. Automatisme 12, 17–21 (1967) Google Scholar
- M. Böse, J. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, P. Lognonné, W.B. Banerdt, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. 262, 48–65 (2017). https://doi.org/10.1016/j.pepi.2016.11.003 ADSCrossRefGoogle Scholar
- M. Böse, D. Giardini, S. Stähler, S. Ceylan, J. Clinton, M. van Driel, A. Khan, F. Euchner, P. Lognonné, B. Banerdt Magnitude Scales for Marsquakes (2018, in press) Google Scholar
- P. Brown, D.O. ReVelle, E.A. Silber, W.N. Edwards, S. Arrowsmith, L.E. Jackson, G. Tancredi, D. Eaton, Analysis of a crater-forming meteorite impact in Peru. J. Geophys. Res. 113, E09007 (2008) ADSGoogle Scholar
- P.G. Brown, J.D. Assink, L. Astiz, R. Blaauw, M.B. Boslough, J. Borovička, N. Brachet, D. Brown, M. Campbell-Brown, L. Ceranna et al., A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241 (2013) ADSGoogle Scholar
- K.J. Burleigh, H.J. Melosh, L.L. Tornabene, B. Ivanov, A.S. McEwen, I.J. Daubar, Impact airblast triggers dust avalanches on Mars. Icarus 217, 194–201 (2012) ADSGoogle Scholar
- H. Chenet, P. Lognonné, M.A. Wieczorek, H. Mizutani, Lateral variations of lunar crustal thickness from the Apollo seismic data set. Earth Planet. Sci. Lett. 243, 1–14 (2006). https://doi.org/10.1016/j.epsl.2005.12.017 ADSCrossRefGoogle Scholar
- P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Sci. Rev. 110, 85–130 (2004) ADSGoogle Scholar
- P.R. Christensen, E. Engle, S. Anwar, S. Dickenshied, D. Noss, N. Gorelick, M. Weiss-Malik, JMARS—a planetary GIS, in American Geophysical Union Fall Meeting, IN22A-06 (2009) Google Scholar
- C.F. Chyba, P.J. Thomas, K.J. Zahnle, The 1908 tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361(6407), 40–44 (1993) ADSGoogle Scholar
- É. Clévédé, P. Lognonné, 85.16 higher order perturbation theory: 3D synthetic seismogram package. Int. Geophys. 81, 1639 (2003). https://doi.org/10.1016/S0074-6142(03)80295-4 CrossRefGoogle Scholar
- Clinton et al., Marsquake Service—building a Martian seismicity catalogue for InSight. Space Sci. Rev. (2018, this issue) Google Scholar
- G.S. Collins, H.J. Melosh, R.A. Marcus, Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci. 40(6), 817–840 (2005) ADSGoogle Scholar
- A.M. Dainty, M.N. Toksz, K.R. Anderson, P.J. Pines, Y. Nakamura, G. Latham, Seismic scattering and shallow structure of the Moon in Oceanus Procellarum. Moon 9, 1l–29 (1974) ADSGoogle Scholar
- I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current Martian cratering rate. Icarus 225, 506–516 (2013). https://doi.org/10.1016/j.icarus.2013.04.009 ADSCrossRefGoogle Scholar
- I.J. Daubar, C. Atwood-Stone, S. Byrne, A.S. McEwen, P.S. Russell, The morphology of small fresh craters on Mars and the Moon. J. Geophys. Res., Planets 119, 2620–2639 (2014). https://doi.org/10.1002/2014JE004671 ADSCrossRefGoogle Scholar
- I.J. Daubar, M.P. Golombek, A.S. McEwen, S. Byrne, M.A. Kreslavsky, N.C. Schmerr, M.E. Banks, Measurement of the current Martian cratering size frequency distribution, predictions for and expected improvements from InSight, in Lunar and Planetary Science Conference Abstracts (2015), abstract 2468 Google Scholar
- I.J. Daubar, C.M. Dundas, S. Byrne, P.E. Geissler, G.D. Bart, A.S. McEwen, M. Chojnacki, Changes in blast zone Albedo patterns around new Martian impact craters. Icarus 267, 86–105 (2016). https://doi.org/10.1016/j.icarus.2015.11.032 ADSCrossRefGoogle Scholar
- I.J. Daubar, M.E. Banks, N.C. Schmerr, M.P. Golombek, Recently Formed Crater Clusters on Mars (2018, in press) Google Scholar
- D.M. Davis, Meteoroid impacts as seismic sources on. Mars 105, 469–478 (1993) Google Scholar
- P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonné, M. Golombek, E. De Laure, K. Hurst, J.-C. Dupla, S. Kedar, Y.J. Cui, B. Banerdt, An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. 211, 191–213 (2017). https://doi.org/10.1007/s11214-017-0339-7 ADSCrossRefGoogle Scholar
- A. Domokos, J.F. Bell III., P. Brown, M.T. Lemmon, R. Suggs, J. Vaubaillon, W. Cook, Measurement of the meteoroid flux at Mars. Icarus 191, 141–150 (2007). https://doi.org/10.1016/j.icarus.2007.04.017 ADSCrossRefGoogle Scholar
- G. Dreibus, H. Wänke, Mars: a volatile rich planet. Meteoritics 20, 367–382 (1985) ADSGoogle Scholar
- M. Drilleau, E. Beucler, A. Mocquet, O. Verhoeven, G. Moebs, G. Burgos, J.P. Montagner, P. Vacher, A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves. Geophys. J. Int. 195, 1165–1183 (2013) ADSGoogle Scholar
- W.N. Edwards, D.W. Eaton, P.G. Brown, Seismic observations of meteors: coupling theory and observations. Rev. Geophys. 46, 2007RG000253 (2008) Google Scholar
- C.S. Edwards, K.J. Nowicki, P.R. Christensen, J. Hill, N. Gorelick, K. Murray, Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116, E10008 (2011). https://doi.org/10.1029/2010JE003755 ADSCrossRefGoogle Scholar
- W. Friederich, J. Dalkolmo, Complete synthetic seismograms for a spherically symmetric Earth by a numerical computation of the Green’s function in the frequency domain. Geophys. J. Int. 122, 537–550 (1995). https://doi.org/10.1111/j.1365-246X.1995.tb07012.x ADSCrossRefGoogle Scholar
- J. Gagnepain-Beyneix, P. Lognonné, H. Chenet, D. Lombardi, T. Spohn, A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet. Inter. 159(3–4), 140–166 (2006). https://doi.org/10.1016/j.pepi.2006.05.009 ADSCrossRefGoogle Scholar
- R.F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné, Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188, 96–113 (2011). https://doi.org/10.1016/j.pepi.2011.06.015 ADSCrossRefGoogle Scholar
- R.F. Garcia, Q. Brissaud, L. Rolland, R. Martin, D. Komatitsch, A. Spiga, P. Lognonné, W.B. Banerdt, Finite-difference modeling of acoustic and gravity wave propagation in Mars atmosphere: application to infrasounds emitted by meteor impacts. Space Sci. Rev. 211(1–4), 547–570 (2017). https://doi.org/10.1007/s11214-016-0324-6 ADSCrossRefGoogle Scholar
- J.R. Geller, T. Ohminato, Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the direct solution method. Geophys. J. Int. 116(2), 421–446 (1994) ADSGoogle Scholar
- R.J. Geller, N. Takeuchi, A new method for computing highly accurate DSM synthetic seismograms. Geophys. J. Int. 123, 449–470 (1995) ADSGoogle Scholar
- F. Gilbert, A.M. Dziewonski, An application of normal mode theory to the retrieval of structural parameters and source mechanism from seismic spectra. Philos. Trans. R. Soc. A 278, 1280 (1975). https://doi.org/10.1098/rsta.1975.0025 CrossRefGoogle Scholar
- M.P. Golombek, A revision of Mars seismicity from surface faulting, in Lunar Planet. Sci. Conf. XXXIII (2002), abstract 1244 Google Scholar
- M.P. Golombek, W.B. Banerdt, K.L. Tanaka, D.M. Tralli, A prediction of Mars seismicity from surface faulting. Science 258, 979–981 (1992) ADSGoogle Scholar
- M.P. Golombek et al., Assessment of Mars Exploration Rover landing site predictions. Nature 436, 44–48 (2005). https://doi.org/10.1038/nature03600 ADSCrossRefGoogle Scholar
- M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, R.E. Arvidson, J.F. Bell III., M.T. Mellon, Martian surface properties from joint analysis of orbital, Earth-based, and surface observations, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III. (Cambridge University Press, Cambridge, 2008), pp. 468–497. Chap. 21 Google Scholar
- M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017). https://doi.org/10.1007/s11214-016-0321-9 ADSCrossRefGoogle Scholar
- M.P. Golombek et al., Geology and physical properties investigations by the InSight lander. Space Sci. Rev. 214(5), 1–52 (2018). https://doi.org/10.1007/s11214-018-0512-7 ADSCrossRefGoogle Scholar
- T. Gudkova, P. Lognonné, J. Gagnepain-Beyneix, Large impacts detected by the Apollo seismometers: impactor mass and source cutoff frequency estimations. Icarus 211, 1049–1065 (2011) ADSGoogle Scholar
- T.V. Gudkova, P. Lognonné, K. Miljković, J. Gagnepain-Beyneix, Impact cutoff frequency—momentum scaling law inverted from Apollo seismic data. Earth Planet. Sci. Lett. 427, 57–65 (2015). https://doi.org/10.1016/j.epsl.2015.06.037 ADSCrossRefGoogle Scholar
- N. Güldemeister, K. Wünnemann, Quantitative analysis of impact-induced seismic signals by numerical modeling. Icarus 296, 15–27 (2017) ADSGoogle Scholar
- K. Gwinner et al., The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planet. Space Sci. (2016). https://doi.org/10.1016/j.pss.2016.02.014 CrossRefGoogle Scholar
- W.K. Hartmann, Martian cratering. Icarus 5(1–6), 565–576 (1966). https://doi.org/10.1016/0019-1035(66)90071-6 ADSCrossRefGoogle Scholar
- W.K. Hartmann, Relative crater production rates on planets. Icarus 31(2), 260–276 (1977) ADSGoogle Scholar
- W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005) ADSGoogle Scholar
- W.K. Hartmann, I.J. Daubar, Martian cratering 11. Utilizing decameter scale crater populations to study Martian history. Meteorit. Planet. Sci. 52, 493–510 (2017). https://doi.org/10.1111/maps.12807 ADSCrossRefGoogle Scholar
- W.K. Hartmann, I.J. Daubar, O.P. Popova, E. Joseph, Martian cratering 12. Utilizing primary crater clusters to study crater populations and meteoroid properties. Meteorit. Planet. Sci. (2017, in press). https://doi.org/10.1111/maps.13042
- N.A. Haskell, Analytic approximation for the elastic radiation from a contained underground explosion. J. Geophys. Res. 72, 2583–2587 (1967). https://doi.org/10.1029/JZ072i010p02583 ADSCrossRefGoogle Scholar
- M.A.H. Hedlin, B.W. Stump, D.C. Pearson, X. Yang, Identification of mining blasts at mid- to far-regional distances using low frequency seismic signals, in Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Seismic Event Discrimination and Identification. Pageoph Topical Volumes, ed. by W.R. Walter, H.E. Hartse (Birkhäuser, Basel, 2002) Google Scholar
- D.C. Helmberger, D.M. Hadley, Seismic source functions and attenuation from local and teleseismic observations of the NTS events Jorum and Handley. Bull. Seismol. Soc. Am. 71(1), 51–67 (1981) Google Scholar
- R.B. Herrmann, Computer programs in seismology: an evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088 (2013). https://doi.org/10.1785/0220110096 CrossRefGoogle Scholar
- J.G. Hills, M.P. Goda, The fragmentation of small asteroids in the atmosphere. Astron. J. 105, 1114–1144 (1993) ADSGoogle Scholar
- K.A. Holsapple, The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21, 333–373 (1993). https://doi.org/10.1146/annurev.ea.21.050193.002001 ADSCrossRefGoogle Scholar
- K. Holsapple, K.R. Housen, A crater and its ejecta: an interpretation of deep impact. Icarus 187, 345–356 (2007) ADSGoogle Scholar
- K.A. Holsapple, R.M. Schmidt, Point source solutions and coupling parameters in cratering mechanics. J. Geophys. Res. 92, 6350–6376 (1987). https://doi.org/10.1029/JB092iB07p06350 ADSCrossRefGoogle Scholar
- B. Ivanov, Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001). https://doi.org/10.1023/A:1011941121102 ADSCrossRefGoogle Scholar
- B.A. Ivanov, N.A. Artemieva, Numerical modeling of the formation of large impact craters, in Catastrophic events and mass extinctions: Impacts and beyond, ed. by C. Koeberl, K.G. MacLeod. Geological Society of America Special Paper, vol. 356 (2002), pp. 619–630 Google Scholar
- B. Ivanov, D. Deniem, G. Neukum, Implementation of dynamic strength models into 2d hydrocodes: applications for atmospheric breakup and impact cratering. Int. J. Impact Eng. 20(1), 411–430 (1997) Google Scholar
- B.A. Ivanov, H.J. Melosh, A.S. McEwen, New small impact craters in high resolution HiRISE images—III, in Lunar and Planetary Science Conference Abstracts (2010), abstract 2020 Google Scholar
- R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, E. Eichentopf, H. Hoffmann, A. Hoffmeister, U. Köhler, K-D. Matz, T.B. McCord, V. Mertens, J. Obserst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwartz, K. Stephan, M. Wählisch (the HRSC Co-Investigation Team), The High-Resolution Stereo Camera (HRSC) experiment on the Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 928–952 (2007) ADSGoogle Scholar
- Y. JeongAhn, R. Malhotra, The current impact flux on Mars and its seasonal variation. Icarus 262, 140–153 (2015) ADSGoogle Scholar
- K. Kawai, N. Takeuchi, R.J. Geller, Geoph. J. Int. 164, 411 (2006) ADSGoogle Scholar
- T. Kawamura, P. Lognonné, Y. Nishikawa, S. Tanaka, Evaluation of deep moonquake source parameters: implication for fault characteristics and thermal state. J. Geophys. Res., Planets 122, 1487–1504 (2017). https://doi.org/10.1002/2016JE005147 ADSCrossRefGoogle Scholar
- S. Kedar, J. Andrade, W. Bruce Banerdt, P. Delage, M.P. Golombek, M. Grott, T. Hudson et al., Analysis of regolith properties using seismic signals generated by InSight’s HP3 penetrator. Space Sci. Rev. 211(1–4), 315–337 (2017). https://doi.org/10.1007/s11214-017-0391-3 ADSCrossRefGoogle Scholar
- A. Khan, K. Mosegaard, An inquiry into the lunar interior: a nonlinear inversion of the Apollo lunar seismic data. J. Geophys. Res. 107(E6), 5036 (2002). https://doi.org/10.1029/2001JE001658 CrossRefGoogle Scholar
- A. Khan, J.A.D. Connolly, A. Pommier, J. Noir, Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J. Geophys. Res., Planets 119(10), 2197–2221 (2014). https://doi.org/10.1002/2014JE004661 ADSCrossRefGoogle Scholar
- A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016). https://doi.org/10.1016/j.pepi.2016.05.017 ADSCrossRefGoogle Scholar
- R.L. Kirk, E. Howington-Kraus, B. Redding, D. Galuszka, T.M. Hare, B.A. Archinal, L.A. Soderblom, J.M. Barrett, High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images. J. Geophys. Res. 108(E12), 29 (2003). https://doi.org/10.1029/2003JE00213 CrossRefGoogle Scholar
- M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111, E11006 (2006). https://doi.org/10.1029/2006JE002708 ADSCrossRefGoogle Scholar
- B. Knapmeyer-Endrun, M.P. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia, Mars. Space Sci. Rev. 211, 339–382 (2017). https://doi.org/10.1007/s11214-016-0300-1 ADSCrossRefGoogle Scholar
- D. Komatitsch, J.P. Vilotte, The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998) zbMATHGoogle Scholar
- L.D. Landau, E.M. Lifshitz, Electrodynamic of Solids (Science, Moscow, 1982) Google Scholar
- G. Latham, M. Ewing, J. Dorman, F. Press, N. Toksoz, G. Sutton, R. Meissner, F. Duennebi, Y. Nakamura, R. Kovach, M. Yates, Seismic data from man-made impacts on the Moon. Science 170, 620–626 (1970a) ADSGoogle Scholar
- G.V. Latham, W.G. McDonald, H.J. Moore, Missile impacts as sources of seismic energy on the Moon. Science 168, 242–245 (1970b) ADSGoogle Scholar
- M. Le Feuvre, M.A. Wieczorek, Nonuniform cratering of the Moon and a revised crater chronology of inner Solar System. Icarus 214, 1–20 (2011) ADSGoogle Scholar
- A. Le Pichon, K. Antier, Y. Cansi, B. Hernandez, E. Minaya, B. Burgoa, D. Drob, L.G. Evers, J. Vaubaillon, Evidence for a meteoritic origin of the September 15, 2007, Carancas crater. Meteorit. Planet. Sci. 43, 1797–1809 (2008) ADSGoogle Scholar
- P. Lognonné et al., SEIS: The Seismic Experiment for Internal Structure of InSight. Space Sci. Rev. (2018, this issue) Google Scholar
- P. Lognonné, E. Clévédé, 10 normal modes of the Earth and planets. Int. Geophys. 81, 125 (2002). https://doi.org/10.1016/S0074-6142(02)80213-3 CrossRefGoogle Scholar
- P. Lognonné, C. Johnson, Planetary seismology, in Treatise on Geophysics, vol. 10 (2007), pp. 69–122. https://doi.org/10.1016/B978-044452748-6.00154-1 CrossRefGoogle Scholar
- P. Lognonné, C.L. Johnson, Planetary seismology, in Treatise on Geophysics, ed. by G. Schubert 2nd edn. (Elsevier, Oxford, 2015), pp. 65–120. https://doi.org/10.1016/B978-0-444-53802-4.00167-6. ISBN 978-0-444-53803-1 CrossRefGoogle Scholar
- P. Lognonné, T. Kawamura, Impact seismology on terrestrial and giant planets, in Extraterrestrial Seismology, ed. by V. Tong, R. García (Cambridge University Press, Cambridge, 2015), pp. 250–263. https://doi.org/10.1017/CBO9781107300668.021 CrossRefGoogle Scholar
- P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14(3), 239–302 (1993). https://doi.org/10.1007/BF00690946 ADSCrossRefGoogle Scholar
- P. Lognonné, B. Mosser, F.A. Dahlen, Excitation of the Jovian seismic waves by the Shoemaker-Levy 9 cometary impact. Icarus 110, 186–195 (1994). https://doi.org/10.1006/icar.1994.1115 ADSCrossRefGoogle Scholar
- P. Lognonné, J. Gagnepain-Beyneix, H. Chenet, A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth Planet. Sci. Lett. 211, 27–44 (2003) ADSGoogle Scholar
- P. Lognonné, M. Le Feuvre, C.L. Johnson, R.C. Weber, Moon meteoritic seismic hum: steady state prediction. J. Geophys. Res. 114, E12003 (2009) ADSGoogle Scholar
- P. Lognonné, F. Karakostas, L. Rolland, Y. Nishikawa, Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: from Earth observation to Mars and Venus perspectives. J. Acoust. Soc. Am. 140(2), 1447–1468 (2016) ADSGoogle Scholar
- R.D. Lorenz, M. Panning, Empirical recurrence rates for ground motion signals on planetary surfaces. Icarus 303, 273–279 (2017). https://doi.org/10.1016/j.icarus.2017.10.008 ADSCrossRefGoogle Scholar
- A. Lucas, C. Narteau, S. Rodriguez, O. Rozier, Y. Callot, A. Garcia, S. Courrech Du Pont, Sediment flux from the morphodynamics of elongating linear dunes. Geology (2015). https://doi.org/10.1130/G37101.1 CrossRefGoogle Scholar
- Maki et al., The Mars Insight Lander Cameras. Space Sci. Rev. (2018, this issue) Google Scholar
- J.N. Maki, J.F. Bell, K.E. Herkenhoff, S.W. Squyres, A. Kiely, M. Klimesh, M. Schwochert, T. Litwin, R. Willson, A. Johnson, M. Maimone, E. Baumgartner, A. Collins, M. Wadsworth, S.T. Elliot, A. Dingizian, D. Brown, E.C. Hagerott, L. Scherr, R. Deen, D. Alexander, J. Lorre, The Mars exploration rover engineering cameras. J. Geophys. Res. 108(E12), 8071 (2003). https://doi.org/10.1029/2003JE002077 CrossRefGoogle Scholar
- J. Maki, D. Thiessen, A. Pourangi, P. Kobzeff, T. Litwin, L. Scherr, S. Elliott, A. Dingizian, M. Maimone, The Mars science laboratory engineering cameras. Space Sci. Rev. 170, 77–93 (2012). https://doi.org/10.1007/s11214-012-9882-4 ADSCrossRefGoogle Scholar
- M.C. Malin, K.S. Edgett, L.V. Posiolova, S.M. McColley, E.Z.N. Dobrea, Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573–1577 (2006) ADSGoogle Scholar
- M.C. Malin et al., Context camera investigation on board the Mars reconnaissance orbiter. J. Geophys. Res. 112, E05S04 (2007). https://doi.org/10.1029/2006JE002808 CrossRefGoogle Scholar
- M.C. Malin, K.S. Edgett, B.A. Cantor, M.A. Caplinger, G.E. Danielson, E.H. Jensen, K.D. Supulver, An overview of the 1985–2006 Mars Orbiter Camera science investigation. Mars J. 5, 1–60 (2010). https://doi.org/10.1555/mars.2010.0001 ADSCrossRefGoogle Scholar
- K. Matsumoto, R. Yamada, F. Kikuchi, S. Kamata, Y. Ishihara, T. Iwata, H. Hanada, S. Sasaki, Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geophys. Res. Lett. 42, 7351–7358 (2015). https://doi.org/10.1002/2015GL065335 ADSCrossRefGoogle Scholar
- S. May, Meteor impact detection on Mars with change detection framework, IEEE IGARSS (2018, submitted) Google Scholar
- A.S. McEwen et al., Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007). https://doi.org/10.1029/2005JE002605 CrossRefGoogle Scholar
- A.S. McEwen, E.M. Eliason, V.C. Gulick, Y. Spinoza, R.A. Beyer (HiRISE Team), HiRISE: The People’s Camera. AGU Fall Meeting Abstracts (2010), abstract #ED23A-0712 Google Scholar
- A. McGarr, G.V. Latham, D.E. Gault, Meteoroid impacts as sources of seismicity on the Moon. J. Geophys. Res. 74, 5981–5994 (1969) ADSGoogle Scholar
- H.J. Melosh, Impact Cratering: A Geological Process, Oxford Monographs on Geology and Geophysics (Oxford University Press, New York, 1989) Google Scholar
- K. Miljković, G.S. Collins, S. Mannick, P.A. Bland, Morphology and population of binary asteroid impact craters. Earth Planet. Sci. Lett. 363, 121–132 (2013) ADSGoogle Scholar
- K. Miljkovic, E.K. Sansom, I.J. Daubar, F. Karakostas, P. Lognonné, Fate of meteoroid impacts on Mars detectable by the InSight mission, in 47th Lunar Planet. Sci. Conference. LPI Contribution, vol. No (2016), p. 1768 Google Scholar
- D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, W.B. Banerdt, The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci. Rev. 211, 383–428 (2017). https://doi.org/10.1007/s11214-017-0409-x ADSCrossRefGoogle Scholar
- Morgan et al., A pre-landing assessment of regolith properties at the InSight landing site. Space Sci. Rev. 214(6), 1–47 (2018). https://doi.org/10.1007/s11214-018-0537-y ADSCrossRefGoogle Scholar
- S.L. Murchie, R.E. Arvidson, P. Bedini, K. Beisser, J.P. Bibring, J. Bishop, J. Boldt et al., Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res., Planets 112(5), 1–57 (2007). https://doi.org/10.1029/2006JE002682 CrossRefGoogle Scholar
- N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, D. Banfield, W.B. Banerdt, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. 211(1–4), 429–455 (2017). https://doi.org/10.1007/s11214-016-0311-y ADSCrossRefGoogle Scholar
- Y. Nakamura, New identification of deep moonquakes in the Apollo lunar seismic data. Phys. Earth Planet. Inter. 139(3–4), 197–205 (2003). https://doi.org/10.1016/j.pepi.2003.07.017 ADSCrossRefGoogle Scholar
- Y. Nakamura, Timing problem with the lunar module impact data as recorded by the LSPE and corrected near-surface structure at the Apollo 17 landing site. J. Geophys. Res., Planets 116(12), 3–5 (2011). https://doi.org/10.1029/2011JE003972 CrossRefGoogle Scholar
- Y. Nakamura, D.L. Anderson, Martian wind activity detected by a seismometer at Viking lander 2 site. Geophys. Res. Lett. 6, 499–502 (1979). https://doi.org/10.1029/GL006i006p00499 ADSCrossRefGoogle Scholar
- Y. Nakamura, D.R. Lammlein, G.V. Latham et al., New seismic data on the state of the deep lunar interior. Science 181, 49–51 (1973). https://doi.org/10.1126/science.181.4094.49 ADSCrossRefGoogle Scholar
- Y. Nakamura, G.V. Latham, H.J. Dorman, F.K. Duennebier, Seismic structure of the Moon: a summary of current status, in Proc. Lunar Sci. Conf., vol. 7 (1976), pp. 3113–3121 Google Scholar
- L. Neslusan, J. Svoren, V. Porubcan, A computer program for calculation of a theoretical meteor-stream radiant. Astron. Astrophys. 331, 411–413 (1998) ADSGoogle Scholar
- G. Neukum, B. Ivanov, Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data, in Hazards due to Comets and Asteroids, ed. by T. Gehrels, M.S. Matthews, A. Schumann (University of Arizona Press, Tucson, AZ, 1994), pp. 359–416 Google Scholar
- G. Neukum, R. Jaumann (the HRSC Co-Investigator Team HRSC), The high resolution stereo camera of Mars Express. ESA special publications SP–1240 (2004) Google Scholar
- G. Neukum, D.U. Wise, Mars: a standard crater curve and possible new time scale. Science 194(4272), 1381–1387 (1976) ADSGoogle Scholar
- T. Nissen-Meyer, M. van Driel, S.C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, A. Fournier, AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 5, 425–445 (2014). https://doi.org/10.5194/se-5-425-2014 ADSCrossRefGoogle Scholar
- J. Oberst, Y. Nakamura, A new estimate of the meteoroid impact flux on the Moon, in Proceedings of the Lunar Science Conference XX (1989), pp. 802–803 Google Scholar
- J. Oberst, A. Christou, R. Suggs, D. Moser, I.J. Daubar, A.S. McEwen, M. Burchell, T. Kawamura, H. Hiesinger, K. Wünnemann, R. Wagner, M.S. Robinson, The present-day flux of large meteoroids on the lunar surface—a synthesis of models and observational techniques. Planet. Space Sci. 74, 179–193 (2012) ADSGoogle Scholar
- M.P. Panning, E. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015). https://doi.org/10.1016/j.icarus.2014.10.035 ADSCrossRefGoogle Scholar
- M. Panning, P. Lognonné, W.B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, E. Bozdag, M. Drilleau, T. Gudkova, S. Hempel, A. Khan, V. Lekic, N. Murdoch, A.-C. Plesa, A. Rivoldini, N. Schmerr, Y. Ruan, O. Verhoeven, C. Gao, U. Christensen, J. Clinton, V. Dehant, D. Giardini, D. Mioun, W.T. Pike, S. Smrekar, M. Wieckzorek, M. Knapmeyer, J. Wookey, Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 221, 611–650 (2017) ADSGoogle Scholar
- Q.R. Passey, H. Melosh, Effects of atmospheric breakup on crater field formation. Icarus 42(2), 211–233 (1980) ADSGoogle Scholar
- H.J. Patton, W.R. Walter, Regional moment—magnitude relations for earthquakes and explosions. Geophys. Res. Lett. 20, 277–280 (1993) ADSGoogle Scholar
- J. Peterson, Observations and modeling of seismic background noise. U.S. Geol. Surv. Tech. Rept. 93-322, 1–95 (1993) Google Scholar
- N.A. Petersson et al. Lawrence Livermore National Laboratory Technical Report LLNL-TR-422928 (2010) Google Scholar
- A.C. Plesa, M. Grott, N. Tosi, D. Breuer, T. Spohn, M. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res. (2016). https://doi.org/10.1002/2016JE005126 CrossRefGoogle Scholar
- A.C. Plesa, M. Knapmeyer, M.P. Golombek, D. Breuer, M. Grott, T. Kawamura, P. Lognonné, N. Tosi, R.C. Weber, Present-day Mars’ seismicity predicted from 3-D thermal evolution models of interior dynamics. Geophys. Res. Lett. 45(6), 2580–2589 (2018). https://doi.org/10.1002/2017GL076124 ADSCrossRefGoogle Scholar
- J.B. Plescia, M.S.S. Robinson, R. Wagner, R. Baldridge, Ranger and Apollo S-IVB spacecraft impact craters. Planet. Space Sci. 124 (May). Elsevier, 15–35 (2016). https://doi.org/10.1016/j.pss.2016.01.002 ADSCrossRefGoogle Scholar
- P.W. Pomeroy, Long period seismic waves from large, near-surface nuclear explosions. Bull. Seismol. Soc. Am. 53, 109–149 (1963) Google Scholar
- O.P. Popova, I.V. Nemtchinov, W.K. Hartmann, Bolides in the present and past Martian atmosphere and effects on cratering processes. Meteorit. Planet. Sci. 38(6), 905–925 (2003). https://doi.org/10.1111/j.1945-5100.2003.tb00287.x ADSCrossRefGoogle Scholar
- O. Popova, J. Borovička, W.K. Hartmann, P. Spurnỳ, E. Gnos, I. Nemtchinov, J.M. Trigo-Rodríguez, Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46(10), 1525–1550 (2011) ADSGoogle Scholar
- W.L. Quaide, V.R. Oberbeck, Thickness determinations of the lunar surface layer from lunar impact craters. J. Geophys. Res. 73, 5247–5270 (1968) ADSGoogle Scholar
- P.J. Register, D.L. Mathias, L.F. Wheeler, Asteroid fragmentation approaches for modeling atmospheric energy deposition. Icarus 284, 157–166 (2017) ADSGoogle Scholar
- J.E. Richardson, S. Kedar, An experimental investigation of the seismic signal produced by hypervelocity impacts, in Lunar and Planetary Science Conference 44 (2013), abstract 2863 Google Scholar
- J.E. Richardson, H.J. Melosh, R.J. Greenberg, D.P. O’Brien, The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179(2), 325–349 (2005). https://doi.org/10.1016/j.icarus.2005.07.005 ADSCrossRefGoogle Scholar
- A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraint on the interior structure and composition of Mars. Icarus 213(2), 451–472 (2011). https://doi.org/10.1016/j.icarus.2011.03.024 ADSCrossRefGoogle Scholar
- S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on thermal emission spectrometer data. J. Geophys. Res., Planets 107, 1–22 (2002). https://doi.org/10.1029/2001JE001580 CrossRefGoogle Scholar
- N.C. Schmerr, M.E. Banks, I.J. Daubar, The seismic signatures of impact events on Mars: implications for the InSight lander, in LPSC 47 (2016), abstract 1320 Google Scholar
- R.M. Schmidt, K.R. Housen, Some recent advances in the scaling of impact and explosion cratering. Int. J. Impact Eng. 5, 543–560 (1987). https://doi.org/10.1016/0734-743X(87)90069-8 ADSCrossRefGoogle Scholar
- F. Selsis, M.T. Lemmon, J. Vaubaillon, J.F. Bell III., Extraterrestrial meteors: a Martian meteor and its parent comet. Nature 435, 581 (2005). https://doi.org/10.1038/435581a ADSCrossRefGoogle Scholar
- L.E. Senft, S.T. Stewart, Modeling impact cratering in layered surfaces. J. Geophys. Res. 112, E11002 (2007). https://doi.org/10.1029/2007JE002894 ADSCrossRefGoogle Scholar
- D.E. Shean, O. Alexandrov, Z.M. Moratto, B.E. Smith, I.R. Joughin, C. Porter, P. Morin, An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 116, 101 (2016) ADSGoogle Scholar
- P. Shearer, Introduction to Seismology, 2nd edn. (Cambridge University Press, Cambridge, 2009). 412 pp. Google Scholar
- N.I. Shishkin, Seismic efficiency of a contact explosion and a high-velocity impact. J. Appl. Mech. Tech. Phys. 48, 145–152 (2007). https://doi.org/10.1007/s10808-007-0019-6 ADSCrossRefzbMATHGoogle Scholar
- Smrekar et al., Pre-mission InSights on the interior of Mars. Space Sci. Rev. (2018). https://doi.org/10.1007/s11214-018-0563-9 CrossRefGoogle Scholar
- F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res. 102, 1613–1636 (1997). https://doi.org/10.1029/96JE03419 ADSCrossRefGoogle Scholar
- T. Spohn et al. HP3 Instrument Paper. Space Sci. Rev. (2018, this issue) Google Scholar
- J. Stevanović, N.A. Teanby, J. Wookey, N. Selby, I.J. Daubar, J. Vaubaillon, R. Garcia, Bolide airbursts as a seismic source for the 2018 Mars InSight mission. Space Sci. Rev. 211, 525–545 (2017) ADSGoogle Scholar
- J. Sweeney, N.H. Warner, M.P. Golombek, R. Kirk, R.L. Fergason, A. Pivarunas, Crater Degradation and Surface Erosion Rates at the InSight Landing Site, Western Elysium Planitia, Mars (Expanded Abstract). 47th Lunar and Planetary Science, Abstract #1576, Lunar and Planetary (Institute, Houston, 2016) Google Scholar
- G. Tancredi, J. Ishitsuka, P.H. Schultz, R.S. Harris, P. Brown, D.O. ReVelle, K. Antier, A. Le Pichon, D. Rosales, E. Vidal, M.E. Varela, L. Sanchez, S. Benavente, J. Bojorquez, D. Cabezas, A. Dalmau, A meteorite crater on Earth formed on September 15, 2007: the Carancas hypervelocity impact. Meteorit. Planet. Sci. 44, 1967–1984 (2009) ADSGoogle Scholar
- Teanby, Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer. Icarus 256, 49–62 (2015) ADSGoogle Scholar
- N.A. Teanby, J. Wookey, Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter. 186, 70–80 (2011) ADSGoogle Scholar
- N. Thomas, G. Cremonese, R. Ziethe, M. Gerber, M. Brändli, G. Bruno, J.J. Wray, The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 212(3–4), 1897–1944 (2017). https://doi.org/10.1007/s11214-017-0421-1 ADSCrossRefGoogle Scholar
- M.N. Toksöz, F. Press, K. Anderson, A. Dainty, G. Latham, M. Ewing, F. Duennebier, Velocity structure and properties of the lunar crust. Moon 4(3–4), 490–504 (1972). https://doi.org/10.1007/BF00562013 ADSCrossRefGoogle Scholar
- Vaubaillon, A confidence index for forecasting of meteor showers. Planet. Space Sci. 143, 78–82 (2017) ADSGoogle Scholar
- J. Vaubaillon, F. Colas, L. Jorda, A new method to predict meteor showers. I. Description of the model. Astron. Astrophys. 439(2), 751–760 (2005) ADSGoogle Scholar
- R.V. Wagner, D.M. Nelson, J.B. Plescia, M.S. Robinson, E.J. Speyerer, E. Mazarico, Coordinates of anthropogenic features on the Moon. Icarus 283, 92–103 (2017). https://doi.org/10.1016/j.icarus.2016.05.011 ADSCrossRefGoogle Scholar
- J.D. Walker, Loading sources for seismological investigations of asteroids and comets. Int. J. Impact Eng. 29, 757–769 (2003) Google Scholar
- N.H. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: implications for Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. 211, 147–190 (2017). https://doi.org/10.1007/s11214-017-0352-x ADSCrossRefGoogle Scholar
- W.A. Watters, L.M. Geiger, M. Fendrock, R. Gibson, Morphometry of small recent impact craters on Mars: size and terrain dependence, short-term modification. J. Geophys. Res., Planets 120, 226–254 (2015). https://doi.org/10.1002/2014JE004630 ADSCrossRefGoogle Scholar
- G.C. Werth, R.F. Herbst, Comparison of amplitudes of seismic waves from nuclear explosions in four mediums. J. Geophys. Res. 68, 1463–1475 (1963). https://doi.org/10.1029/JZ068i005p01463 ADSCrossRefGoogle Scholar
- L.F. Wheeler, P.J. Register, D.L. Mathias, A fragment-cloud model for asteroid breakup and atmospheric energy deposition. Icarus 295, 149–169 (2017) ADSGoogle Scholar
- F.J.W. Whipple, The great Siberian meteor and the waves, seismic and aerial, which it produced. Q. J. R. Meteorol. Soc. 56, 287–304 (1930) Google Scholar
- E.A. Whitaker, in Artificial Lunar Impact Craters: Four New Identifications. NASA Special Publication, vol. 315 (1972), pp. 29–39 Google Scholar
- J.-P. Williams, Acoustic environment of the Martian surface. J. Geophys. Res., Planets 106(E3), 5033–5041 (2001) ADSGoogle Scholar
- J.-P. Williams, A.V. Pathare, O. Aharonson, The production of small primary craters on Mars and the Moon. Icarus 235, 23–36 (2014) ADSGoogle Scholar
- J.H. Woodhouse, The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun, in Seismological Algorithms, Computational Methods and Computer Programs, ed. by D.J. Doornbos (Academic Press, London, 1988), pp. 321–370 Google Scholar
- K. Wunnemann, D. Nowka, G.S. Collins, D. Elbeshausen, M. Bierhaus, Scaling of impact crater formation on planetary surfaces—insights from numerical modeling, in Proc. 11th Hypervelocity Impact Symposium, no. 120 (2011) Google Scholar
- M. Yasui, E. Matsumoto, M. Arakawa, Experimental study on impact-induced seismic wave propagation through granular materials. Icarus 260, 320–331 (2015) ADSGoogle Scholar