Advertisement

Space Science Reviews

, 214:130 | Cite as

Recent Advancements and Motivations of Simulated Pluto Experiments

  • Caitlin J. AhrensEmail author
  • William M. Grundy
  • Kathleen E. Mandt
  • Paul D. Cooper
  • Orkan M. Umurhan
  • Vincent F. Chevrier
Article
  • 146 Downloads
Part of the following topical collections:
  1. Ices in the Solar System

Abstract

This review of Pluto laboratory research presents some of the recent advancements and motivations in our understanding enabled by experimental simulations, the need for experiments to facilitate models, and predictions for future laboratory work. The spacecraft New Horizons at Pluto has given a large amount of scientific data already rising to preliminary results, spanning from the geology to the atmosphere. Different ice mixtures have now been detected, with the main components being nitrogen, methane, and carbon monoxide. Varying geology and atmospheric hazes, however, gives us several questions that need to be addressed to further our understanding. Our review summarizes the complexity of Pluto, the motivations and importance of laboratory simulations critical to understanding the low temperature and pressure environments of icy bodies such as Pluto, and the variability of instrumentation, challenges for research, and how simulations and modeling are complimentary.

Keywords

Pluto Laboratory simulations Ices Experiments Modeling 

Notes

Acknowledgements

The authors would like to thank the New Horizons team for image and data accessibility.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. A. Bar-Nun, V. Dimitrov, M. Tomasko, Titan’s aerosols: comparison between our model and DISR findings. Planet. Space Sci. 56(5), 708–714 (2008).  https://doi.org/10.1016/j.pss.2007.11.014 ADSCrossRefGoogle Scholar
  2. M. Barucci, F. Merlin, E. Dotto et al., TNO surface ices: observations of the TNO 55638 (2002 VE95) and analysis of the population’s spectral properties. Astron. Astrophys. 455(2), 725–730 (2006).  https://doi.org/10.1051/0004-6361:20064951 ADSCrossRefGoogle Scholar
  3. D. Bercovici, G. Schubert, R. Reynolds, Phase transitions and convection in icy satellites. Geophys. Res. Lett. 13(5), 448–451 (1986).  https://doi.org/10.1029/GL013i005p00448 ADSCrossRefGoogle Scholar
  4. T. Bertrand, F. Forget, 3D modeling of organic haze in Pluto’s atmosphere. Icarus 287, 72–86 (2017).  https://doi.org/10.1016/j.icarus.2017.01.016 ADSCrossRefGoogle Scholar
  5. R. Bohn, S. Sandford, L. Allamandola, D. Cruikshank, Infrared spectroscopy of Triton and Pluto ice analogs: the case for saturated hydrocarbons. Icarus 111(1), 151–173 (1994).  https://doi.org/10.1006/icar.1994.1138 ADSCrossRefGoogle Scholar
  6. R. Brunetto, C. Lantz, D. Ledu et al., Ion irradiation of Allende meteorite probed by visible, IR, and Raman spectroscopies. Icarus 237, 278–292 (2014).  https://doi.org/10.1016/j.icarus.2014.04.047 ADSCrossRefGoogle Scholar
  7. P. Buhler, A. Ingersoll, Sublimation pit distribution indicates convection cell surface velocities of \({\sim}10~\mbox{cm}\) per year in Sputnik Planitia, Pluto. Icarus 300, 327–340 (2018).  https://doi.org/10.1016/j.icarus.2017.09.018 ADSCrossRefGoogle Scholar
  8. A. Cheng, M. Summers, G. Gladstone et al., Haze in Pluto’s atmosphere. Icarus 290, 112–133 (2017).  https://doi.org/10.1016/j.icarus.2017.02.024 ADSCrossRefGoogle Scholar
  9. D. Cornelison, T. Dillingham, S. Tegler et al., X-ray photoelectron spectroscopy and mass spectrometry studies of x-ray-processed solid CO2. Astrophys. J. 505(1), 443–451 (1998).  https://doi.org/10.1086/306140 ADSCrossRefGoogle Scholar
  10. J. Crowley, Hydrothermal mineral zoning within an eroded stratocone: remote sensing spectral analysis of Brokeoff Volcano, California, in Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing, ed. by P. King, M. Ramsey, G. Swayze. Mineral. Assoc. Canada, Short Course, vol. 33 (2004), pp. 215–226 Google Scholar
  11. D. Cruikshank, C. Pilcher, D. Morrison, Pluto-evidence for methane frost. Science 194, 835–837 (1976).  https://doi.org/10.1126/science.194.4267.835-a ADSCrossRefGoogle Scholar
  12. D. Cruikshank, W. Grundy, W. DeMeo et al., The surface compositions of Pluto and Charon. Icarus 246, 82–92 (2015).  https://doi.org/10.1016/j.icarus.2014.05.023 ADSCrossRefGoogle Scholar
  13. G. Cruz-Diaz, G. Muñoz Caro, Y. Chen, T. Yih, Vacuum-UV spectroscopy of interstellar ice analogs II. Absorption cross-sections of non-polar ice molecules. Astron. Astrophys. 562, A120 (2014).  https://doi.org/10.1051/0004-6361/201322621 ADSCrossRefGoogle Scholar
  14. V. De La Haye, J. Waite, T. Cravens et al., Coupled ion and neutral rotating model of Titan’s upper atmosphere. Icarus 197(1), 110–136 (2008).  https://doi.org/10.1016/j.icarus.2008.03.022 ADSCrossRefGoogle Scholar
  15. V. Dimitrov, A. Bar-Nun, Aging of Titan’s aerosols. Icarus 156(2), 530–538 (2002).  https://doi.org/10.1006/icar.2001.6802 ADSCrossRefGoogle Scholar
  16. A. Dobrovolskis, S. Peale, A. Harris, Dynamics of the Pluto-Charon binary, in Pluto and Charon, ed. by S.A. Stem, D.J. Tholen (Univ. of Ariz. Press, Tucson, 1997), pp. 159–190 Google Scholar
  17. S. Douté, B. Schmitt, E. Quirico et al., Evidence for methane segregation at the surface of Pluto. Icarus 142(2), 421–444 (1999).  https://doi.org/10.1006/icar.1999.6226 ADSCrossRefGoogle Scholar
  18. A. Earle, R. Binzel, Pluto’s insolation history: latitudinal variations and effects on atmospheric pressure. Icarus 250, 405–412 (2015).  https://doi.org/10.1016/j.icarus.2014.12.028 ADSCrossRefGoogle Scholar
  19. A. Earle, R. Binzel, L. Young, S. Stern et al., Long-term surface temperature modeling of Pluto. Icarus 287, 37–46 (2017).  https://doi.org/10.1016/j.icarus.2016.09.036 ADSCrossRefGoogle Scholar
  20. A. Earle, R. Binzel, L. Young et al., Albedo matters: understanding runaway albedo variations on Pluto. Icarus 303, 1–9 (2018).  https://doi.org/10.1016/j.icarus.2017.12.015 ADSCrossRefGoogle Scholar
  21. G. Ferini, G. Baratta, M. Palukmbo, A Raman study of ion irradiated icy mixtures. Astron. Astrophys. 414, 757–766 (2004).  https://doi.org/10.1051/0004-6361:20031641 ADSCrossRefGoogle Scholar
  22. F. Forget, T. Bertrand, M. Vangvichith et al., A post-New Horizons global climate model of Pluto including the N2, CH4, and CO cycles. Icarus 287, 54–71 (2017).  https://doi.org/10.1016/j.icarus.2016.11.038 ADSCrossRefGoogle Scholar
  23. P. Gao, S. Fang, M. Wong et al., Constraints on the microphysics of Pluto’s photochemical haze from New Horizons observations. Icarus 287, 116–123 (2017).  https://doi.org/10.1016/j.icarus.2016.09.030 ADSCrossRefGoogle Scholar
  24. D. Gardiner, P. Graves, Practical Raman Spectroscopy (Springer, Berlin, 1989) CrossRefGoogle Scholar
  25. G. Gladstone, S. Stern, K. Ennico et al., The atmosphere of Pluto as observed by New Horizons. Science 351(6279), aad8866 (2016).  https://doi.org/10.1126/science.aad8866 ADSCrossRefGoogle Scholar
  26. C. Glein, J. Hunter Waite Jr., Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto. Icarus 313, 79–92 (2018).  https://doi.org/10.1016/j.icarus.2018.05.007 ADSCrossRefGoogle Scholar
  27. W. Grundy, M. Buie, Spatial and compositional constraints on non-ice components and H2O on Pluto’s surface. Icarus 157(1), 128–138 (2002).  https://doi.org/10.1006/icar.2002.6833 ADSCrossRefGoogle Scholar
  28. W. Grundy, S. Morrison, M. Bovyn et al., Remote sensing D/H ratios in methane ice: temperature-dependent absorption coefficients of CH3D in methane ice and in nitrogen ice. Icarus 212(2), 941–949 (2011).  https://doi.org/10.1016/j.icarus.2011.01.034 ADSCrossRefGoogle Scholar
  29. W. Grundy, R. Binzel, B. Buratti et al., Surface compositions across Pluto and Charon. Science 351(6279), aad9189 (2016).  https://doi.org/10.1126/science.aad9189 ADSCrossRefGoogle Scholar
  30. W. Grundy, T. Bertrand, R. Binzel et al., Pluto’s haze as a surface material. Icarus 314, 232–245 (2018).  https://doi.org/10.1016/j.icarus.2018.05.019 ADSCrossRefGoogle Scholar
  31. M. Gudipati, R. Jacovi, I. Couturier-Tamburelli et al., Photochemical activity of Titan’s low-altitude condensed haze. Nat. Commun. 4, 1648 (2013).  https://doi.org/10.1038/ncomms2649 CrossRefGoogle Scholar
  32. A. Guilbert, A. Alvarez-Candal, F. Merlin, M. Barucci et al., ESO-large program on TNOs: near-infrared spectroscopy with SINFONI. Icarus 201, 272–283 (2009).  https://doi.org/10.1016/j.icarus.2008.12.023 ADSCrossRefGoogle Scholar
  33. N. Hammond, A. Barr, E. Parmentier, Recent tectonic activity on Pluto driven by phase changes in the ice shell. Geophys. Res. Lett. 43(13), 6775–6782 (2016).  https://doi.org/10.1002/2016GL069220 ADSCrossRefGoogle Scholar
  34. J. Hanley, W. Grundy, G. Thompson et al., Methane, ethane, and nitrogen stability on Titan and other icy bodies. AAS-DPS meeting #49, id.301.02 (2017) Google Scholar
  35. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, Cambridge, 1993) CrossRefGoogle Scholar
  36. C. Hirschmugl, An introduction to infrared spectroscopy for geochemistry and remote sensing, in Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing, ed. by P. King, M. Ramsey, G. Swayze. Mineral. Assoc. Canada, Short Course, vol. 33 (2004), pp. 1–16 Google Scholar
  37. R. Hodyss, H. Howard, P. Johnson et al., Formation of radical species in photolyzed CH4:N2 ices. Icarus 214(2), 748–753 (2011).  https://doi.org/10.1016/j.icarus.2011.05.023 ADSCrossRefGoogle Scholar
  38. A. Hofmeister, Thermal and thermodynamic properties from infrared spectra, in Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing, ed. by P. King, M. Ramsey, G. Swayze. Mineral. Assoc. Canada, Short Course, vol. 33 (2004), pp. 135–154 Google Scholar
  39. A. Howard, J. Moore, O. Umurhan et al., Present and past glaciation on Pluto. Icarus 287, 287–300 (2017).  https://doi.org/10.1016/j.icarus.2016.07.006 ADSCrossRefGoogle Scholar
  40. R. Hudson, M. Moore, The N3 radical as a discriminator between ion-irradiated and UV-photolyzed astronomical ices. Astrophys. J. 568(2), 1095–1099 (2002).  https://doi.org/10.1086/339039 ADSCrossRefGoogle Scholar
  41. R. Hudson, M. Palumbo, G. Strazzulla et al., Laboratory studies of the chemistry of Transneptunian object surface materials, in The Solar System Beyond Neptune, ed. by M.A. Barucci et al.(University of Arizona Press, Tucson, 2008), pp. 507–523 Google Scholar
  42. H. Hussmann, C. Sotin, J. Lunine, Interiors and evolution of icy satellites, in Planets and Moons, ed. by T. Spohn (Elsevier, Amsterdam, 2007), pp. 509–539 CrossRefGoogle Scholar
  43. J. Keane, I. Matsuyama, S. Kamata et al., Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature 540, 90–93 (2016).  https://doi.org/10.1038/nature20120 ADSCrossRefGoogle Scholar
  44. S. Kieffer, X. Lu, C. Bethke et al., A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314(5806), 1764–1766 (2006).  https://doi.org/10.1126/science.1133519 ADSCrossRefGoogle Scholar
  45. Y. Kim, R. Kaiser, Electron irradiation of Kuiper Belt surface ices: ternary N2-CH4-CO mixtures as a case study. Astrophys. J. 758(1), 37 (2012).  https://doi.org/10.1088/0004-637X/758/1/37 ADSCrossRefGoogle Scholar
  46. P. King, P. McMillan, G. Moore, Infrared spectroscopy of silicate glasses with application to natural systems, in Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing, ed. by P. King, M. Ramsey, G. Swayze. Mineral. Assoc. Canada, Short Course, vol. 33 (2004), pp. 93–133 Google Scholar
  47. E. Lellouch, A. Coustenis, B. Sebag et al., Titan’s 5-μm window: observations with the Very Large Telescope. Icarus 162, 125–142 (2003).  https://doi.org/10.1016/S0019-1035(02)00079-9 ADSCrossRefGoogle Scholar
  48. E. Lellouch, M. Gurwell, B. Butler et al., Detection of CO and HCN in Pluto’s atmosphere with ALMA. Icarus 286, 289–307 (2017).  https://doi.org/10.1016/j.icarus.2016.10.013 ADSCrossRefGoogle Scholar
  49. I. Lewis, H. Edwards, Handbook of Raman Spectroscopy (CRC Press, Boca Raton, 2001) CrossRefGoogle Scholar
  50. J. Lo, S. Chou, Y. Peng et al., Formation of N3, CH3, HCN and HNC from UV photolysis of CH4 in nitrogen ice. Astrophys. J. Suppl. Ser. 221, 20 (2015).  https://doi.org/10.1088/0067-0049/221/1/20 ADSCrossRefGoogle Scholar
  51. A. Luspay-Kuti, K. Mandt, K. Jessup et al., Photochemistry on Pluto—I. Hydrocarbons and aerosols. Mon. Not. R. Astron. Soc. 472(1), 104–117 (2017).  https://doi.org/10.1093/mnras/stx1362 ADSCrossRefGoogle Scholar
  52. T. Madey, R. Johnson, T. Orlando, Far-out surface science: radiation-induced surface processes in the solar system. Surf. Sci. 500(1–3), 838–858 (2002).  https://doi.org/10.1016/S0039-6028(01)01556-4 ADSCrossRefGoogle Scholar
  53. K. Mandt, J. Waite, B. Teolis et al., The 12C/13C ratio on Titan from Cassini INMS measurements and implications for the evolution of methane. Astrophys. J. 749(2), 160 (2012).  https://doi.org/10.1088/0004-637X/749/2/160 ADSCrossRefGoogle Scholar
  54. K. Mandt, A. Luspay-Kuti, M. Hamel et al., Photochemistry on Pluto: part II HCN and nitrogen isotope fractionation. Mon. Not. R. Astron. Soc. 472(1), 118–128 (2017).  https://doi.org/10.1093/mnras/stx1587 ADSCrossRefGoogle Scholar
  55. R. Mastrapa, W. Grundy, M. Gudipati, Amorphous and crystalline H2O-ice, in The Science of Solar System Ices, ed. by M. Gudipati, J. Castillo-Rogez. Astrophysics and Space Science Library, vol. 356 (Springer, New York, 2013).  https://doi.org/10.1007/978-1-4614-3076-6_11 CrossRefGoogle Scholar
  56. C. Materese, D. Cruikshank, S. Sandford et al., Ice chemistry on outer solar system bodies: carboxylic acids, nitriles, and urea detected in refractory residues produced from the UV photolysis of N2:CH4:CO-containing ices. Astrophys. J. 788(2), 111 (2014).  https://doi.org/10.1088/0004-637X/788/2/111 ADSCrossRefGoogle Scholar
  57. C. Materese, D. Cruikshank, S. Sandford et al., Ice chemistry on outer solar system bodies: electron radiolysis of N2-, CH4-, and CO-containing ices. Astrophys. J. 812(2), 150 (2015).  https://doi.org/10.1088/0004-637X/812/2/150 ADSCrossRefGoogle Scholar
  58. G. Matrajt, J. Borg, P. Raynal et al., FTIR and Raman analyses of the Tagish Lake meteorite: relationship with the aliphatic hydrocarbons observed in the Diffuse Interstellar Medium. Astron. Astrophys. 416, 983–990 (2004).  https://doi.org/10.1051/0004-6361:20034526 ADSCrossRefGoogle Scholar
  59. W. McKinnon, F. Nimmo, T. Wong et al., Convection in a volatile nitrogen-ice-rich layer drives Pluto’s geological vigour. Nature 534(7605), 82–85 (2016).  https://doi.org/10.1038/nature18289 ADSCrossRefGoogle Scholar
  60. A. Mencos, S. Nourry, L. Krim, Chemical pathways and kinetic rates of the \(\mbox{N}({}^{4}\mbox{S}) + \mbox{N}_{2} \rightarrow \mbox{N}_{3}\) solid phase reaction: could the \(\mbox{N}_{3}\) radical be a temperature sensor of nitrogen ices in dense molecular clouds? Mon. Not. R. Astron. Soc. 467, 2150–2159 (2017). https://doi-org.mutex.gmu.edu/10.1093/mnras/stx140 ADSCrossRefGoogle Scholar
  61. F. Merlin, A. Alvarez-Candal, A. Delsanti et al., Stratification of methane ice on Eris’ surface. Astron. J. 137(1), 315 (2009).  https://doi.org/10.1088/0004-6256/137/1/315 ADSCrossRefGoogle Scholar
  62. M. Moore, R. Hudson, Infrared study of ion-irradiated N2-dominated ices relevant to Triton and Pluto: formation of HCN and HNC. Icarus 161(2), 486–500 (2003).  https://doi.org/10.1016/S0019-1035(02)00037-4 ADSCrossRefGoogle Scholar
  63. J. Moore, W. McKinnon, J. Spencer et al., The geology of Pluto and Charon through the eyes of New Horizons. Science 351(6279), 1284–1293 (2016).  https://doi.org/10.1126/science.aad7055 ADSCrossRefGoogle Scholar
  64. J. Moore, A. Howard, O. Umurhan et al., Bladed terrain on Pluto: possible origins and evolution. Icarus 300, 129–144 (2018).  https://doi.org/10.1016/j.icarus.2017.08.031 ADSCrossRefGoogle Scholar
  65. J. Moores, C. Smith, A. Toigo, S. Guzewich, Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto. Nature 541, 188–190 (2017).  https://doi.org/10.1038/nature20779 ADSCrossRefGoogle Scholar
  66. F. Nimmo, D. Hamilton, W. McKinnon et al., Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540, 94–96 (2016).  https://doi.org/10.1038/nature20148 ADSCrossRefGoogle Scholar
  67. C. Olkin, E. Young, L. Young et al., Pluto’s spectrum from 1.0 to 4.2 μm: implications for surface properties. Astron. J. 133(2), 420 (2007).  https://doi.org/10.1086/509616 ADSCrossRefGoogle Scholar
  68. T. Owen, T. Roush, D. Cruikshank et al., Surface ices and the atmospheric composition of Pluto. Science 261(5122), 745–748 (1993).  https://doi.org/10.1126/science.261.5122.745 ADSCrossRefGoogle Scholar
  69. S. Protopapa, W. Grundy, S. Tegler, J. Bergonio, Absorption coefficients of the methane-nitrogen binary ice system: implications for Pluto. Icarus 253, 179–188 (2015).  https://doi.org/10.1016/j.icarus.2015.02.027 ADSCrossRefGoogle Scholar
  70. S. Protopapa, W. Grundy, D. Reuter et al., Pluto’s global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus 287, 218–228 (2017).  https://doi.org/10.1016/j.icarus.2016.11.028 ADSCrossRefGoogle Scholar
  71. E. Quirico, S. Doute, B. Schmitt et al., Composition, physical state, and distribution of ices at the surface of Triton. Icarus 139(2), 159–178 (1999).  https://doi.org/10.1006/icar.1999.6111 ADSCrossRefGoogle Scholar
  72. D. Reuter, S. Stern, J. Scherrer et al., Ralph: a visible/infrared imager for the New Horizons Pluto/Kuiper Belt mission. Space Sci. Rev. 140, 129–154 (2008).  https://doi.org/10.1007/s11214-008-9375-7 ADSCrossRefGoogle Scholar
  73. G. Robuchon, F. Nimmo, Thermal evolution of Pluto and implications for surface tectonics and a sub-surface ocean. Icarus 216(2), 426–439 (2011).  https://doi.org/10.1016/j.icarus.2011.08.015 ADSCrossRefGoogle Scholar
  74. H. Roe, W. Grundy, Buoyancy of ice in the CH4-N2 system. Icarus 219(2), 733–736 (2012).  https://doi.org/10.1016/j.icarus.2012.04.007 ADSCrossRefGoogle Scholar
  75. G. Rossman, Vibrational spectroscopy of hydrous components, in Spectroscopic Methods in Mineralogy and Geology, ed. by F. Hawthorne. Rev. Mineral., vol. 18 (Mineral. Soc. Am, Blacksburg, 1988), pp. 193–206 CrossRefGoogle Scholar
  76. P. Saxena, J. Renaud, W. Henning et al., Relevance of tidal heating on large TNO’s. Icarus 302, 245–260 (2018).  https://doi.org/10.1016/j.icarus.2017.11.023 ADSCrossRefGoogle Scholar
  77. B. Schmitt, S. Philippe, W. Grundy et al., Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 287, 229–260 (2017).  https://doi.org/10.1016/j.icarus.2016.12.025 ADSCrossRefGoogle Scholar
  78. H. Scott, Q. Williams, F. Ryerson, Experimental constraints on the chemical evolution of large icy satellites. Earth Planet. Sci. Lett. 203, 399–412 (2002).  https://doi.org/10.1016/S0012-821X(02)00850-6 ADSCrossRefGoogle Scholar
  79. D. Sicilia, S. Ioppolo, T. Vindigni et al., Nitrogen oxides and carbon chain oxides formed after ion irradiation of CO:N2 ice mixtures. Astron. Astrophys. 543, A155 (2014).  https://doi.org/10.1051/0004-6361/201219390 CrossRefGoogle Scholar
  80. D. Simonelli, R. Reynolds, The interiors of Pluto and Charon: structure, composition, and implications. Geophys. Res. Lett. 16(11), 1209–1212 (1989).  https://doi.org/10.1029/GL016i011p01209 ADSCrossRefGoogle Scholar
  81. B. Sivaraman, S. Pavithraa, J. Lo et al., Vacuum ultraviolet photoabsorption spectra of nitrile ices for their identification on Pluto. Astrophys. J. 825, 141 (2016).  https://doi.org/10.3847/0004-637X/825/2/141 ADSCrossRefGoogle Scholar
  82. E. Smith, G. Dent, Modern Raman Spectroscopy—A Practical Approach (John Wiley & Sons, Ltd., Chichester, 2005) Google Scholar
  83. J. Spencer, J. Stansberry, L. Trafton et al., Volatile transport, seasonal cycles, and atmospheric dynamics on Pluto, in Pluto and Charon, ed. by S. Stern, D. Tholen (University of Arizona Press, Tucson, 1997), pp. 435–473 Google Scholar
  84. S. Stern, Pluto: comments on crustal composition: evidence for global differentiation. Icarus 81(1), 14–23 (1989).  https://doi.org/10.1016/0019-1035(89)90121-8 ADSCrossRefGoogle Scholar
  85. S. Stern, F. Bagenal, K. Ennico et al., The Pluto system: initial results from its exploration by New Horizons. Science 350(6258), aad1815 (2015).  https://doi.org/10.1126/science.aad1815 ADSCrossRefGoogle Scholar
  86. D. Strobel, X. Zhu, Comparative planetary nitrogen atmospheres: density and thermal structures of Pluto and Triton. Icarus 291, 55–64 (2017).  https://doi.org/10.1016/j.icarus.2017.03.013 ADSCrossRefGoogle Scholar
  87. G. Swayze, R. Clark, A. Goetz et al., Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm. J. Geophys. Res. 108(E9), 5105 (2003).  https://doi.org/10.1029/2002JE001975 CrossRefGoogle Scholar
  88. A. Trowbridge, H. Melosh, J. Steckloff, A. Freed, Vigorous convection as the explanation for Pluto’s polygonal terrain. Nature 534, 79–81 (2016).  https://doi.org/10.1038/nature18016 ADSCrossRefGoogle Scholar
  89. O. Umurhan, A. Howard, J. Moore et al., Modeling glacial flow on and onto Pluto’s Sputnik Planitia. Icarus 287, 301–319 (2017).  https://doi.org/10.1016/j.icarus.2017.01.017 ADSCrossRefGoogle Scholar
  90. R. Urso, C. Scire, G. Baratta et al., Combined infrared and Raman study of solid CO. Astron. Astrophys. 594, A80 (2016).  https://doi.org/10.1051/0004-6361/201629030 CrossRefGoogle Scholar
  91. H. van der Marel, H. Beutelspacher, Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures (Elsevier, Amsterdam, 1976) Google Scholar
  92. A. Wang, B. Jolliff, L. Haskin, Raman spectroscopic characterization of a Martian SNC meteorite: Zagami. J. Geophys. Res. 104(E4), 8509–8520 (1999).  https://doi.org/10.1029/1999JE900004 ADSCrossRefGoogle Scholar
  93. O. White, J. Moore, W. McKinnon et al., Geological mapping of Sputnik Planitia on Pluto. Icarus 287, 261–286 (2017).  https://doi.org/10.1016/j.icarus.2017.01.011 ADSCrossRefGoogle Scholar
  94. M. Wong, S. Fan, P. Gao et al., The photochemistry of Pluto’s atmosphere as illuminated by New Horizons. Icarus 287, 110–115 (2017).  https://doi.org/10.1016/j.icarus.2016.09.028 ADSCrossRefGoogle Scholar
  95. Y. Wu, C. Wu, S. Chou et al., Spectra and photolysis of pure nitrogen and methane dispersed in solid nitrogen with vacuum-ultraviolet light. Astrophys. J. 746(2), 175 (2012).  https://doi.org/10.1088/0004-637X/746/2/175 ADSMathSciNetCrossRefGoogle Scholar
  96. Y. Wu, H. Chen, S. Chuang, T. Huang, Ultraviolet and infrared spectra of electron-bombarded solid nitrogen and methane diluted in solid nitrogen. Astrophys. J. 768(1), 83 (2013).  https://doi.org/10.1088/0004-637X/768/1/83 ADSCrossRefGoogle Scholar
  97. L. Young, J. Kammer, A. Steffl et al., Structure and composition of Pluto’s atmosphere from the New Horizons solar ultraviolet occultation. Icarus 300, 174–199 (2018).  https://doi.org/10.1016/j.icarus.2017.09.006 ADSCrossRefGoogle Scholar
  98. X. Zhang, D. Strobel, H. Imanaka, Haze heats Pluto’s atmosphere yet explains its cold temperature. Nature 551, 352–355 (2017).  https://doi.org/10.1038/nature24465 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Arkansas Center for Space and Planetary SciencesUniversity of ArkansasFayettevilleUSA
  2. 2.Lowell ObservatoryNorthern Arizona UniversityFlagstaffUSA
  3. 3.Space Science and Engineering DivisionSouthwest Research InstituteSan AntonioUSA
  4. 4.Department of Chemistry and BiochemistryGeorge Mason UniversityFairfaxUSA
  5. 5.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations