Advertisement

Space Science Reviews

, 214:123 | Cite as

Enrichment of the Hot Intracluster Medium: Numerical Simulations

  • V. BiffiEmail author
  • F. Mernier
  • P. Medvedev
Article
Part of the following topical collections:
  1. Clusters of Galaxies: Physics and Cosmology

Abstract

The distribution of chemical elements in the hot intracluster medium (ICM) retains valuable information about the enrichment and star formation histories of galaxy clusters, and on the feedback and dynamical processes driving the evolution of the cosmic baryons. In the present study we review the progresses made so far in the modelling of the ICM chemical enrichment in a cosmological context, focusing in particular on cosmological hydrodynamical simulations. We will review the key aspects of embedding chemical evolution models into hydrodynamical simulations, with special attention to the crucial assumptions on the initial stellar mass function, stellar lifetimes and metal yields, and to the numerical limitations of the modelling. At a second stage, we will overview the main simulation results obtained in the last decades and compare them to X-ray observations of the ICM enrichment patterns. In particular, we will discuss how state-of-the-art simulations are able to reproduce the observed radial distribution of metals in the ICM, from the core to the outskirts, the chemical diversity depending on cluster thermo-dynamical properties, the evolution of ICM metallicity and its dependency on the system mass from group to cluster scales. Finally, we will discuss the limitations still present in modern cosmological, chemical, hydrodynamical simulations and the perspectives for improving the theoretical modelling of the ICM enrichment in galaxy clusters in the future.

Keywords

Galaxy clusters ICM chemical enrichment Numerical simulations 

Notes

Acknowledgements

The authors would like to acknowledge the referee for her/his valuable comments on this review. V.B. is thankful to Elena Rasia and Stefano Borgani for useful suggestions that helped improving the manuscript, and to Klaus Dolag for kindly providing the simulation data reported in Fig. 10. She wishes also to thank Umberto Maio and partial funding support from a grant of the German Research Fundation (DFG), number 390015701. F.M. is supported by the Lendület LP2016-11 grant awarded by the Hungarian Academy of Sciences. SRON is supported financially by NWO, the Netherlands Organization for Scientific Research. P.M. acknowledges support from Russian Science Foundation (grant 14-22-00271).

References

  1. A. Aguirre, L. Hernquist, J. Schaye, N. Katz, D.H. Weinberg, J. Gardner, Metal enrichment of the intergalactic medium in cosmological simulations. Astrophys. J. 561, 521–549 (2001).  https://doi.org/10.1086/323370 ADSCrossRefGoogle Scholar
  2. E. Anders, N. Grevesse, Abundances of the elements—meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).  https://doi.org/10.1016/0016-7037(89)90286-X ADSCrossRefGoogle Scholar
  3. N. Arimoto, Y. Yoshii, Chemical and photometric properties of a galactic wind model for elliptical galaxies. Astron. Astrophys. 173, 23–38 (1987) ADSGoogle Scholar
  4. D.J. Barnes, S.T. Kay, Y.M. Bahé, C. Dalla Vecchia, I.G. McCarthy, J. Schaye, R.G. Bower, A. Jenkins, P.A. Thomas, M. Schaller, R.A. Crain, T. Theuns, S.D.M. White, The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies. Mon. Not. R. Astron. Soc. 471, 1088–1106 (2017).  https://doi.org/10.1093/mnras/stx1647 ADSCrossRefGoogle Scholar
  5. D.J. Barnes, M. Vogelsberger, R. Kannan, F. Marinacci, R. Weinberger, V. Springel, P. Torrey, A. Pillepich, D. Nelson, R. Pakmor, J. Naiman, L. Hernquist, M. McDonald, A census of cool-core galaxy clusters in IllustrisTNG. Mon. Not. R. Astron. Soc. 481, 1809–1831 (2018).  https://doi.org/10.1093/mnras/sty2078 ADSCrossRefGoogle Scholar
  6. N. Bastian, K.R. Covey, M.R. Meyer, A universal stellar initial mass function? A Critical look at variations. Annu. Rev. Astron. Astrophys. 48, 339–389 (2010).  https://doi.org/10.1146/annurev-astro-082708-101642 ADSCrossRefGoogle Scholar
  7. W.H. Baumgartner, M. Loewenstein, D.J. Horner, R.F. Mushotzky, Intermediate-element abundances in galaxy clusters. Astrophys. J. 620, 680–696 (2005).  https://doi.org/10.1086/427158 ADSCrossRefGoogle Scholar
  8. M. Bernardi, R.K. Sheth, J.-L. Fischer, A. Meert, K.-H. Chae, H. Dominguez-Sanchez, M. Huertas-Company, F. Shankar, V. Vikram, Stellar mass functions and implications for a variable IMF. Mon. Not. R. Astron. Soc. 475, 757–771 (2018).  https://doi.org/10.1093/mnras/stx3171 ADSCrossRefGoogle Scholar
  9. V. Biffi, K. Dolag, H. Böhringer, G. Lemson, Observing simulated galaxy clusters with PHOX: a novel X-ray photon simulator. Mon. Not. R. Astron. Soc. 420, 3545–3556 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20278.x ADSCrossRefGoogle Scholar
  10. V. Biffi, S. Planelles, S. Borgani, D. Fabjan, E. Rasia, G. Murante, L. Tornatore, K. Dolag, G.L. Granato, M. Gaspari, A.M. Beck, The history of chemical enrichment in the intracluster medium from cosmological simulations. Mon. Not. R. Astron. Soc. 468, 531–548 (2017).  https://doi.org/10.1093/mnras/stx444 ADSCrossRefGoogle Scholar
  11. V. Biffi, S. Planelles, S. Borgani, E. Rasia, G. Murante, D. Fabjan, M. Gaspari, The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations. Mon. Not. R. Astron. Soc. (2018).  https://doi.org/10.1093/mnras/sty363 CrossRefGoogle Scholar
  12. H. Böhringer, N. Werner, X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron. Astrophys. Rev. 18, 127–196 (2010).  https://doi.org/10.1007/s00159-009-0023-3 ADSCrossRefGoogle Scholar
  13. S. Borgani, A. Kravtsov, Cosmological simulations of galaxy clusters. Adv. Sci. Lett. 4, 204–227 (2011).  https://doi.org/10.1166/asl.2011.1209 CrossRefGoogle Scholar
  14. S. Borgani, D. Fabjan, L. Tornatore, S. Schindler, K. Dolag, A. Diaferio, The chemical enrichment of the ICM from hydrodynamical simulations. Space Sci. Rev. 134, 379–403 (2008).  https://doi.org/10.1007/s11214-008-9322-7 ADSCrossRefGoogle Scholar
  15. G. Chabrier, Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).  https://doi.org/10.1086/376392 ADSCrossRefGoogle Scholar
  16. C. Chiappini, F. Matteucci, R. Gratton, The chemical evolution of the galaxy: the two-infall model. Astrophys. J. 477, 765–780 (1997).  https://doi.org/10.1086/303726 ADSCrossRefGoogle Scholar
  17. A. Chieffi, M. Limongi, Explosive yields of massive stars from \(Z = 0\) to \(Z = Z_{solar}\). Astrophys. J. 608, 405–410 (2004).  https://doi.org/10.1086/392523 ADSCrossRefGoogle Scholar
  18. E. Churazov, M. Brüggen, C.R. Kaiser, H. Böhringer, W. Forman, Evolution of Buoyant bubbles in M87. Astrophys. J. 554, 261–273 (2001).  https://doi.org/10.1086/321357 ADSCrossRefGoogle Scholar
  19. S.A. Cora, Metal enrichment of the intracluster medium: a three-dimensional picture of chemical and dynamical properties. Mon. Not. R. Astron. Soc. 368, 1540–1560 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10271.x ADSCrossRefGoogle Scholar
  20. S.A. Cora, L. Tornatore, P. Tozzi, K. Dolag, On the dynamical origin of the ICM metallicity evolution. Mon. Not. R. Astron. Soc. 386, 96–104 (2008).  https://doi.org/10.1111/j.1365-2966.2008.13068.x ADSCrossRefGoogle Scholar
  21. E. Cucchetti, E. Pointecouteau, P. Peille, N. Clerc, E. Rasia, V. Biffi, S. Borgani, L. Tornatore, K. Dolag, M. Roncarelli, M. Gaspari, S. Ettori, E. Bulbul, T. Dauser, J. Wilms, F. Pajot, D. Barret, Athena X-IFU synthetic observations of galaxy clusters to probe the chemical enrichment of the universe. ArXiv e-prints (2018) Google Scholar
  22. A.C. da Silva, A. Catalano, L. Montier, E. Pointecouteau, J. Lanoux, M. Giard, The impact of dust on the scaling properties of galaxy clusters. Mon. Not. R. Astron. Soc. 396, 849–859 (2009).  https://doi.org/10.1111/j.1365-2966.2009.14526.x ADSCrossRefGoogle Scholar
  23. R. Davé, B.D. Oppenheimer, S. Sivanandam, Enrichment and pre-heating in intragroup gas from galactic outflows. Mon. Not. R. Astron. Soc. 391, 110–123 (2008).  https://doi.org/10.1111/j.1365-2966.2008.13906.x ADSCrossRefGoogle Scholar
  24. S. De Grandi, S. Molendi, Metallicity gradients in X-ray clusters of galaxies. Astrophys. J. 551, 153–159 (2001).  https://doi.org/10.1086/320098 ADSCrossRefGoogle Scholar
  25. S. De Grandi, S. Ettori, M. Longhetti, S. Molendi, On the iron content in rich nearby clusters of galaxies. Astron. Astrophys. 419, 7–18 (2004).  https://doi.org/10.1051/0004-6361:20034228 ADSCrossRefGoogle Scholar
  26. G. De Lucia, G. Kauffmann, S.D.M. White, Chemical enrichment of the intracluster and intergalactic medium in a hierarchical galaxy formation model. Mon. Not. R. Astron. Soc. 349, 1101–1116 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07584.x ADSCrossRefGoogle Scholar
  27. J. de Plaa, The origin of the chemical elements in cluster cores. Astron. Nachr. 334, 416 (2013).  https://doi.org/10.1002/asna.201211870 ADSCrossRefGoogle Scholar
  28. J. de Plaa, N. Werner, J.A.M. Bleeker, J. Vink, J.S. Kaastra, M. Méndez, Constraining supernova models using the hot gas in clusters of galaxies. Astron. Astrophys. 465, 345–355 (2007).  https://doi.org/10.1051/0004-6361:20066382 ADSCrossRefGoogle Scholar
  29. J. de Plaa, J.S. Kaastra, N. Werner, C. Pinto, P. Kosec, Y.-Y. Zhang, F. Mernier, L. Lovisari, H. Akamatsu, G. Schellenberger, F. Hofmann, T.H. Reiprich, A. Finoguenov, J. Ahoranta, J.S. Sanders, A.C. Fabian, O. Pols, A. Simionescu, J. Vink, H. Böhringer, CHEERS: the chemical evolution RGS sample. Astron. Astrophys. 607, 98 (2017).  https://doi.org/10.1051/0004-6361/201629926 CrossRefGoogle Scholar
  30. T. Di Matteo, V. Springel, L. Hernquist, Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).  https://doi.org/10.1038/nature03335 ADSCrossRefGoogle Scholar
  31. C.L. Doherty, P. Gil-Pons, H.H.B. Lau, J.C. Lattanzio, L. Siess, Super and massive AGB stars, II: nucleosynthesis and yields—\(Z = 0.02\), 0.008 and 0.004. Mon. Not. R. Astron. Soc. 437, 195–214 (2014).  https://doi.org/10.1093/mnras/stt1877 ADSCrossRefGoogle Scholar
  32. K. Dolag, E. Mevius, R.-S. Remus, Distribution and evolution of metals in the magneticum simulations. Galaxies 5, 35 (2017).  https://doi.org/10.3390/galaxies5030035 ADSCrossRefGoogle Scholar
  33. W. Domainko, M. Mair, W. Kapferer, E. van Kampen, T. Kronberger, S. Schindler, S. Kimeswenger, M. Ruffert, O.E. Mangete, Enrichment of the ICM of galaxy clusters due to ram-pressure stripping. Astron. Astrophys. 452, 795–802 (2006).  https://doi.org/10.1051/0004-6361:20053921 ADSCrossRefGoogle Scholar
  34. Y. Dubois, J. Devriendt, R. Teyssier, A. Slyz, How active galactic nucleus feedback and metal cooling shape cluster entropy profiles. Mon. Not. R. Astron. Soc. 417, 1853–1870 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19381.x ADSCrossRefGoogle Scholar
  35. S. Ettori, A. Baldi, I. Balestra, F. Gastaldello, S. Molendi, P. Tozzi, The evolution of the spatially resolved metal abundance in galaxy clusters up to \(z = 1.4\). Astron. Astrophys. 578, 46 (2015).  https://doi.org/10.1051/0004-6361/201425470 ADSCrossRefGoogle Scholar
  36. C. Ezer, E. Bulbul, E. Nihal Ercan, R.K. Smith, W. Bautz, M. Loewenstein, M. McDonald, E.D. Miller, Uniform contribution of supernova explosions to the chemical enrichment of Abell 3112 out to R200. Astrophys. J. 836(1), 110 (2017).  https://doi.org/10.3847/1538-4357/836/1/110 ADSCrossRefGoogle Scholar
  37. A.C. Fabian, Cooling flows in clusters of galaxies. Annu. Rev. Astron. Astrophys. 32, 277–318 (1994).  https://doi.org/10.1146/annurev.aa.32.090194.001425 ADSCrossRefGoogle Scholar
  38. D. Fabjan, L. Tornatore, S. Borgani, A. Saro, K. Dolag, Evolution of the metal content of the intracluster medium with hydrodynamical simulations. Mon. Not. R. Astron. Soc. 386, 1265–1273 (2008).  https://doi.org/10.1111/j.1365-2966.2008.13122.x ADSCrossRefGoogle Scholar
  39. D. Fabjan, S. Borgani, L. Tornatore, A. Saro, G. Murante, K. Dolag, Simulating the effect of active galactic nuclei feedback on the metal enrichment of galaxy clusters. Mon. Not. R. Astron. Soc. 401, 1670–1690 (2010).  https://doi.org/10.1111/j.1365-2966.2009.15794.x ADSCrossRefGoogle Scholar
  40. Y. Fujita, N. Tawa, K. Hayashida, M. Takizawa, H. Matsumoto, N. Okabe, T.H. Reiprich, High metallicity of the x-ray gas up to the virial radius of a binary cluster of galaxies: evidence of galactic superwinds at high-redshift. Publ. Astron. Soc. Jpn. 60, 343–349 (2008).  https://doi.org/10.1093/pasj/60.sp1.S343 ADSCrossRefGoogle Scholar
  41. Y. Fukazawa, K. Makishima, T. Tamura, H. Ezawa, H. Xu, Y. Ikebe, K. Kikuchi, T. Ohashi, ASCA measurements of silicon and iron abundances in the intracluster medium. Publ. Astron. Soc. Jpn. 50, 187–193 (1998).  https://doi.org/10.1093/pasj/50.1.187 ADSCrossRefGoogle Scholar
  42. A. Gardini, E. Rasia, P. Mazzotta, G. Tormen, S. De Grandi, L. Moscardini, Simulating Chandra observations of galaxy clusters. Mon. Not. R. Astron. Soc. 351, 505–514 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07800.x ADSCrossRefGoogle Scholar
  43. E. Gjergo, G.L. Granato, G. Murante, C. Ragone-Figueroa, L. Tornatore, S. Borgani, Dust evolution in galaxy cluster simulations. ArXiv e-prints (2018) Google Scholar
  44. G.L. Granato, C. Ragone-Figueroa, R. Domínguez-Tenreiro, A. Obreja, S. Borgani, G. De Lucia, G. Murante, The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D. Mon. Not. R. Astron. Soc. 450, 1320–1332 (2015).  https://doi.org/10.1093/mnras/stv676 ADSCrossRefGoogle Scholar
  45. T.H. Greif, S.C.O. Glover, V. Bromm, R.S. Klessen, Chemical mixing in smoothed particle hydrodynamics simulations. Mon. Not. R. Astron. Soc. 392, 1381–1387 (2009).  https://doi.org/10.1111/j.1365-2966.2008.14169.x ADSCrossRefGoogle Scholar
  46. A. Gupta, T. Yuan, P. Torrey, M. Vogelsberger, D. Martizzi, K.-V.H. Tran, L.J. Kewley, F. Marinacci, D. Nelson, A. Pillepich, L. Hernquist, S. Genel, V. Springel, Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. (2018).  https://doi.org/10.1093/mnrasl/sly037 CrossRefGoogle Scholar
  47. O. Hahn, D. Martizzi, H.-Y. Wu, A.E. Evrard, R. Teyssier, R.H. Wechsler, Rhapsody-G simulations, I: the cool cores, hot gas and stellar content of massive galaxy clusters. ArXiv e-prints (2015) Google Scholar
  48. S. Heinz, M. Brüggen, XIM: a virtual X-ray observatory for hydrodynamic simulations. ArXiv e-prints (2009) Google Scholar
  49. Hitomi Collaboration, F. Aharonian, H. Akamatsu, F. Akimoto, S.W. Allen, L. Angelini, M. Audard, H. Awaki, M. Axelsson, A. Bamba, M.W. Bautz, R. Blandford, L.W. Brenneman, G.V. Brown, E. Bulbul, E.M. Cackett, M. Chernyakova, M.P. Chiao, P.S. Coppi, E. Costantini, J. de Plaa, C.P. de Vries, J.-W. den Herder, C. Done, T. Dotani, K. Ebisawa, M.E. Eckart, T. Enoto, Y. Ezoe, A.C. Fabian, C. Ferrigno, A.R. Foster, R. Fujimoto, Y. Fukazawa, A. Furuzawa, M. Galeazzi, L.C. Gallo, P. Gandhi, M. Giustini, A. Goldwurm, L. Gu, M. Guainazzi, Y. Haba, K. Hagino, K. Hamaguchi, I.M. Harrus, I. Hatsukade, K. Hayashi, T. Hayashi, K. Hayashida, N. Hell, J.S. Hiraga, A. Hornschemeier, A. Hoshino, J.P. Hughes, Y. Ichinohe, R. Iizuka, H. Inoue, Y. Inoue, M. Ishida, K. Ishikawa, Y. Ishisaki, M. Iwai, J. Kaastra, T. Kallman, T. Kamae, J. Kataoka, S. Katsuda, N. Kawai, R.L. Kelley, C.A. Kilbourne, T. Kitaguchi, S. Kitamoto, T. Kitayama, T. Kohmura, M. Kokubun, K. Koyama, S. Koyama, P. Kretschmar, H.A. Krimm, A. Kubota, H. Kunieda, P. Laurent, S.-H. Lee, M.A. Leutenegger, O. Limousin, M. Loewenstein, K.S. Long, D. Lumb, G. Madejski, Y. Maeda, D. Maier, K. Makishima, M. Markevitch, H. Matsumoto, K. Matsushita, D. McCammon, B.R. McNamara, M. Mehdipour, E.D. Miller, J.M. Miller, S. Mineshige, K. Mitsuda, I. Mitsuishi, T. Miyazawa, T. Mizuno, H. Mori, K. Mori, K. Mukai, H. Murakami, R.F. Mushotzky, T. Nakagawa, H. Nakajima, T. Nakamori, S. Nakashima, K. Nakazawa, K.K. Nobukawa, M. Nobukawa, H. Noda, H. Odaka, T. Ohashi, M. Ohno, T. Okajima, N. Ota, M. Ozaki, F. Paerels, S. Paltani, R. Petre, C. Pinto, F.S. Porter, K. Pottschmidt, C.S. Reynolds, S. Safi-Harb, S. Saito, K. Sakai, T. Sasaki, G. Sato, K. Sato, R. Sato, M. Sawada, N. Schartel, P.J. Serlemtsos, H. Seta, M. Shidatsu, A. Simionescu, R.K. Smith, Y. Soong, Ł. Stawarz, Y. Sugawara, S. Sugita, A. Szymkowiak, H. Tajima, H. Takahashi, T. Takahashi, S. Takeda, Y. Takei, T. Tamagawa, T. Tamura, T. Tanaka, Y. Tanaka, Y.T. Tanaka, M.S. Tashiro, Y. Tawara, Y. Terada, Y. Terashima, F. Tombesi, H. Tomida, Y. Tsuboi, M. Tsujimoto, H. Tsunemi, T.G. Tsuru, H. Uchida, H. Uchiyama, Y. Uchiyama, S. Ueda, Y. Ueda, S. Uno, C.M. Urry, E. Ursino, S. Watanabe, N. Werner, D.R. Wilkins, B.J. Williams, S. Yamada, H. Yamaguchi, K. Yamaoka, N.Y. Yamasaki, M. Yamauchi, S. Yamauchi, T. Yaqoob, Y. Yatsu, D. Yonetoku, I. Zhuravleva, A. Zoghbi, A.J.J. Raassen, Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi. Publ. Astron. Soc. Jpn. 70, 12 (2018).  https://doi.org/10.1093/pasj/psx156 ADSCrossRefGoogle Scholar
  50. D.S. Hudson, R. Mittal, T.H. Reiprich, P.E.J. Nulsen, H. Andernach, C.L. Sarazin, What is a cool-core cluster? a detailed analysis of the cores of the X-ray flux-limited HIFLUGCS cluster sample. Astron. Astrophys. 513, 37 (2010).  https://doi.org/10.1051/0004-6361/200912377 ADSCrossRefGoogle Scholar
  51. K. Iwamoto, F. Brachwitz, K. Nomoto, N. Kishimoto, H. Umeda, W.R. Hix, F.-K. Thielemann, Nucleosynthesis in Chandrasekhar mass models for type IA supernovae and constraints on progenitor systems and burning-front propagation. Astron. Astrophys. Suppl. Ser. 125, 439–462 (1999).  https://doi.org/10.1086/313278 ADSCrossRefGoogle Scholar
  52. W. Kapferer, T. Kronberger, J. Weratschnig, S. Schindler, W. Domainko, E. van Kampen, S. Kimeswenger, M. Mair, M. Ruffert, Metal enrichment of the intra-cluster medium over a Hubble time for merging and relaxed galaxy clusters. Astron. Astrophys. 466, 813–821 (2007).  https://doi.org/10.1051/0004-6361:20066804 ADSCrossRefGoogle Scholar
  53. A. Karakas, J.C. Lattanzio, Stellar models and yields of asymptotic giant branch stars. Publ. Astron. Soc. Aust. 24, 103–117 (2007).  https://doi.org/10.1071/AS07021 ADSCrossRefGoogle Scholar
  54. A.I. Karakas, Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 403, 1413–1425 (2010).  https://doi.org/10.1111/j.1365-2966.2009.16198.x ADSCrossRefGoogle Scholar
  55. A.I. Karakas, J.C. Lattanzio, The Dawes review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Publ. Astron. Soc. Aust. 31, 030 (2014).  https://doi.org/10.1017/pasa.2014.21 ADSCrossRefGoogle Scholar
  56. N. Katz, Dissipational galaxy formation, II: effects of star formation. Astrophys. J. 391, 502–517 (1992).  https://doi.org/10.1086/171366 ADSCrossRefGoogle Scholar
  57. D. Kawata, B.K. Gibson, GCD+: a new chemodynamical approach to modelling supernovae and chemical enrichment in elliptical galaxies. Mon. Not. R. Astron. Soc. 340, 908–922 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06356.x ADSCrossRefGoogle Scholar
  58. D. Kawata, B.K. Gibson, D.J. Barnes, R.J.J. Grand, A. Rahimi, Numerical simulations of bubble-induced star formation in dwarf irregular galaxies with a novel stellar feedback scheme. Mon. Not. R. Astron. Soc. 438, 1208–1222 (2014).  https://doi.org/10.1093/mnras/stt2267 ADSCrossRefGoogle Scholar
  59. C.C. Kirkpatrick, B.R. McNamara, Hot outflows in galaxy clusters. Mon. Not. R. Astron. Soc. 452, 4361–4376 (2015).  https://doi.org/10.1093/mnras/stv1574 ADSCrossRefGoogle Scholar
  60. C. Kobayashi, H. Umeda, K. Nomoto, N. Tominaga, T. Ohkubo, Galactic chemical evolution: carbon through zinc. Astrophys. J. 653, 1145–1171 (2006).  https://doi.org/10.1086/508914 ADSCrossRefGoogle Scholar
  61. P. Kroupa, On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04022.x ADSCrossRefGoogle Scholar
  62. P. Kroupa, C.A. Tout, G. Gilmore, The distribution of low-mass stars in the galactic disc. Mon. Not. R. Astron. Soc. 262, 545–587 (1993).  https://doi.org/10.1093/mnras/262.3.545 ADSCrossRefGoogle Scholar
  63. A. Leccardi, S. Molendi, Radial metallicity profiles for a large sample of galaxy clusters observed with XMM-Newton. Astron. Astrophys. 487, 461–466 (2008).  https://doi.org/10.1051/0004-6361:200810113 ADSCrossRefGoogle Scholar
  64. A. Leccardi, M. Rossetti, S. Molendi, Thermo-dynamic and chemical properties of the intra-cluster medium. Astron. Astrophys. 510, 82 (2010).  https://doi.org/10.1051/0004-6361/200913094 ADSCrossRefGoogle Scholar
  65. C. Lia, L. Portinari, G. Carraro, Star formation and chemical evolution in smoothed particle hydrodynamics simulations: a statistical approach. Mon. Not. R. Astron. Soc. 330, 821–836 (2002).  https://doi.org/10.1046/j.1365-8711.2002.05118.x ADSCrossRefGoogle Scholar
  66. L. Liang, F. Durier, A. Babul, R. Davé, B.D. Oppenheimer, N. Katz, M. Fardal, T. Quinn, The growth and enrichment of intragroup gas. Mon. Not. R. Astron. Soc. 456, 4266–4290 (2016).  https://doi.org/10.1093/mnras/stv2840 ADSCrossRefGoogle Scholar
  67. A. Maeder, G. Meynet, Grids of evolutionary models from 0.85 to 120 solar masses—observational tests and the mass limits. Astron. Astrophys. 210, 155–173 (1989) ADSGoogle Scholar
  68. U. Maio, K. Dolag, B. Ciardi, L. Tornatore, Metal and molecule cooling in simulations of structure formation. Mon. Not. R. Astron. Soc. 379, 963–973 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12016.x ADSCrossRefGoogle Scholar
  69. A.B. Mantz, S.W. Allen, R.G. Morris, A. Simionescu, O. Urban, N. Werner, I. Zhuravleva, The metallicity of the intracluster medium over cosmic time: further evidence for early enrichment. Mon. Not. R. Astron. Soc. 472, 2877–2888 (2017).  https://doi.org/10.1093/mnras/stx2200 ADSCrossRefGoogle Scholar
  70. P. Marigo, Chemical yields from low- and intermediate-mass stars: model predictions and basic observational constraints. Astron. Astrophys. 370, 194–217 (2001).  https://doi.org/10.1051/0004-6361:20000247 ADSCrossRefGoogle Scholar
  71. D. Martizzi, O. Hahn, H.-Y. Wu, A.E. Evrard, R. Teyssier, R.H. Wechsler, RHAPSODY-G simulations, II: baryonic growth and metal enrichment in massive galaxy clusters. Mon. Not. R. Astron. Soc. 459, 4408–4427 (2016).  https://doi.org/10.1093/mnras/stw897 ADSCrossRefGoogle Scholar
  72. K. Matsushita, T. Sato, E. Sakuma, K. Sato, Distribution of Si, Fe, and Ni in the intracluster medium of the coma cluster. Publ. Astron. Soc. Jpn. 65, 10 (2013a).  https://doi.org/10.1093/pasj/65.1.10 ADSCrossRefGoogle Scholar
  73. K. Matsushita, E. Sakuma, T. Sasaki, K. Sato, A. Simionescu, Metal-mass-to-light ratios of the Perseus cluster out to the virial radius. Astrophys. J. 764, 147 (2013b).  https://doi.org/10.1088/0004-637X/764/2/147 ADSCrossRefGoogle Scholar
  74. F. Matteucci, The Chemical Evolution of the Galaxy (2003) CrossRefGoogle Scholar
  75. F. Matteucci, B.K. Gibson, Chemical abundances in clusters of galaxies. Astron. Astrophys. 304, 11 (1995) ADSGoogle Scholar
  76. B.J. Maughan, C. Jones, W. Forman, L. Van Speybroeck, Images, structural properties, and metal abundances of galaxy clusters observed with Chandra ACIS-I at \(0.1 < z < 1.3\). Astron. Astrophys. Suppl. Ser. 174, 117–135 (2008).  https://doi.org/10.1086/521225 ADSCrossRefGoogle Scholar
  77. P. Mazzotta, E. Rasia, L. Moscardini, G. Tormen, Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations. Mon. Not. R. Astron. Soc. 354, 10–24 (2004).  https://doi.org/10.1111/j.1365-2966.2004.08167.x ADSCrossRefGoogle Scholar
  78. I.G. McCarthy, J. Schaye, R.G. Bower, T.J. Ponman, C.M. Booth, C. Dalla Vecchia, V. Springel, Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters. Mon. Not. R. Astron. Soc. 412, 1965–1984 (2011).  https://doi.org/10.1111/j.1365-2966.2010.18033.x ADSCrossRefGoogle Scholar
  79. M. McDonald, E. Bulbul, T. de Haan, E.D. Miller, B.A. Benson, L.E. Bleem, M. Brodwin, J.E. Carlstrom, I. Chiu, W.R. Forman, J. Hlavacek-Larrondo, G.P. Garmire, N. Gupta, J.J. Mohr, C.L. Reichardt, A. Saro, B. Stalder, A.A. Stark, J.D. Vieira, The evolution of the intracluster medium metallicity in Sunyaev Zel’dovich-selected galaxy clusters at \(0 < z < 1.5\). Astrophys. J. 826, 124 (2016).  https://doi.org/10.3847/0004-637X/826/2/124 ADSCrossRefGoogle Scholar
  80. F. Mernier, J. de Plaa, C. Pinto, J.S. Kaastra, P. Kosec, Y.-Y. Zhang, J. Mao, N. Werner, Origin of central abundances in the hot intra-cluster medium, I: individual and average abundance ratios from XMM-Newton EPIC. Astron. Astrophys. 592 (2016).  https://doi.org/10.1051/0004-6361/201527824
  81. F. Mernier, J. de Plaa, J.S. Kaastra, Y.-Y. Zhang, H. Akamatsu, L. Gu, P. Kosec, J. Mao, C. Pinto, T.H. Reiprich, J.S. Sanders, A. Simionescu, N. Werner, Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals. Astron. Astrophys. 603, 80 (2017).  https://doi.org/10.1051/0004-6361/201630075 CrossRefGoogle Scholar
  82. F. Mernier, J. de Plaa, N. Werner, J.S. Kaastra, A.J.J. Raassen, L. Gu, J. Mao, I. Urdampilleta, N. Truong, A. Simionescu, Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies. Mon. Not. R. Astron. Soc. 478, 116–121 (2018).  https://doi.org/10.1093/mnrasl/sly080 ADSCrossRefGoogle Scholar
  83. G.E. Miller, J.M. Scalo, The initial mass function and stellar birthrate in the solar neighborhood. Astron. Astrophys. Suppl. Ser. 41, 513–547 (1979).  https://doi.org/10.1086/190629 ADSCrossRefGoogle Scholar
  84. S. Molendi, F. Pizzolato, Is the gas in cooling flows multiphase? Astrophys. J. 560, 194–200 (2001).  https://doi.org/10.1086/322387 ADSCrossRefGoogle Scholar
  85. R. Moll, S. Schindler, W. Domainko, W. Kapferer, M. Mair, E. van Kampen, T. Kronberger, S. Kimeswenger, M. Ruffert, Simulations of metal enrichment in galaxy clusters by AGN outflows. Astron. Astrophys. 463, 513–518 (2007).  https://doi.org/10.1051/0004-6361:20066386 ADSCrossRefGoogle Scholar
  86. L.A. Montier, M. Giard, The importance of dust in cooling and heating the InterGalactic medium. Astron. Astrophys. 417, 401–409 (2004).  https://doi.org/10.1051/0004-6361:20034365 ADSCrossRefGoogle Scholar
  87. M.B. Mosconi, P.B. Tissera, D.G. Lambas, S.A. Cora, Chemical evolution using smooth particle hydrodynamical cosmological simulations, I: implementation, tests and first results. Mon. Not. R. Astron. Soc. 325, 34–48 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04198.x ADSCrossRefGoogle Scholar
  88. G. Murante, P. Monaco, M. Giovalli, S. Borgani, A. Diaferio, A subresolution multiphase interstellar medium model of star formation and supernova energy feedback. Mon. Not. R. Astron. Soc. 405, 1491–1512 (2010).  https://doi.org/10.1111/j.1365-2966.2010.16567.x ADSCrossRefGoogle Scholar
  89. M. Nagashima, C.G. Lacey, C.M. Baugh, C.S. Frenk, S. Cole, The metal enrichment of the intracluster medium in hierarchical galaxy formation models. Mon. Not. R. Astron. Soc. 358, 1247–1266 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08766.x ADSCrossRefGoogle Scholar
  90. J.P. Naiman, A. Pillepich, V. Springel, E. Ramirez-Ruiz, P. Torrey, M. Vogelsberger, R. Pakmor, D. Nelson, F. Marinacci, L. Hernquist, R. Weinberger, S. Genel, First results from the IllustrisTNG simulations: a tale of two elements—chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. (2018).  https://doi.org/10.1093/mnras/sty618 CrossRefGoogle Scholar
  91. K. Nomoto, C. Kobayashi, N. Tominaga, Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).  https://doi.org/10.1146/annurev-astro-082812-140956 ADSCrossRefGoogle Scholar
  92. K. Nomoto, K. Iwamoto, N. Nakasato, F.-K. Thielemann, F. Brachwitz, T. Tsujimoto, Y. Kubo, N. Kishimoto, Nucleosynthesis in type Ia supernovae. Nucl. Phys. A 621, 467–476 (1997).  https://doi.org/10.1016/S0375-9474(97)00291-1 ADSCrossRefGoogle Scholar
  93. P. Padovani, F. Matteucci, Stellar mass loss in elliptical galaxies and the fueling of active galactic nuclei. Astrophys. J. 416, 26 (1993).  https://doi.org/10.1086/173212 ADSCrossRefGoogle Scholar
  94. S. Planelles, S. Borgani, D. Fabjan, M. Killedar, G. Murante, G.L. Granato, C. Ragone-Figueroa, K. Dolag, On the role of AGN feedback on the thermal and chemodynamical properties of the hot intracluster medium. Mon. Not. R. Astron. Soc. 438, 195–216 (2014).  https://doi.org/10.1093/mnras/stt2141 ADSCrossRefGoogle Scholar
  95. E. Pointecouteau, A. da Silva, A. Catalano, L. Montier, J. Lanoux, M. Roncarelli, M. Giard, Simulating the impact of dust cooling on the statistical properties of the intra-cluster medium. Adv. Space Res. 44, 440–445 (2009).  https://doi.org/10.1016/j.asr.2009.05.006 ADSCrossRefGoogle Scholar
  96. L. Portinari, C. Chiosi, A. Bressan, Galactic chemical enrichment with new metallicity dependent stellar yields. Astron. Astrophys. 334, 505–539 (1998) ADSGoogle Scholar
  97. E. Puchwein, D. Sijacki, V. Springel, Simulations of AGN feedback in galaxy clusters and groups: impact on gas fractions and the LX-T scaling relation. Astrophys. J. Lett. 687, 53 (2008).  https://doi.org/10.1086/593352 ADSCrossRefGoogle Scholar
  98. C.M. Raiteri, M. Villata, J.F. Navarro, Simulations of Galactic chemical evolution, I: O and Fe abundances in a simple collapse model. Astron. Astrophys. 315, 105–115 (1996) ADSGoogle Scholar
  99. E. Rasia, P. Mazzotta, H. Bourdin, S. Borgani, L. Tornatore, S. Ettori, K. Dolag, L. Moscardini, X-MAS2: study systematics on the ICM metallicity measurements. Astrophys. J. 674, 728–741 (2008).  https://doi.org/10.1086/524345 ADSCrossRefGoogle Scholar
  100. E. Rasia, S. Borgani, G. Murante, S. Planelles, A.M. Beck, V. Biffi, C. Ragone-Figueroa, G.L. Granato, L.K. Steinborn, K. Dolag, Cool core clusters from cosmological simulations. Astrophys. J. Lett. 813, 17 (2015).  https://doi.org/10.1088/2041-8205/813/1/L17 ADSCrossRefGoogle Scholar
  101. J. Rasmussen, T.J. Ponman, Temperature and abundance profiles of hot gas in galaxy groups, I: results and statistical analysis. Mon. Not. R. Astron. Soc. 380, 1554–1572 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12191.x ADSCrossRefGoogle Scholar
  102. J. Rasmussen, T.J. Ponman, Temperature and abundance profiles of hot gas in galaxy groups, II: implications for feedback and ICM enrichment. Mon. Not. R. Astron. Soc. 399, 239–263 (2009).  https://doi.org/10.1111/j.1365-2966.2009.15244.x ADSCrossRefGoogle Scholar
  103. P. Rebusco, E. Churazov, H. Böhringer, W. Forman, Impact of stochastic gas motions on galaxy cluster abundance profiles. Mon. Not. R. Astron. Soc. 359, 1041–1048 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08965.x ADSCrossRefGoogle Scholar
  104. P. Rebusco, E. Churazov, H. Böhringer, W. Forman, Effect of turbulent diffusion on iron abundance profiles. Mon. Not. R. Astron. Soc. 372, 1840–1850 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10977.x ADSCrossRefGoogle Scholar
  105. D. Romano, C. Chiappini, F. Matteucci, M. Tosi, Quantifying the uncertainties of chemical evolution studies. I. Stellar lifetimes and initial mass function. Astron. Astrophys. 430, 491–505 (2005).  https://doi.org/10.1051/0004-6361:20048222 ADSCrossRefGoogle Scholar
  106. D. Romano, A.I. Karakas, M. Tosi, F. Matteucci, Quantifying the uncertainties of chemical evolution studies, II: stellar yields. Astron. Astrophys. 522, 32 (2010).  https://doi.org/10.1051/0004-6361/201014483 ADSCrossRefGoogle Scholar
  107. A.D. Romeo, J. Sommer-Larsen, L. Portinari, V. Antonuccio-Delogu, Simulating galaxy clusters, I: thermal and chemical properties of the intracluster medium. Mon. Not. R. Astron. Soc. 371, 548–568 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10735.x ADSCrossRefGoogle Scholar
  108. M. Rossetti, D. Eckert, B.M. Cavalleri, S. Molendi, F. Gastaldello, S. Ghizzardi, Back and forth from cool core to non-cool core: clues from radio halos. Astron. Astrophys. 532, 123 (2011).  https://doi.org/10.1051/0004-6361/201117306 ADSCrossRefGoogle Scholar
  109. E. Sakuma, N. Ota, K. Sato, T. Sato, K. Matsushita, Suzaku observations of metal distributions in the intracluster medium of the Centaurus cluster. Publ. Astron. Soc. Jpn. 63, 979–990 (2011).  https://doi.org/10.1093/pasj/63.sp3.S979 ADSCrossRefGoogle Scholar
  110. E.E. Salpeter, The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).  https://doi.org/10.1086/145971 ADSCrossRefGoogle Scholar
  111. K. Sato, K. Matsushita, Y. Ishisaki, N.Y. Yamasaki, M. Ishida, S. Sasaki, T. Ohashi, Suzaku observations of AWM 7 cluster of galaxies: temperatures, abundances, and bulk motions. Publ. Astron. Soc. Jpn. 60, 333–342 (2008).  https://doi.org/10.1093/pasj/60.sp1.S333 ADSCrossRefGoogle Scholar
  112. C. Scannapieco, P.B. Tissera, S.D.M. White, V. Springel, Feedback and metal enrichment in cosmological smoothed particle hydrodynamics simulations, I: a model for chemical enrichment. Mon. Not. R. Astron. Soc. 364, 552–564 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09574.x ADSCrossRefGoogle Scholar
  113. S. Schindler, A. Diaferio, Metal enrichment processes. Space Sci. Rev. 134, 363–377 (2008).  https://doi.org/10.1007/s11214-008-9321-8 ADSCrossRefGoogle Scholar
  114. S. Schindler, W. Kapferer, W. Domainko, M. Mair, E. van Kampen, T. Kronberger, S. Kimeswenger, M. Ruffert, O. Mangete, D. Breitschwerdt, Metal enrichment processes in the intra-cluster medium. Astron. Astrophys. 435, 25–28 (2005).  https://doi.org/10.1051/0004-6361:200500107 ADSCrossRefGoogle Scholar
  115. C.J. Short, P.A. Thomas, O.E. Young, Heating and enriching the intracluster medium. Mon. Not. R. Astron. Soc. 428, 1225–1247 (2013).  https://doi.org/10.1093/mnras/sts107 ADSCrossRefGoogle Scholar
  116. D. Sijacki, V. Springel, Hydrodynamical simulations of cluster formation with central AGN heating. Mon. Not. R. Astron. Soc. 366, 397–416 (2006).  https://doi.org/10.1111/j.1365-2966.2005.09860.x ADSCrossRefGoogle Scholar
  117. A. Simionescu, N. Werner, A. Finoguenov, H. Böhringer, M. Brüggen, Metal-rich multi-phase gas in M 87. AGN-driven metal transport, magnetic-field supported multi-temperature gas, and constraints on non-thermal emission observed with XMM-Newton. Astron. Astrophys. 482, 97–112 (2008).  https://doi.org/10.1051/0004-6361:20078749 ADSCrossRefGoogle Scholar
  118. A. Simionescu, N. Werner, H. Böhringer, J.S. Kaastra, A. Finoguenov, M. Brüggen, P.E.J. Nulsen, Chemical enrichment in the cluster of galaxies Hydra A. Astron. Astrophys. 493, 409–424 (2009).  https://doi.org/10.1051/0004-6361:200810225 ADSCrossRefGoogle Scholar
  119. A. Simionescu, N. Werner, O. Urban, S.W. Allen, Y. Ichinohe, I. Zhuravleva, A uniform contribution of core-collapse and type Ia supernovae to the chemical enrichment pattern in the outskirts of the Virgo cluster. Astrophys. J. Lett. 811, 25 (2015).  https://doi.org/10.1088/2041-8205/811/2/L25 ADSCrossRefGoogle Scholar
  120. J. Sommer-Larsen, M. Götz, L. Portinari, Galaxy formation: cold dark matter, feedback, and the hubble sequence. Astrophys. J. 596, 47–66 (2003).  https://doi.org/10.1086/377685 ADSCrossRefGoogle Scholar
  121. V. Springel, The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09655.x ADSCrossRefGoogle Scholar
  122. V. Springel, E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791–851 (2010).  https://doi.org/10.1111/j.1365-2966.2009.15715.x ADSCrossRefGoogle Scholar
  123. V. Springel, L. Hernquist, Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation. Mon. Not. R. Astron. Soc. 339, 289–311 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06206.x ADSCrossRefGoogle Scholar
  124. V. Springel, T. Di Matteo, L. Hernquist, Black Holes in Galaxy Mergers: The Formation of Red Elliptical Galaxies. Astrophys. J. Lett. 620, 79–82 (2005).  https://doi.org/10.1086/428772 ADSCrossRefGoogle Scholar
  125. M. Steinmetz, E. Mueller, The formation of disk galaxies in a cosmological context: populations, metallicities and metallicity gradients. Astron. Astrophys. 281, 97–100 (1994) ADSGoogle Scholar
  126. M. Sun, Hot gas in galaxy groups: recent observations. New J. Phys. 14(4), 045004 (2012).  https://doi.org/10.1088/1367-2630/14/4/045004 ADSCrossRefGoogle Scholar
  127. R.S. Sutherland, M.A. Dopita, Cooling functions for low-density astrophysical plasmas. Astron. Astrophys. Suppl. Ser. 88, 253–327 (1993).  https://doi.org/10.1086/191823 ADSCrossRefGoogle Scholar
  128. R. Teyssier, B. Moore, D. Martizzi, Y. Dubois, L. Mayer, Mass distribution in galaxy clusters: the role of active galactic nuclei feedback. Mon. Not. R. Astron. Soc. 414, 195–208 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18399.x ADSCrossRefGoogle Scholar
  129. F.-K. Thielemann, D. Argast, F. Brachwitz, W.R. Hix, P. Höflich, M. Liebendörfer, G. Martinez-Pinedo, A. Mezzacappa, K. Nomoto, I. Panov, Supernova nucleosynthesis and galactic evolution, in From Twilight to Highlight: The Physics of Supernovae, ed. by W. Hillebrandt, B. Leibundgut (2003), p. 331 CrossRefGoogle Scholar
  130. L. Tornatore, S. Borgani, F. Matteucci, S. Recchi, P. Tozzi, Simulating the metal enrichment of the intracluster medium. Mon. Not. R. Astron. Soc. 349, 19–24 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07689.x ADSCrossRefGoogle Scholar
  131. L. Tornatore, S. Borgani, K. Dolag, F. Matteucci, Chemical enrichment of galaxy clusters from hydrodynamical simulations. Mon. Not. R. Astron. Soc. 382, 1050–1072 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12070.x ADSCrossRefGoogle Scholar
  132. C. Travaglio, W. Hillebrandt, M. Reinecke, F.-K. Thielemann, Nucleosynthesis in multi-dimensional SN Ia explosions. Astron. Astrophys. 425, 1029–1040 (2004).  https://doi.org/10.1051/0004-6361:20041108 ADSCrossRefGoogle Scholar
  133. N. Truong, E. Rasia, V. Biffi, F. Mernier, N. Werner, M. Gaspari, S. Borgani, S. Planelles, D. Fabjan, G. Murante, Mass-metallicity relation from cosmological hydrodynamical simulations and X-ray observations of galaxy groups and clusters. ArXiv e-prints (2018) Google Scholar
  134. O. Urban, N. Werner, S.W. Allen, A. Simionescu, A. Mantz, A uniform metallicity in the outskirts of massive, nearby galaxy clusters. Mon. Not. R. Astron. Soc. 470, 4583–4599 (2017).  https://doi.org/10.1093/mnras/stx1542 ADSCrossRefGoogle Scholar
  135. R. Valdarnini, Iron abundances and heating of the intracluster medium in hydrodynamical simulations of galaxy clusters. Mon. Not. R. Astron. Soc. 339, 1117–1134 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06163.x ADSCrossRefGoogle Scholar
  136. L.B. van den Hoek, M.A.T. Groenewegen, New theoretical yields of intermediate mass stars. Astron. Astrophys. Suppl. Ser. 123, 305–328 (1997).  https://doi.org/10.1051/aas:1997162 ADSCrossRefGoogle Scholar
  137. A. Vikhlinin, M. Markevitch, S.S. Murray, C. Jones, W. Forman, L. Van Speybroeck, Chandra temperature profiles for a sample of nearby relaxed galaxy clusters. Astrophys. J. 628, 655–672 (2005).  https://doi.org/10.1086/431142 ADSCrossRefGoogle Scholar
  138. M. Vogelsberger, F. Marinacci, P. Torrey, S. Genel, V. Springel, R. Weinberger, R. Pakmor, L. Hernquist, J. Naiman, A. Pillepich, D. Nelson, The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 474, 2073–2093 (2018).  https://doi.org/10.1093/mnras/stx2955 ADSCrossRefGoogle Scholar
  139. N. Werner, F. Durret, T. Ohashi, S. Schindler, R.P.C. Wiersma, Observations of metals in the intra-cluster medium. Space Sci. Rev. 134, 337–362 (2008).  https://doi.org/10.1007/s11214-008-9320-9 ADSCrossRefGoogle Scholar
  140. N. Werner, O. Urban, A. Simionescu, S.W. Allen, A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies. Nature 502, 656–658 (2013).  https://doi.org/10.1038/nature12646 ADSCrossRefGoogle Scholar
  141. R.P.C. Wiersma, J. Schaye, B.D. Smith, The effect of photoionization on the cooling rates of enriched, astrophysical plasmas. Mon. Not. R. Astron. Soc. 393, 99–107 (2009a).  https://doi.org/10.1111/j.1365-2966.2008.14191.x ADSCrossRefGoogle Scholar
  142. R.P.C. Wiersma, J. Schaye, T. Theuns, C. Dalla Vecchia, L. Tornatore, Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations. Mon. Not. R. Astron. Soc. 399, 574–600 (2009b).  https://doi.org/10.1111/j.1365-2966.2009.15331.x ADSCrossRefGoogle Scholar
  143. D. Williamson, H. Martel, D. Kawata, Metal diffusion in smoothed particle hydrodynamics simulations of dwarf galaxies. Astrophys. J. 822, 91 (2016).  https://doi.org/10.3847/0004-637X/822/2/91 ADSCrossRefGoogle Scholar
  144. S.E. Woosley, T.A. Weaver, The evolution and explosion of massive stars, II: explosive hydrodynamics and nucleosynthesis. Astron. Astrophys. Suppl. Ser. 101, 181 (1995).  https://doi.org/10.1086/192237 ADSCrossRefGoogle Scholar
  145. R.M. Yates, P.A. Thomas, B.M.B. Henriques, Iron in galaxy groups and clusters: confronting galaxy evolution models with a newly homogenized data set. Mon. Not. R. Astron. Soc. 464, 3169–3193 (2017).  https://doi.org/10.1093/mnras/stw2361 ADSCrossRefGoogle Scholar
  146. J.A. ZuHone, V. Biffi, E.J. Hallman, S.W. Randall, A.R. Foster, C. Schmid, Simulating X-ray observations with Python. ArXiv e-prints (2014) Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Physics Department, Astronomy UnitTrieste UniversityTriesteItaly
  2. 2.Observatory of TriesteINAFTriesteItaly
  3. 3.MTA-Eötvös University Lendület Hot Universe Research GroupBudapestHungary
  4. 4.Institute of PhysicsEötvös UniversityBudapestHungary
  5. 5.SRON Netherlands Institute for Space ResearchUtrechtThe Netherlands
  6. 6.Space Research Institute of the Russian Academy of Sciences (IKI)MoscowRussia

Personalised recommendations