Advertisement

Space Science Reviews

, 214:124 | Cite as

Ion Composition of the Earth’s Radiation Belts in the Range from 100 keV to \(100\mbox{ MeV}/\mbox{nucleon}\): Fifty Years of Research

  • Alexander S. KovtyukhEmail author
Article
  • 141 Downloads

Abstract

Spatial, energy and angular distributions of ion fluxes in the Earth’s radiation belts (ERB) near the equatorial plane, at middle geomagnetic latitudes and at low altitudes are systematically reviewed herein. Distributions of all main ion components, from protons to Fe (including hydrogen and helium isotopes), and their variations under the action of solar and geomagnetic activity are considered. For ions with \(Z\geq 2\) and especially for ions with \(Z \geq 9\), these variations are much more than for protons, and these have no direct connection with the intensity of magnetic storms (\(Z\) is the charge of the atomic nucleus with respect to the charge of the proton). The main physical mechanisms for the generation of ion fluxes in the ERB and the losses of these ions are considered. Solar wind, Solar Cosmic Rays (SCR), Galactic Cosmic Rays (GCR), and Anomalous component of Cosmic Rays (ACR) as sources of ions in the ERB are considered.

Keywords

Radiation belts Ion composition Structure and dynamics of the belts Ion sources and losses Particle acceleration Magnetic storms 

Notes

Acknowledgements

The author are very grateful to the reviewers for their very important and fruitful comments and proposals for the paper and to Dr. James L. Burch for editing the paper and helping to make this paper better. This work was supported by Russian Foundation for Basic Research, grant No. 17-29-01022.

References

  1. H. Alfvén, C.-G. Fälthammar, Cosmical Electrodynamics, Fundamental Principles (Clarendon Press, Oxford, 1963) zbMATHGoogle Scholar
  2. R.C. Allen, S.A. Livi, S.K. Vines, J. Goldstein, I. Cohen, S.A. Fuselier, B.H. Mauk, H.E. Spence, Storm time empirical model of O+ and O6+ distributions in the magnetosphere. J. Geophys. Res. Space Phys. 122(8), 8353–8374 (2017).  https://doi.org/10.1002/2017JA024245 ADSCrossRefGoogle Scholar
  3. A. Bakaldin, A. Galper, S. Koldashov, M. Korotkov, A. Leonov, V. Mikhailov, A. Murashov, S. Voronov, V. Bidoli, M. Casolino, M. De Pascale, G. Furano, A. Iannucci, A. Morselli, P. Picozza, R. Sparvoli, M. Boezio, V. Bonvicini, R. Cirami, A. Vacchi, N. Zampa, M. Ambriola, R. Bellotti, F. Cafagna, F. Ciacio, M. Circella, C. De Marzo, O. Adriani, P. Papini, P. Spillantini, S. Straulino, E. Vannuccini, M. Ricci, G. Castellini, Geomagnetically trapped light isotopes observed with the detector NINA. J. Geophys. Res. 107(A8), 1171 (2002).  https://doi.org/10.1029/2001JA900172 CrossRefGoogle Scholar
  4. S.J. Bame, J.R. Asbridge, W.C. Feldman, M.D. Montgomery, P.D. Kearney, Solar wind heavy ion abundances. Sol. Phys. 43(2), 463–473 (1975).  https://doi.org/10.1007/BF00152368 ADSCrossRefGoogle Scholar
  5. V.F. Bashkirov, A.S. Kovtyukh, M.I. Panasyuk, Influence of charge exchange and Coulomb collisions on proton pitch angle distributions form in the Earth’s radiation belts. Adv. Space Res. 17(10), 25–28 (1996).  https://doi.org/10.1016/0273-1177(95)00690-G ADSCrossRefGoogle Scholar
  6. V. Bidoli, M. Casolino, M. De Pascale, G. Furano, A. Iannucci, A. Morselli, P. Picozza, R. Sparvoli, A. Bakaldin, A. Galper, S. Koldashov, M. Korotkov, A. Leonov, V. Mikhailov, S. Voronov, M. Boezio, V. Bonvicini, A. Vacchi, G. Zampa, N. Zampa, M. Ambriola, F. Cafagna, M. Circella, C. De Marzo, O. Adriani, P. Papini, P. Spillantini, S. Straulino, E. Vannuccini, M. Ricci, G. Castellini, Isotope composition of secondary hydrogen and helium above the atmosphere measured by the instruments NINA and NINA-2. J. Geophys. Res. 108(A5), 1211 (2003).  https://doi.org/10.1029/2002JA009684 CrossRefGoogle Scholar
  7. J.B. Blake, L.M. Friesen, A technique to determine the charge state of the anomalous low-energy cosmic rays, in Proc. 15th ICRC, vol. 7, Plovdiv, Bulgaria (1977), pp. 341–346 Google Scholar
  8. J.B. Blake, J.F. Fennell, M. Schulz, G.A. Paulikas, Geomagnetically trapped alpha particles. 2. The inner zone. J. Geophys. Res. 78(25), 5498–5506 (1973).  https://doi.org/10.1029/JA078i025p05498 ADSCrossRefGoogle Scholar
  9. J.B. Blake, J.F. Fennell, D. Hovestadt, Measurements of heavy ions in the low-altitude regions of the outer zone. J. Geophys. Res. 85(A11), 5992–5996 (1980).  https://doi.org/10.1029/JA085iA11p05992 ADSCrossRefGoogle Scholar
  10. J.B. Blake, W.A. Kolasinski, R.W. Fillius, E.G. Mullen, Injection of electrons and protons with energies of tens of MeV into \(L < 3\) on 24 March 1991. Geophys. Res. Lett. 19(8), 821–824 (1992).  https://doi.org/10.1029/92GL00624. ADSCrossRefGoogle Scholar
  11. R.C. Blanchard, W.N. Hess, Solar cycle changes in inner-zone protons. J. Geophys. Res. 69(19), 3927–3938 (1964).  https://doi.org/10.1029/JZ069i019p03927 ADSCrossRefGoogle Scholar
  12. J. Chen, T.G. Guzik, Y. Sang, J.P. Wefel, J.F. Cooper, Energetic helium particles trapped in the magnetosphere. Geophys. Res. Lett. 21(15), 1583–1586 (1994).  https://doi.org/10.1029/94GL01359 ADSCrossRefGoogle Scholar
  13. J. Chen, T.G. Guzik, J.P. Wefel, K.R. Pyle, J.F. Cooper, Energetic helium isotopes trapped in the magnetosphere. J. Geophys. Res. 101(A11), 24787–24799 (1996).  https://doi.org/10.1029/96JA02336 ADSCrossRefGoogle Scholar
  14. D.L. Chenette, J.B. Blake, J.F. Fennell, The charge state composition of 0.4-MeV helium ions in the Earth’s outer radiation belts during quiet times. J. Geophys. Res. 89(A9), 7551–7555 (1984).  https://doi.org/10.1029/JA089iA09p07551 ADSCrossRefGoogle Scholar
  15. S.P. Christon, D.C. Hamilton, J.M.C. Plane, D.G. Mitchell, J.M. Grebowsky, W.N. Spjeldvik, S.R. Nylund, Discovery of suprathermal ionospheric origin Fe+ in and near Earth’s magnetosphere. J. Geophys. Res. Space Phys. 122(11), 11175–11200 (2017).  https://doi.org/10.1002/2017JA024414 ADSCrossRefGoogle Scholar
  16. I.J. Cohen, D.G. Mitchell, L.M. Kistler, B.H. Mauk, B.J. Anderson, J.H. Westlake, S. Ohtani, D.C. Hamilton, D.L. Turner, J.B. Blake, J.F. Fennell, A.N. Jaynes, T.W. Leonard, A.J. Gerrard, L.J. Lanzerotti, R.C. Allen, J.L. Burch, Dominance of high-energy (\(>150~\mbox{keV}\)) heavy ion intensities in Earth’s middle to outer magnetosphere. J. Geophys. Res. Space Phys. 122(9), 9282–9293 (2017).  https://doi.org/10.1002/2017JA024351 ADSCrossRefGoogle Scholar
  17. J.R. Cummings, A.C. Cummings, R.A. Mewaldt, R.S. Selesnick, E.C. Stone, T.T. von Rosenvinge, New evidence for geomagnetically trapped anomalous cosmic rays. Geophys. Res. Lett. 20(18), 2003–2006 (1993).  https://doi.org/10.1029/93GL01961 ADSCrossRefGoogle Scholar
  18. L. Derome, M. Buenerd, Origin of light nuclei in near Earth orbit. Phys. Lett. B 521(3–4), 139–145 (2001).  https://doi.org/10.1016/S0370-2693(01)01247-3 ADSCrossRefGoogle Scholar
  19. A.J. Dragt, Solar cycle modulation of the radiation belt proton flux. J. Geophys. Res. 76(10), 2313–2344 (1971).  https://doi.org/10.1029/JA076i010p02313 ADSCrossRefGoogle Scholar
  20. M.A. Engel, B.T. Kress, M.K. Hudson, R.S. Selesnick, Simulations of inner radiation belt proton loss during geomagnetic storms. J. Geophys. Res. Space Phys. 120(11), 9323–9333 (2015).  https://doi.org/10.1002/2015JA021568 ADSCrossRefGoogle Scholar
  21. M.A. Engel, B.T. Kress, M.K. Hudson, R.S. Selesnick, Comparison of Van Allen probes radiation belt proton data with test particle simulation for the 17 March 2015 storm. J. Geophys. Res. Space Phys. 121(11), 11035–11041 (2016).  https://doi.org/10.1002/2016JA023333 ADSCrossRefGoogle Scholar
  22. J.F. Fennell, J.B. Blake, Geomagnetically trapped-particles, in Magnetospheric Particles and Fields, ed. by B.M. McCormac (D. Reidel, Dordrecht, 1976), pp. 149–156 CrossRefGoogle Scholar
  23. J.F. Fennell, J.B. Blake, G.A. Paulikas, Geomagnetically trapped alpha particles, 3. Low-altitude outer zone alpha-proton comparisons. J. Geophys. Res. 79(4), 521–528 (1974).  https://doi.org/10.1029/JA079i004p00521 ADSCrossRefGoogle Scholar
  24. J.F. Fennell, J.L. Roeder, M. Grande, B. Wilken, Oxygen charge state abundance in the inner magnetosphere. AIP Conf. Proc. 383, 145 (1996).  https://doi.org/10.1063/1.51527 ADSCrossRefGoogle Scholar
  25. K.B. Fenton, A search for \(\alpha\) particles trapped in the geomagnetic field. J. Geophys. Res. 72(15), 3889–3894 (1967).  https://doi.org/10.1029/JZ072i015p03889 ADSCrossRefGoogle Scholar
  26. R.C. Filz, Comparison of the low-altitude inner-zone 55-MeV trapped proton fluxes measured in 1965 and 1961–1962. J. Geophys. Res. 72(3), 959–963 (1967).  https://doi.org/10.1029/JZ072i003p00959 ADSCrossRefGoogle Scholar
  27. H.M. Fischer, V.W. Auschrat, G. Wibberenz, Angular distribution and energy spectra of protons of energy \(5\leq E \leq 50~\mbox{MeV}\) in the lower edge of the radiation belt in equatorial latitudes. J. Geophys. Res. 82(4), 537–547 (1977).  https://doi.org/10.1029/JA082i004p00537 ADSCrossRefGoogle Scholar
  28. S.C. Freden, Inner-belt Van Allen radiation. Space Sci. Rev. 9(2), 198–242 (1969).  https://doi.org/10.1007/BF002.15633 ADSCrossRefGoogle Scholar
  29. S.C. Freden, R.S. White, Particle fluxes in the inner radiation belt. J. Geophys. Res. 65(5), 1377–1383 (1960).  https://doi.org/10.1029/JZ065i005p01377 ADSCrossRefGoogle Scholar
  30. S.C. Freden, J.B. Blake, G.A. Paulikas, Spatial variation of the inner zone trapped proton spectrum. J. Geophys. Res. 70(13), 3113–3116 (1965).  https://doi.org/10.1029/JZ070i013p03113 ADSCrossRefGoogle Scholar
  31. T.A. Fritz, W.N. Spjeldvik, Observations of energetic radiation belt helium ions at the geomagnetic equator during quiet conditions. J. Geophys. Res. 83(A6), 2579–2583 (1978).  https://doi.org/10.1029/JA083iA06p02579 ADSCrossRefGoogle Scholar
  32. T.A. Fritz, W.N. Spjeldvik, Simultaneous quiet time observations of energetic radiation belt protons and helium ions: the equatorial \(\alpha/p\) ratio near 1 MeV. J. Geophys. Res. 84(A6), 2608–2618 (1979).  https://doi.org/10.1029/JA084iA06p02608 ADSCrossRefGoogle Scholar
  33. T.A. Fritz, W.N. Spjeldvik, Steady-state observations of geomagnetically trapped energetic heavy ions and their implications for theory. Planet. Space Sci. 29(11), 1169–1193 (1981).  https://doi.org/10.1016/0032-0633(81)90123-9 ADSCrossRefGoogle Scholar
  34. T.A. Fritz, W.N. Spjeldvik, Pitch angle distributions of geomagnetically trapped MeV helium ions during quiet times. J. Geophys. Res. 87(A7), 5095–5101 (1982).  https://doi.org/10.1029/JA087iA07p05095 ADSCrossRefGoogle Scholar
  35. T.A. Fritz, B. Wilken, Substorm generated fluxes of heavy ions at the geostationary orbit, in Magnetospheric Particles and Fields, ed. by B.M. McCormac (D. Reidel, Dordrecht, 1976), pp. 171–179 CrossRefGoogle Scholar
  36. T.A. Fritz, D.J. Williams, Initial observations of geomagnetically trapped alpha particles at the equator. J. Geophys. Res. 78(22), 4719–4723 (1973).  https://doi.org/10.1029/JA078i022p04719 ADSCrossRefGoogle Scholar
  37. G.P. Ginet, T.P. O’Brien, S.L. Huston, W.R. Johnston, T.B. Guild, R. Friedel, C.D. Lindstrom, C.J. Roth, P. Whelan, R.A. Quinn, D. Madden, S. Morley, Y.-J. Su, AE9, AP9 and SPM: new models for specifying the trapped energetic particle and space plasma environment. Space Sci. Rev. 179(1–4), 579–615 (2013).  https://doi.org/10.1007/s11214-013-9964-y ADSCrossRefGoogle Scholar
  38. T. Goka, H. Matsumoto, S. Takagi, Empirical model based on the measurements of the Japanese spacecrafts. Radiat. Meas. 30(5), 617–624 (1999).  https://doi.org/10.1016/S1350-4487(99)00237-1 CrossRefGoogle Scholar
  39. M. Grande, C.H. Perry, J.B. Blake, M.W. Chen, J.F. Fennell, B. Wilken, Observations of iron, silicon, and other heavy ions in the geostationary altitude region during late March 1991. J. Geophys. Res. 101(A11), 24707–24718 (1996).  https://doi.org/10.1029/96JA00044 ADSCrossRefGoogle Scholar
  40. M.E. Greenspan, G.M. Mason, J.E. Mazur, Low-altitude equatorial ions: a new look with SAMPEX. J. Geophys. Res. 104(A9), 19911–19922 (1999).  https://doi.org/10.1029/1999JA900225 ADSCrossRefGoogle Scholar
  41. N.L. Grigorov, M.A. Kondratyeva, M.I. Panasyuk, C.A. Tretyakova, J.H. Adams, J.B. Blake, M. Schultz, R.A. Mewaldt, A.J. Tylka, Evidence for trapped anomalous cosmic ray oxygen ions in the inner magnetosphere. Geophys. Res. Lett. 18(11), 1959–1962 (1991).  https://doi.org/10.1029/91GL02551 ADSCrossRefGoogle Scholar
  42. O.R. Grigoryan, V.V. Romashova, A.N. Petrov, SAA drift: experimental results. Adv. Space Res. 41(1), 76–80 (2008).  https://doi.org/10.1016/j.asr.2007.02.015 ADSCrossRefGoogle Scholar
  43. A.A. Gusev, T. Kohno, W.N. Speldjvik, I.M. Martin, G.I. Pugacheva, Dynamics of the low-altitude energetic proton fluxes beneath the main terrestrial radiation belts. J. Geophys. Res. 101(A9), 19659–19663 (1996).  https://doi.org/10.1029/96JA01518 ADSCrossRefGoogle Scholar
  44. M.S. Gussenhoven, E.G. Mullen, E. Holeman, Radiation belt dynamics during solar minimum. IEEE Trans. Nucl. Sci. 36(6), 2008–2014 (1989).  https://doi.org/10.1109/23.45398 ADSCrossRefGoogle Scholar
  45. M.S. Gussenhoven, E.G. Mullen, M.D. Violet, C. Hein, J. Bass, D. Madden, CRRES high energy proton flux maps. IEEE Trans. Nucl. Sci. 40(6), 1450–1457 (1993).  https://doi.org/10.1109/23.273519 ADSCrossRefGoogle Scholar
  46. M.S. Gussenhoven, E.G. Mullen, M.D. Violet, Solar particle events as seen on CRRES. Adv. Space Res. 14(10), 619–629 (1994).  https://doi.org/10.1016/0273-1177(94)90517-7 ADSCrossRefGoogle Scholar
  47. T.G. Guzik, M.A. Miah, J.W. Mitchell, J.P. Wefel, Low-altitude trapped protons at the geomagnetic equator. J. Geophys. Res. 94(1), 145–150 (1989).  https://doi.org/10.1029/JA094iA01p00145 ADSCrossRefGoogle Scholar
  48. M. Hareyama, M. Asaeda, M. Fujii, N. Hasebe, N. Kajiwara, S. Kodaira, K. Sakurai, T. Goka, H. Koshiishi, H. Matsumoto, He and Ne isotopes in radiation belts observed by HIT onboard TSUBASA Satellite, in Proc. 29th ICRC, Pune, vol. 2 (2005), pp. 121–124 Google Scholar
  49. H.H. Heckman, A.H. Armstrong, Energy spectrum of geomagnetically trapped protons. J. Geophys. Res. 67(4), 1255–1262 (1962).  https://doi.org/10.1029/JZ067i004p01255 ADSCrossRefGoogle Scholar
  50. W.N. Hess, Discussion of paper by Pizzella, McIlwain, and Van Allen ‘Time variations of intensity in the Earth’s inner radiation zone, October 1959 through December 1960’. J. Geophys. Res. 67(12), 4886–4887 (1962).  https://doi.org/10.1029/JZ0670i012p04886 ADSCrossRefGoogle Scholar
  51. W.N. Hess, The Radiation Belt and Magnetosphere (Blaisdell, Waltham, 1968) Google Scholar
  52. D. Heynderickx, Comparison between methods to compensate for the secular motion of the South Atlantic Anomaly. Radiat. Meas. 26(3), 369–373 (1996).  https://doi.org/10.1016/1350-4487(96)00056-X CrossRefGoogle Scholar
  53. J. Hirshberg, A. Alksne, D.S. Colburn, S.J. Bame, A.J. Hundhausen, Observation of a solar flare induced interplanetary shock and helium-enriched driver gas. J. Geophys. Res. 75(1), 1–15 (1970).  https://doi.org/10.1029/JA075i001p00001 ADSCrossRefGoogle Scholar
  54. J. Hirshberg, J.R. Asbridge, D.E. Robbins, The helium-enriched interplanetary plasma from the proton flares of August/September, 1966. Sol. Phys. 18(2), 313–320 (1971).  https://doi.org/10.1029/BF00145946 ADSCrossRefGoogle Scholar
  55. D. Hovestadt, B. Häusler, M. Scholer, Observation of energetic particles at very low altitudes near the geomagnetic equator. Phys. Rev. Lett. 28(20), 1340–1343 (1972).  https://doi.org/10.1103/PhysRevLett.28.1340 ADSCrossRefGoogle Scholar
  56. D. Hovestadt, G. Gloeckler, C.Y. Fan, L.A. Fisk, F.M. Ipavich, B. Klecker, J.J. O’Gallagher, M. Scholer, Evidence for solar wind origin of energetic heavy ions in the Earth’s radiation belt. Geophys. Res. Lett. 5(12), 1055–1057 (1978).  https://doi.org/10.1029/GL005i012p01055 ADSCrossRefGoogle Scholar
  57. D. Hovestadt, B. Klecker, E. Mitchell, J.F. Fennell, G. Gloeckler, C.Y. Fan, Spatial distribution of \(Z \geq 2\) ions in the outer radiation belt during quiet conditions. Adv. Space Res. 1(1), 305–308 (1981).  https://doi.org/10.1016/0273-1177(81)90125-3 ADSCrossRefGoogle Scholar
  58. M.K. Hudson, A.D. Kotelnikov, X. Li, I. Roth, M. Temerin, J. Wygant, J.B. Blake, M.S. Gussenhoven, Simulation of proton radiation belt formation during the March 24, 1991 SSC. Geophys. Res. Lett. 22(3), 291–294 (1995).  https://doi.org/10.2039/95GL00009 ADSCrossRefGoogle Scholar
  59. M.K. Hudson, S.R. Elkington, J.G. Lyon, V.A. Marchenko, I. Roth, M. Temerin, J.B. Blake, M.S. Gussenhoven, J.R. Wygant, Simulations of radiation belt formation during storm sudden commencements. J. Geophys. Res. 102(A7), 14087–14102 (1997).  https://doi.org/10.1029/97JA03995 ADSCrossRefGoogle Scholar
  60. M.K. Hudson, B.T. Kress, J.E. Mazur, K.L. Perry, P.L. Slocum, 3D modeling of shock-induced trapping of solar energetic particles in the Earth’s magnetosphere. J. Atmos. Sol.-Terr. Phys. 66(15–16), 1389–1397 (2004).  https://doi.org/10.1016/j.jastp.2004.03.024 ADSCrossRefGoogle Scholar
  61. S. Huston, G. Kuck, K. Pfitzer, Low-altitude trapped radiation model using TIROS/NOAA data, in Radiation Belts: Models and Standards, ed. by J.F. Lemaire, D. Heynderickx, D.N. Baker. AGU, Washington, D.C. (1996), pp. 119–122.  https://doi.org/10.1029/GM097/p0119 CrossRefGoogle Scholar
  62. B.D. Ilyin, S.N. Kuznetsov, M.I. Panasyuk, E.N. Sosnovets, Non-adiabatic effects and boundary of the trapped protons in the Earth’s radiation belts. Bull. Russ. Acad. Sci., Phys. 48(11), 2200–2203 (1984) (in Russian) Google Scholar
  63. V. Jentsch, G. Wibberenz, An analytic study of the energy and pitch angle distribution of inner-zone protons. J. Geophys. Res. 85(A1), 1–8 (1980).  https://doi.org/10.1029/JA085iA01p00001 ADSCrossRefGoogle Scholar
  64. A.D. Jones, S.G. Kanekal, D.N. Baker, B. Klecker, M.D. Looper, J.E. Mazur, Q. Schiller, SAMPEX observations of the South Atlantic anomaly secular drift during solar cycles 22–24. Space Weather 15(1), 44–52 (2017).  https://doi.org/10.1002/2016SW001525 ADSCrossRefGoogle Scholar
  65. B. Klecker, M.C. McNab, J.B. Blake, D.C. Hamilton, D. Hovestadt, H. Kastle, M.D. Looper, G.M. Mason, J.E. Mazur, M. Scholer, Charge states of anomalous cosmic-ray nitrogen, oxygen, and neon: SAMPEX observations. Astrophys. J. Lett. 442, L69–L72 (1995).  https://doi.org/10.1086/187818 ADSCrossRefGoogle Scholar
  66. B. Klecker, R.A. Mewaldt, J.W. Bieber, A.C. Cummings, L. Drury, J. Giacalone, J.R. Jokipii, F.C. Jones, M.B. Krainev, M.A. Lee, J.A. Le Roux, R.G. Marsden, F.B. Mcdonald, R.B. McKibben, C.D. Steenberg, M.G. Baring, D.C. Ellison, L.J. Lanzerotti, R.A. Leske, J.E. Mazur, H. Moraal, M. Oetliker, V.S. Ptuskin, R.S. Selesnick, K.J. Trattner, Anomalous cosmic rays. Space Sci. Rev. 83(1–2), 259–308 (1998).  https://doi.org/10.1023/A:1005031108919 ADSCrossRefGoogle Scholar
  67. A.S. Kovtyukh, The magnetosphere used as an analyzer of spectral shape of radiation belt particles. Geomagn. Aeron. 24(4), 566–570 (1984) (in Russian) ADSGoogle Scholar
  68. A.S. Kovtyukh, Interrelation of radial dependence of rigidity and shape of the protons energy spectra in the Earth’s radiation belts. Geomagn. Aeron. 25(1), 23–28 (1985a) (in Russian) ADSGoogle Scholar
  69. A.S. Kovtyukh, On the shape of the protons energy spectrum of the Earth’s radiation belts and the mechanisms of its formation. Geomagn. Aeron. 25(6), 886–892 (1985b) (in Russian) ADSGoogle Scholar
  70. A.S. Kovtyukh, Double-peak space-energy structure of the outer ion radiation belt. Geomagn. Aeron. 29(1), 22–26 (1989) (in Russian) ADSGoogle Scholar
  71. A.S. Kovtyukh, The relationship between energy spectra of ions and its pitch angle distributions in the Earth’s radiation belts. Geomagn. Aeron. 33(4), 453–460 (1993) (in Russian) Google Scholar
  72. A.S. Kovtyukh, Solar-cycle variations of invariant parameters of ion energy spectra of the Earth’s radiation belts. Cosm. Res. 37(1), 53–64 (1999a) (in Russian) ADSGoogle Scholar
  73. A.S. Kovtyukh, Mechanisms of formation of invariant parameters and scaling of ion spectra in a geomagnetic trap. Cosm. Res. 37(3), 217–229 (1999b) (in Russian) ADSGoogle Scholar
  74. A.S. Kovtyukh, Geocorona of hot plasma. Cosm. Res. 39(6), 527–558 (2001).  https://doi.org/10.1023/A:1013074126604 (in Russian) ADSCrossRefGoogle Scholar
  75. A.S. Kovtyukh, Radial dependence of ionization losses of protons of the Earth’s radiation belts. Ann. Geophys. 34(1), 17–28 (2016a).  https://doi.org/10.5194/angeo-34-17-2016 ADSCrossRefGoogle Scholar
  76. A.S. Kovtyukh, Deduction of the rates of radial diffusion of protons from the structure of the Earth’s radiation belts. Ann. Geophys. 34(11), 1085–1098 (2016b).  https://doi.org/10.5194/angeo-34-1085-2016 ADSCrossRefGoogle Scholar
  77. S.M. Krimigis, J.A. Van Allen, Geomagnetically trapped alpha particles. J. Geophys. Res. 72(23), 5779–5798 (1967).  https://doi.org/10.1929/JZ972i023p05779 ADSCrossRefGoogle Scholar
  78. S.M. Krimigis, P. Verzariu, Measurements of geomagnetically trapped alpha particles, 1968–1970, 1. Quiet time distributions. J. Geophys. Res. 78(31), 7275–7385 (1973).  https://doi.org/10.1029/JA078i031p07275 ADSCrossRefGoogle Scholar
  79. S.M. Krimigis, P. Verzariu, J.A. Van Allen, T.P. Armstrong, T.A. Fritz, B.A. Randall, Trapped energetic nuclei \(Z \geq 3\) in the Earth’s outer radiation zone. J. Geophys. Res. 75(22), 4210–4215 (1970).  https://doi.org/10.1029/JA075i022p04210 ADSCrossRefGoogle Scholar
  80. S.N. Kuznetsov, M. Vandas, M. Dvorjakova, S. Fischer, Registration of the energetic ions on the high of 500 km in the Earth’s inner radiation belt. Bull. Russ. Acad. Sci., Phys. 52(4), 821–823 (1988) (in Russian) Google Scholar
  81. N.V. Kuznetsov, N.I. Nikolaeva, M.I. Panasyuk, Variation of the trapped proton flux in the inner radiation belt of the Earth as a function of solar activity. Cosm. Res. 48(1), 80–85 (2010).  https://doi.org/10.1134/S0010952510010065 (in Russian) ADSCrossRefGoogle Scholar
  82. G. Lamanna, B. Alpat, R. Battiston, P. Zuccon, Measurement of deuteron spectra in Low Earth Orbit with the Alpha Magnetic Spectrometer, in Proc. 27th ICRC, vol. 5, Hamburg (2001), pp. 1614–1617 Google Scholar
  83. A. Leonov, M. Cyamukungu, J. Cabrera, P. Leleux, J. Lemaire, G. Gregorie, S. Benck, V. Mikhailov, A. Bakaldin, A. Galper, S. Koldashov, S. Voronov, M. Casolino, M. De Pascale, P. Picozza, R. Sparvolli, M. Ricci, Pitch angle distribution of trapped energetic protons and helium isotope nuclei measured along the Resurs-01 No. 4 LEO satellite. Ann. Geophys. 23(8), 2983–2987 (2005).  https://doi.org/10.5194/angeo-23-2983-2005 ADSCrossRefGoogle Scholar
  84. M.D. Looper, J.B. Blake, R.A. Mewaldt, J.R. Cummings, D.N. Baker, Observations of the remnants of the ultrarelativistic electrons injected by the strong SSC of 24 March 1991. Geophys. Res. Lett. 21(19), 2079–2082 (1994).  https://doi.org/10.1029/94GL01586 ADSCrossRefGoogle Scholar
  85. M.D. Looper, J.B. Blake, B. Klecker, D. Hovesadt, Trapped anomalous cosmic rays near the geomagnetic cutoff. J. Geophys. Res. 101(A11), 24747–24753 (1996).  https://doi.org/10.1029/96JA02252 ADSCrossRefGoogle Scholar
  86. M.D. Looper, J.B. Blake, R.A. Mewaldt, Maps of hydrogen isotopes at low altitudes in the inner zone from SAMPEX observations. Adv. Space Res. 21(12), 1679–1682 (1998).  https://doi.org/10.1016/S02/3-1177(08)00014-3 ADSCrossRefGoogle Scholar
  87. M.D. Looper, J.B. Blake, R.A. Mewaldt, Response of the inner radiation belt to the violent Sun-Earth connection events of October–November 2003. Geophys. Res. Lett. 32(3), L03506 (2005).  https://doi.org/10.1029/2004GL021502 CrossRefGoogle Scholar
  88. K.R. Lorentzen, J.E. Mazur, M.D. Looper, J.F. Fennell, J.B. Blake, Multisatellite observations of MeV ion injections during storms. J. Geophys. Res. 107(A9), 1231 (2002).  https://doi.org/10.1029/2001JA000276 CrossRefGoogle Scholar
  89. R. Lundin, B. Hultqvist, N. Pissarenko, A. Zakharov, Composition of the hot magnetospheric plasma as observed with the Prognoz-7 satellite, in Energetic Ion Composition in the Earth’s Magnetosphere, ed. by R.G. Johnson (Terra Sci., Tokyo, 1983), pp. 307–351 CrossRefGoogle Scholar
  90. V.N. Lutsenko, N.S. Nikolaeva, Relative content and the range of alpha particles in the inner radiation belt of the Earth by measurements on satellite Prognoz-5. Cosm. Res. 16(3), 459–462 (1978) (in Russian) Google Scholar
  91. J.E. Mazur, G.M. Mason, M.E. Greenspan, The elemental composition of low altitude \(0.49~\mbox{MeV}/\mbox{nucleon}\) trapped equatorial ions. Geophys. Res. Lett. 25(6), 849–852 (1998).  https://doi.org/10.1029/98GL00465 ADSCrossRefGoogle Scholar
  92. J.E. Mazur, G.M. Mason, J.B. Blake, B. Klecker, R.A. Leske, M.D. Looper, R.A. Mewaldt, Anomalous cosmic ray argon and other rare elements at 1–4 MeV/nucleon trapped within the Earth’s magnetosphere. J. Geophys. Res. 105(A9), 21015–21023 (2000).  https://doi.org/10.1029/1999JA000272 ADSCrossRefGoogle Scholar
  93. C.E. McIlwain, Coordinate for mapping the distribution of magnetically trapped particles. J. Geophys. Res. 66(11), 3681–3691 (1961).  https://doi.org/10.1029/JZ066i011p03681 ADSCrossRefGoogle Scholar
  94. R.A. Mewaldt, R.S. Selesnick, J.R. Cummings, Anomalous cosmic rays: The principal source of high energy heavy ions in the radiation belts, in Radiation Belts: Models and Standards, ed. by J.F. Lemaire, D. Heynderickx, D.N. Baker (AGU, Washington, D.C., 1996), pp. 35–41.  https://doi.org/10.1029/GM097p0035 CrossRefGoogle Scholar
  95. A. Mogro-Campero, Geomagnetically trapped carbon, nitrogen, and oxygen nuclei. J. Geophys. Res. 77(16), 2799–2818 (1972).  https://doi.org/10.1029/JA077i016p02799 ADSCrossRefGoogle Scholar
  96. E.G. Mullen, M.S. Gussenhoven, K. Ray, M. Violet, A double-peaked inner radiation belt: cause and effect as seen on CRRES. IEEE Trans. Nucl. Sci. 38(6/1), 1713–1718 (1991).  https://doi.org/10.1109/23.124167 ADSCrossRefGoogle Scholar
  97. G. Nakano, H. Heckman, Evidence for solar-cycle changes in the inner-belt protons. Phys. Rev. Lett. 20(15), 806–809 (1968).  https://doi.org/10.1103/PhysRevLett.20.806 ADSCrossRefGoogle Scholar
  98. J.E. Naugle, D.A. Kniffen, Variations of the proton energy spectrum with position in the inner Van Allen belt. J. Geophys. Res. 68(13), 4065–4978 (1963).  https://doi.org/10.1029/JZ068i013p04065 ADSCrossRefGoogle Scholar
  99. T.G. Northrop, The Adiabatic Motion of Charged Particles (Wiley-Interscience, New York, 1963) CrossRefGoogle Scholar
  100. M.I. Panasyuk, S.Ya. Reizman, E.N. Sosnovets, V.N. Filatov, Experimental results of protons and \(\alpha \)-particles measurements with energy more 1 MeV/nucleon in the radiation belts. Cosm. Res. 15(6), 887–894 (1977) (in Russian) Google Scholar
  101. E.N. Parker, Newtonian development of the dynamical properties of ionized gases of low density. Phys. Rev. 107(4), 924–933 (1957).  https://doi.org/10.1103/PhysRev.107.924 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  102. G. Pizzella, C.E. McIlwain, J.A. Van Allen, Time variations of intensity in the Earth’s inner radiation zone, October 1959 through December 1960. J. Geophys. Res. 67(4), 1235–1253 (1962).  https://doi.org/10.1029/JZ0670i004p01235 ADSCrossRefGoogle Scholar
  103. Z.-Y. Pu, L. Xie, W.X. Jiao, S.Y. Fu, X.H. Fang, Q.G. Zong, D. Heynderickx, Drift shell tracing and secular variation of inner zone high energy proton environment in SAA. Adv. Space Res. 36(10), 1973–1978 (2005).  https://doi.org/10.1016/j.asr.2004.09.018 ADSCrossRefGoogle Scholar
  104. G.I. Pugacheva, W.N. Spjeldvik, A.A. Gusev, I.M. Martin, N.M. Sobolevsky, Hydrogen and helium isotope inner radiation belts in the Earth’s magnetosphere. Ann. Geophys. 16(8), 931–939 (1998).  https://doi.org/10.1007/s00585-998-0931-y ADSCrossRefGoogle Scholar
  105. G.I. Pugacheva, A.A. Gusev, U. Jayanthi, I.M. Martin, W.N. Spjeldvik, Antiparticles and light element isotope ions in the Earth’s magnetosphere. J. Atmos. Sol.-Terr. Phys. 64(5–6), 625–631 (2002).  https://doi.org/10.1016/S1364-6826(02)00021-4 ADSCrossRefGoogle Scholar
  106. M. Qin, X. Zhang, B. Ni, H. Song, H. Zou, Y. Sun, Solar cycle variations of trapped proton flux in the inner radiation belt. J. Geophys. Res. Space Phys. 119(12), 9658–9669 (2014).  https://doi.org/10.1002/2014JA020300 ADSCrossRefGoogle Scholar
  107. D.E. Robbins, A.J. Hundhausen, S.J. Bame, Helium in solar wind. J. Geophys. Res. 75(7), 1178–1187 (1970).  https://doi.org/10.1029/JA075i007p01178 ADSCrossRefGoogle Scholar
  108. J.G. Roederer, Dynamics of Geomagnetically Trapped Radiation (Springer, New York, 1970).  https://doi.org/10.1007/978-3-642-49300-3 CrossRefGoogle Scholar
  109. J.G. Roederer, S. Lejosne, Coordinates for representing radiation belt particle flux. J. Geophys. Res. Space Phys. 123(2), 1381–1387 (2018).  https://doi.org/10.1002/2017JA025053 ADSCrossRefGoogle Scholar
  110. A.G. Rubin, R.C. Filz, P.L. Rothwell, B. Sellers, Geomagnetically trapped alpha particles from 18 to 70 MeV. J. Geophys. Res. 82(13), 1938–1942 (1977).  https://doi.org/10.1029/JA082i013p1938 ADSCrossRefGoogle Scholar
  111. M. Scholer, D. Hovestadt, G. Morfill, Energetic \(\mbox{He}^{+}\) ions from the radiation belt at altitudes near the geomagnetic equator. J. Geophys. Res. 80(1), 80–85 (1975).  https://doi.org/10.1029/JA080i001p00080 ADSCrossRefGoogle Scholar
  112. M. Scholer, D. Hovestadt, G. Hartmann, J.B. Blake, J.F. Fennell, G. Gloeckler, Low-altitude measurements of precipitating protons, alpha particles, and heavy ions during the geomagnetic storm on March 26–27, 1976. J. Geophys. Res. 84(A1), 79–85 (1979).  https://doi.org/10.1029/JA084iA01p00079 ADSCrossRefGoogle Scholar
  113. M. Schulz, L.J. Lanzerotti, Particle Diffusion in the Radiation Belts, Physics and Chemistry in Space, vol. 7 (Springer, New York, 1974), pp. 1–215 Google Scholar
  114. M. Schulz, G.A. Paulikas, Secular magnetic variation and the inner proton belt. J. Geophys. Res. 77(4), 744–747 (1972).  https://doi.org/10.1029/JA077i004p00744 ADSCrossRefGoogle Scholar
  115. R.S. Selesnick, Simulation of the anomalous cosmic ray radiation belt with atmospheric production and decay. Geophys. Res. Lett. 28(17), 3417–3420 (2001).  https://doi.org/10.1029/2001GL013383 ADSCrossRefGoogle Scholar
  116. R.S. Selesnick, R.A. Mewaldt, Atmospheric production of radiation belt light isotopes. J. Geophys. Res. 101(A9), 19745–19757 (1996).  https://doi.org/10.1029/96JA01746 ADSCrossRefGoogle Scholar
  117. R.S. Selesnick, A.C. Cummings, J.R. Cummings, R.A. Mewaldt, E.C. Stone, T.T. von Rosenvinge, Geomagnetically trapped anomalous cosmic rays. J. Geophys. Res. 100(A6), 9503–9518 (1995).  https://doi.org/10.1029/94JA03140 ADSCrossRefGoogle Scholar
  118. R.S. Selesnick, A.C. Cummings, R.A. Leske, R.A. Mewaldt, E.C. Stone, J.R. Cummings, Solar cycle dependence of the geomagnetically trapped anomalous cosmic rays. Geophys. Res. Lett. 27(15), 2349–2352 (2000).  https://doi.org/10.1029/2000GL000049 ADSCrossRefGoogle Scholar
  119. R.S. Selesnick, M.D. Looper, R.A. Mewaldt, A theoretical model of the inner proton radiation belt. Space Weather 5(4), S04003 (2007).  https://doi.org/10.1029/2006SW000275 ADSCrossRefGoogle Scholar
  120. R.S. Selesnick, M.D. Looper, R.A. Mewaldt, A model of the secondary radiation belt. J. Geophys. Res. 113(A11), A11221 (2008).  https://doi.org/10.1029/2008JA013593 ADSCrossRefGoogle Scholar
  121. R.S. Selesnick, M.K. Hudson, B.T. Kress, Injection and loss of inner radiation belt protons during solar proton events and magnetic storms. J. Geophys. Res. 115(A8), A08211 (2010).  https://doi.org/10.1029/2010JA015247 ADSCrossRefGoogle Scholar
  122. R.S. Selesnick, M.K. Hudson, B.T. Kress, Direct observation of the CRAND proton radiation belt source. J. Geophys. Res. 118(12), 7532–7537 (2013).  https://doi.org/10.1002/2013JA019338 CrossRefGoogle Scholar
  123. R.S. Selesnick, D.N. Baker, A.N. Jaynes, X. Li, S.G. Kanekal, M.K. Hudson, B.T. Kress, Observations of the inner radiation belt: CRAND and trapped solar protons. J. Geophys. Res. Space Phys. 119(8), 6541–6552 (2014).  https://doi.org/10.1002/2014JA020188 ADSCrossRefGoogle Scholar
  124. R.S. Selesnick, D.N. Baker, A.N. Jaynes, X. Li, S.G. Kanekal, M.K. Hudson, B.T. Kress, Inward diffusion and loss of radiation belt protons. J. Geophys. Res. Space Phys. 121(3), 1969–1978 (2016).  https://doi.org/10.1002/2015JA022154 ADSCrossRefGoogle Scholar
  125. R.S. Selesnick, D.N. Baker, S.G. Kanekal, V.C. Hoxie, X. Li, Modeling the proton radiation belt with Van Allen Probes Relativistic Electron-Proton Telescope data. J. Geophys. Res. Space Phys. 123(1), 685–697 (2018).  https://doi.org/10.1002/2017JA024661 ADSCrossRefGoogle Scholar
  126. R. Shi, D. Summers, B. Ni, J.W. Manweiler, D.G. Mitchell, L.J. Lanzerotti, A statistical study of proton pitch angle distributions measured by the Radiation Belt Storm Probes Ion Composition Experiment. J. Geophys. Res. Space Phys. 121(6), 5233–5249 (2016).  https://doi.org/10.1002/2015JA022140 ADSCrossRefGoogle Scholar
  127. W.N. Spjeldvik, T.A. Fritz, Quiet time observations of equatorially trapped megaelectronvolt radiation belt ions with nuclear charge \(Z \geq 4\). J. Geophys. Res. 83(A9), 4401–4405 (1978).  https://doi.org/10.1029/JA083iA09p04401 ADSCrossRefGoogle Scholar
  128. W.N. Spjeldvik, T.A. Fritz, Observations of energetic helium ions in the Earth’s radiation belts during a sequence of geomagnetic storms. J. Geophys. Res. 86(A4), 2317–2328 (1981a).  https://doi.org/10.1029/JA086iA04p02317 ADSCrossRefGoogle Scholar
  129. W.N. Spjeldvik, T.A. Fritz, Energetic heavy ions with nuclear charge \(Z \geq 4\) in the equatorial radiation belts of the Earth: magnetic storms. J. Geophys. Res. 86(A4), 2349–2360 (1981b).  https://doi.org/10.1029/JA086iA04p02349 ADSCrossRefGoogle Scholar
  130. W.N. Spjeldvik, T.A. Fritz, Observations of ions with nuclear charge \(Z \geq 9\) in the inner magnetosphere. J. Geophys. Res. 86(A9), 7749–7754 (1981c).  https://doi.org/10.1029/JA086iA09p07749 ADSCrossRefGoogle Scholar
  131. W.N. Spjeldvik, T.A. Fritz, Experimental determination of geomagnetically trapped energetic heavy ion fluxes, in Energetic Ion Composition in the Earth’s Magnetosphere, ed. by R.G. Johnson (Terra Sci., Tokyo, 1983), pp. 369–421 CrossRefGoogle Scholar
  132. W.N. Spjeldvik, T.A. Fritz, J. Chen, R.B. Sheldon, POLAR spacecraft observations of helium ion angular anisotropy in the Earth’s radiation belts. Ann. Geophys. 17(6), 723–733 (1999).  https://doi.org/10.1007/s00585-999-0723-z ADSCrossRefGoogle Scholar
  133. B.A. Tverskoy, Main mechanisms in the formation of the Earth’s radiation belts. Rev. Geophys. 7(1–2), 219–231 (1969).  https://doi.org/10.1029/RG007i001p00219 ADSCrossRefGoogle Scholar
  134. A. Vacaresse, D. Boscher, S. Bourdarie, M. Blanc, J.A. Sauvaud, Modeling the high-energy proton belt. J. Geophys. Res. 104(A12), 28601–28613 (1999).  https://doi.org/10.1029/1999JA900411 ADSCrossRefGoogle Scholar
  135. J.A. Van Allen, B.A. Randall, Evidence for direct durable capture of 1- to 8-MeV solar alpha particles onto geomagnetically trapped orbits. J. Geophys. Res. 76(7), 1830–1836 (1971).  https://doi.org/10.1029/JA076i007p01830 ADSCrossRefGoogle Scholar
  136. J.A. Van Allen, B.A. Randall, S.M. Krimigis, Energetic carbon, nitrogen, and oxygen nuclei in the Earth’s outer radiation zone. J. Geophys. Res. 75(31), 6085–6091 (1970).  https://doi.org/10.1029/JA075i031p06085 ADSCrossRefGoogle Scholar
  137. S.N. Vernov, The Earth’s radiation belts, in Proc. 11th ICRC, ed. by G. Bozóki, E. Gombosi, A. Sebestyén, A. Somogyi, Budapest (1969), pp. 85–162 Google Scholar
  138. V. Zaconte, M. Casolino, C. De Santis, L. Di Fino, C. La Tessa, M. Larosa, L. Narici, P. Picozza, The radiation environment in the ISS-USLab measured by ALTEA: spectra and relative nuclear abundances in the polar, equatorial and SAA region. Adv. Space Res. 46(6), 797–799 (2010).  https://doi.org/10.1016/j.asr.2010/02.032 ADSCrossRefGoogle Scholar
  139. H. Zou, Q.G. Zong, G.K. Parks, Z.Y. Pu, H.F. Chen, L. Xie, Response of high-energy protons of the inner radiation belt to large magnetic storms. J. Geophys. Res. 116(A10), A10229 (2011).  https://doi.org/10.1029/2011JA016733 ADSCrossRefGoogle Scholar
  140. H. Zou, C. Li, Q. Zong, G.K. Parks, Z. Pu, H. Chen, L. Xie, X. Zhang, Short-term variations of the inner radiation belt in the South Atlantic anomaly. J. Geophys. Res. Space Phys. 120(2), 4475–4486 (2015).  https://doi.org/10.1002/2015JA021312 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations