Space Science Reviews

, 215:6 | Cite as

High Precision SEIS Calibration for the InSight Mission and Its Applications

  • L. PouEmail author
  • D. Mimoun
  • P. Lognonne
  • R. F. Garcia
  • O. Karatekin
  • M. Nonon-Latapie
  • R. Llorca-Cejudo
Part of the following topical collections:
  1. The InSight Mission to Mars II


Part of the InSight mission, the SEIS instrument (Seismic Experiment for Interior Structures), is planned to arrive on Mars in November 2018. In order to prepare its future recordings on the red planet, special attention was directed towards calibrating the seismometer in-situ on the Martian surface. Besides relative calibrations, we studied the possibility of actively calibrating the two kinds of seismometers onboard SEIS, the Very Broad Band seismometers (VBB) and the Short Period seismometers (SP) and extended the analysis towards a possible absolute calibration. For that purpose, we developed additional noise models at low frequency and elaborate on how they will be sensed by the seismic sensors from long-period data recorded by the seismometer. Such work will improve SEIS capabilities to unveil the inner structure of Mars by checking SEIS well-being and with applications such as gravimetry with the main Phobos tide. The current calibration procedure is planned to take one hour to calibrate the VBB sensors using the SP sensors, and determine the VBB gain with an accuracy of 0.4%, good enough to resolve the state of the Martian core.


Mars InSight SEIS Calibration 



We thanks the team from NASA, JPL, CNES, IPGP, ISAE-Supaero, ROB and LMP for their help during this work and for the entire InSight mission, and the useful comments from Naomi Murdoch of ISAE-Supaero, Rudolf Widmer-Schnidrig of the Stuttgart Institut für Geophysik and the two anonymous reviewers for improving this paper. This study was possible thanks to the financial support of the CNES, ISAE-Supaero and the FNS-ANR project SEISMARS. This paper is InSight Contribution Number 70.


  1. D.C. Agnew, Earth tides, in Treatise on Geophysics, vol. 3 (Elsevier, Amsterdam, 2007), pp. 163–195 CrossRefGoogle Scholar
  2. D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksöz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewicz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Res. 82(28), 4524–4546 (1977). ADSCrossRefGoogle Scholar
  3. T.P. Andert, P. Rosenblatt, M. Pätzold, B. Häusler, V. Dehant, G.L. Tyler, J.C. Marty, Precise mass determination and the nature of Phobos. Geophys. Res. Lett. 37(9) (2010).
  4. R.E. Anthony, A.T. Ringler, D.C. Wilson, Improvements in absolute seismometer sensitivity calibration using local Earth gravity measurementsshort note. Bull. Seismol. Soc. Am. 108(1), 503–510 (2018). CrossRefGoogle Scholar
  5. R. Beauduin, P. Lognonné, J.P. Montagner, S. Cacho, J.F. Karczewski, M. Morand, The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station. Bull. Seismol. Soc. Am. 86(6), 1760 (1996) Google Scholar
  6. T.H. Burbine, K.M. O’Brien, Determining the possible building blocks of the Earth and Mars. Meteorit. Planet. Sci. 39(5), 667–681 (2004). ADSCrossRefGoogle Scholar
  7. S. Campagnola, C.H. Yam, Y. Tsuda, N. Ogawa, Y. Kawakatsu, Mission analysis for the Martian Moons Explorer (MMX) mission. Acta Astronaut. 146, 409–417 (2018). ADSCrossRefGoogle Scholar
  8. R.T. Clancy, B.J. Sandor, M.J. Wolff, P.R. Christensen, M.D. Smith, J.C. Pearl, B.J. Conrath, R.J. Wilson, An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res., Planets 105(E4), 9553–9571 (2000). ADSCrossRefGoogle Scholar
  9. V. Dehant, P. Defraigne, J.M. Wahr, Tides for a convective Earth. J. Geophys. Res., Solid Earth 104(B1), 1035–1058 (1999). CrossRefGoogle Scholar
  10. P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonné, M. Golombek, E.D. Laure, K. Hurst, J.C. Dupla, S. Kedar, Y.J. Cui, B. Banerdt, An investigation of the mechanical properties of some martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. 211(1–4), 191–213 (2017). ADSCrossRefGoogle Scholar
  11. G. Dreibus, H. Wanke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985) ADSGoogle Scholar
  12. L. Fayon, B. Knapmeyer-Endrun, P. Lognonné, M. Bierwirth, A. Kramer, P. Delage, F. Karakostas, S. Kedar, N. Murdoch, R.F. Garcia, N. Verdier, S. Tillier, W.T. Pike, K. Hurst, C. Schmelzbach, W.B. Banerdt, A numerical model of the SES leveling system transfer matrix and resonances: application to SEIS rotational seismology and dynamic ground interaction. Space Sci. Rev. (2018) Google Scholar
  13. T. Forbriger, R. Widmer-Schnidrig, E. Wielandt, M. Hayman, N. Ackerley, Magnetic field background variations can limit the resolution of seismic broad-band sensors. Geophys. J. Int. 183(1), 303–312 (2010) ADSCrossRefGoogle Scholar
  14. A. Genova, S. Goossens, F.G. Lemoine, E. Mazarico, G.A. Neumann, D.E. Smith, M.T. Zuber, Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245 (2016). ADSCrossRefGoogle Scholar
  15. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R.L. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211(1–4), 5–95 (2017). ADSCrossRefGoogle Scholar
  16. M. Greff-Lefftz, L. Métivier, H. Legros, Analytical solutions of love numbers for a hydrostatic ellipsoidal incompressible homogeneous Earth. Celest. Mech. Dyn. Astron. 93(1–4), 113–146 (2005). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. J. Havskov, G. Alguacil, Instrumentation in Earthquake Seismology. Modern Approaches in Geophysics (Springer, Berlin, 2004) CrossRefGoogle Scholar
  18. R. Jacobson, A. Konopliv, R. Park, W. Folkner, The rotational elements of Mars and its satellites. Planet. Space Sci. 152, 107–115 (2018). ADSCrossRefGoogle Scholar
  19. A.S. Konopliv, C.F. Yoder, E.M. Standish, D.N. Yuan, W.L. Sjogren, A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182(1), 23–50 (2006). ADSCrossRefGoogle Scholar
  20. A.S. Konopliv, S.W. Asmar, W.M. Folkner, O. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211(1), 401–428 (2011). ADSCrossRefGoogle Scholar
  21. A.S. Konopliv, R.S. Park, W.M. Folkner, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016). ADSCrossRefGoogle Scholar
  22. P. Lognonné, E. Clévédé, Normal Modes of the Earth and Planets. International Geophysics, vol. 81, p. 125 (2002) Google Scholar
  23. P. Lognonné, B. Mosser, in Planetary Seismology. Surveys in Geophysics, vol. 14 (1993), pp. 239–302. CrossRefGoogle Scholar
  24. P. Lognonné, W.T. Pike, Planetary seismometry, in Extraterrestrial Seismology (Cambridge University Press, Cambridge, 2015), pp. 36–50. CrossRefGoogle Scholar
  25. P. Lognonné, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44(11), 1237–1249 (1996). ADSCrossRefGoogle Scholar
  26. P. Lognonné, W.B. Banerdt, D. Giardini, W.T. Pike, U. Christensen, P. Laudet, S. de Raucourt, P. Zweifel, S. Calcut, M. Bierwirth, K. Hurst, F. Ljpelaan, J. Umland, R. Llorca Cejudo, S. Larson, R.F. Garcia, S. Kedar, B. Knapmeyer-Endrun, D. Mimoun, A. Mocquet, M. Panning, R. Weber, A. Sylvestre-Baron, G. Pont, N. Verdier, L. Kerjean, T. Hoffman, J. Willis, S. Smrekar (the SEIS Team), SEIS: The Seismic Experiment for Internal Structure of InSight. Space Sci. Rev. (2018, submitted) Google Scholar
  27. A.S. McEwen, M.E. Banks, N. Baugh, K. Becker, A. Boyd, J.W. Bergstrom, R.A. Beyer, E. Bortolini, N.T. Bridges, S. Byrne, B. Castalia, F.C. Chuang, L.S. Crumpler, I. Daubar, A.K. Davatzes, D.G. Deardorff, A. DeJong, W.A. Delamere, E.N. Dobrea, C.M. Dundas, E.M. Eliason, Y. Espinoza, A. Fennema, K.E. Fishbaugh, T. Forrester, P.E. Geissler, J.A. Grant, J.L. Griffes, J.P. Grotzinger, V.C. Gulick, C.J. Hansen, K.E. Herkenhoff, R. Heyd, W.L. Jaeger, D. Jones, B. Kanefsky, L. Keszthelyi, R. King, R.L. Kirk, K.J. Kolb, J. Lasco, A. Lefort, R. Leis, K.W. Lewis, S. Martinez-Alonso, S. Mattson, G. McArthur, M.T. Mellon, J.M. Metz, M.P. Milazzo, R.E. Milliken, T. Motazedian, C.H. Okubo, A. Ortiz, A.J. Philippoff, J. Plassmann, A. Polit, P.S. Russell, C. Schaller, M.L. Searls, T. Spriggs, S.W. Squyres, S. Tarr, N. Thomas, B.J. Thomson, L.L. Tornabene, C.V. Houten, C. Verba, C.M. Weitz, J.J. Wray, The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP). Icarus 205(1), 2–37 (2010). ADSCrossRefGoogle Scholar
  28. H.Y. McSween, What we have learned about Mars from SNC meteorites. Meteoritics 29(6), 757–779 (1994). ADSCrossRefGoogle Scholar
  29. D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, W.B. Banerdt, The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci. Rev. 211, 383–428 (2017). ADSCrossRefGoogle Scholar
  30. N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, D. Banfield, W.B. Banerdt, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. 211, 429–455 (2017a). ADSCrossRefGoogle Scholar
  31. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. 211(1–4), 457–483 (2017b). arXiv:1704.05664 ADSCrossRefGoogle Scholar
  32. Y. Nishikawa, A. Araya, K. Kurita, N. Kobayashi, T. Kawamura, Designing a torque-less wind shield for broadband observation of marsquakes. Planet. Space Sci. 104, 288–294 (2014). ADSCrossRefGoogle Scholar
  33. M.P. Panning, P. Lognonné, W.B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.F. Blanchette-Guertin, E. Bozdağ, M. Drilleau, T. Gudkova, S. Hempel, A. Khan, V. Lekić, N. Murdoch, A.C. Plesa, A. Rivoldini, N. Schmerr, Y. Ruan, O. Verhoeven, C. Gao, U. Christensen, J. Clinton, V. Dehant, D. Giardini, D. Mimoun, W.T. Pike, S. Smrekar, M. Wieczorek, M. Knapmeyer, J. Wookey, Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 211(1–4), 611–650 (2016). ADSCrossRefGoogle Scholar
  34. M. Pätzold, T.P. Andert, G.L. Tyler, S.W. Asmar, B. Häusler, S. Tellmann, Phobos mass determination from the very close flyby of Mars Express in 2010. Icarus 229, 92–98 (2014). ADSCrossRefGoogle Scholar
  35. G.L. Pavlis, F.L. Vernon, Calibration of seismometers using ground noise. Bull. Seismol. Soc. Am. 84(4), 1243–1255 (1994) Google Scholar
  36. L. Pou, D. Mimoun, R.F. Garcia, P. Lognonné, W.B. Banerdt, O. Karatekin, V. Dehant, P. Zhu, Mars deep internal structure determination using Phobos tide measurement strategy with the SEIS/InSight experiment, in EGU General Assembly Conference Abstracts, vol. 18 (2016), EPSC2016-8724 Google Scholar
  37. A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213(2), 451 (2011). ADSCrossRefGoogle Scholar
  38. P. Rosenblatt, V. Lainey, S. Le Maistre, J.C. Marty, V. Dehant, M. Pätzold, T. Van Hoolst, B. Häusler, Accurate Mars Express orbits to improve the determination of the mass and ephemeris of the Martian moons. Planet. Space Sci. 56(7), 1043–1053 (2008). ADSCrossRefGoogle Scholar
  39. J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhães, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment. Science 278(5344), 1752–1758 (1997). ADSCrossRefGoogle Scholar
  40. B.F. Schutz, Gravitational wave astronomy. Class. Quantum Gravity 16(12A), A131 (1999). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. P.K. Seidelmann, B.A. Archinal, M.F. A’hearn, A. Conrad, G.J. Consolmagno, D. Hestroffer, J.L. Hilton, G.A. Krasinsky, G. Neumann, J. Oberst, P. Stooke, E.F. Tedesco, D.J. Tholen, P.C. Thomas, I.P. Williams, Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astron. 98(3), 155–180 (2007). ADSCrossRefzbMATHGoogle Scholar
  42. B. Sklar, Digital Communications, vol. 2 (Prentice Hall, Upper Saddle River, 2001) zbMATHGoogle Scholar
  43. F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res., Planets 102(E1), 1613–1635 (1997). ADSCrossRefGoogle Scholar
  44. G.G. Sorrells, A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field. Geophys. J. Int. 26(1–4), 71–82 (1971). ADSCrossRefGoogle Scholar
  45. A. Spiga, D. Banfield, N.A. Teanby, F. Forget, A. Lucas, B. Kenda, J.A.R. Manfredi, R. Widmer-Schnidrig, N. Murdoch, M.T. Lemmon, R.F. Garcia, L. Martire, O. Karatekin, S. Le Maistre, B. Van Hove, V. Dehant, P. Lognonné, N. Mueller, R. Lorenz, D. Mimoun, S. Rodriguez, E. Beucler, I. Daubar, M.P. Golombek, T. Bertrand, Y. Nishikawa, M. Ehouarn, L. Rolland, Q. Brissaud, T. Kawamura, A. Mocquet, R. Martin, J. Clinton, E. Stutzmann, W.M. Folkner, J. Maki, S. Tilman, S. Smrekar, W.B. Banerdt, Atmospheric science with InSight. Space Sci. Rev. 214, 109 (2018). ADSCrossRefGoogle Scholar
  46. G. Turin, An introduction to matched filters. IRE Trans. Inf. Theory 6(3), 311–329 (1960). MathSciNetCrossRefGoogle Scholar
  47. T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161(2), 281–296 (2003). ADSCrossRefGoogle Scholar
  48. R.J. Warburton, J.M. Goodkind, The influence of barometric-pressure variations on gravity. Geophys. J. Int. 48(3), 281–292 (1977). ADSCrossRefGoogle Scholar
  49. M.A. Wieczorek, M.T. Zuber, Thickness of the Martian crust: improved constraints from geoid-to-topography ratios. J. Geophys. Res., Planets E01, 009 (2004). CrossRefGoogle Scholar
  50. E. Wielandt, Seismic sensors and their calibration, in New Manual of Seismological Observatory Practice, ed. by P. Bormann, E. Bergmann (Deutsches GeoForschungsZentrum, Postdam, 2013) Google Scholar
  51. P.M. Woodward, in Probability and Information Theory, with Applications to Radar, 2nd edn., ed. by D.W. Fry, W. Higinbotham (Elsevier, Amsterdam, 1953) zbMATHGoogle Scholar
  52. C.F. Yoder, A.S. Konopliv, D.N. Yuan, E.M. Standish, W.M. Folkner, Fluid core size of Mars from detection of the solar tide. Science 300(5617), 299–303 (2003). ADSCrossRefGoogle Scholar
  53. V.N. Zharkov, T.V. Gudkova, Construction of Martian interior model. Sol. Syst. Res. 39(5), 343–373 (2005). ADSCrossRefGoogle Scholar
  54. W. Zürn, R. Widmer, On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys. Res. Lett. 22(24), 3537–3540 (1995). ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • L. Pou
    • 1
    Email author
  • D. Mimoun
    • 1
  • P. Lognonne
    • 2
  • R. F. Garcia
    • 1
  • O. Karatekin
    • 3
  • M. Nonon-Latapie
    • 4
  • R. Llorca-Cejudo
    • 4
  1. 1.DEOS/SSPAISAE-SupaeroToulouseFrance
  2. 2.IPGPParisFrance
  3. 3.Royal Observatory of BelgiumBrusselsBelgium
  4. 4.CNESToulouseFrance

Personalised recommendations