Advertisement

Space Science Reviews

, 214:119 | Cite as

A Numerical Model of the SEIS Leveling System Transfer Matrix and Resonances: Application to SEIS Rotational Seismology and Dynamic Ground Interaction

  • Lucile FayonEmail author
  • Brigitte Knapmeyer-Endrun
  • Philippe Lognonné
  • Marco Bierwirth
  • Aron Kramer
  • Pierre Delage
  • Foivos Karakostas
  • Sharon Kedar
  • Naomi Murdoch
  • Raphael F. Garcia
  • Nicolas Verdier
  • Sylvain Tillier
  • William T. Pike
  • Ken Hurst
  • Cédric Schmelzbach
  • William B. Banerdt
Article
  • 160 Downloads
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing.

Keywords

InSight Mars Regolith 

Notes

Acknowledgements

This is IPGP contribution xx and InSight contribution yy. L.F. acknowledges the financial support of ANR-11-IDEX-0005-02 and the additional support of ANR-SIMARS F.K. acknowledges the financial support of the UnivEarthS Labex program at Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02) and of the SODERN company for his Ph.D. support. The French team acknowledges the support of the French Space Agency CNES for the overall SEIS developments.

References

  1. D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksöz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewicz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Res. 82, 4524–4546 (1977) ADSCrossRefGoogle Scholar
  2. C. Bagaini, C. Barajas-Olalde, Assessment and compensation of inconsistent coupling conditions in point-receiver land seismic data. Geophys. Prospect. 55, 39–48 (2007).  https://doi.org/10.1111/j.1365-2478.2006.00606.x ADSCrossRefGoogle Scholar
  3. W.B. Banerdt, S. Smrekar, K. Hurst, P. Lognonné, T. Spohn, S. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetz, M. Golombek, M. Grott, T. Hudson, C. Johson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T. van Zoest, R. Weber, M. Wieczorek (the InSight Team), Insight: a Discovery mission to explore the interior of Mars, in Proc. 44th Lunar Planet. Sci. Conf., Lunar and Planetery Institute, Houston (2013), p. 115 Google Scholar
  4. M. Bernauer, A. Fichtner, H. Igel, Inferring Earth structure from combined measurements of rotational and translational ground motions. Geophysics 74(6), WCD41–WCD47 (2009).  https://doi.org/10.1190/1.3211110 CrossRefGoogle Scholar
  5. J. Brokešová, J. Málek, J.R. Evans, Note: Rotaphone, a new self-calibrated six-degree-of-freedom seismic sensor. Rev. Sci. Instrum. 83(8), 086108 (2012) ADSCrossRefGoogle Scholar
  6. CNES, Internal M-ICD (Mechanical Interface Control Document) of SEIS instrument of InSight mission (2017) Google Scholar
  7. S. De Raucourt, T. Gabsi, N. Tanguy, D. Mimoun, P. Lognonne, J. Gagnepain-Beyneix, W. Banerdt, S. Tillier, K. Hurst, The VBB SEIS experiment of InSight, in 39th COSPAR Scientific Assembly, COSPAR Meeting, vol. 39 (2012), p. 429 Google Scholar
  8. P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonné, M. Golombek, E. De Laure, K. Hurst, J.-C. Dupla, S. Kedar, Y.J. Cui, B. Banerdt, An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. 211, 191–213 (2017).  https://doi.org/10.1007/s11214-017-0339-7 ADSCrossRefGoogle Scholar
  9. T. Forbriger, About the nonunique sensitivity of pendulum seismometers to translational, angular, and centripetal acceleration. Bull. Seismol. Soc. Am. 99, 1343–1351 (2009).  https://doi.org/10.1785/0120080150 CrossRefGoogle Scholar
  10. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017).  https://doi.org/10.1007/s11214-016-0321-9 ADSCrossRefGoogle Scholar
  11. M. Golombek, M. Grott, G. Kargl, J. Andrade, J. Marshall, N. Warner, N.A. Teanby, V. Ansan, E. Hauber, J. Voigt, R. Lichtenheldt, B. Knapmeyer-Endrun, I.J. Daubar, D. Kipp, N. Muller, P. Lognonné, C. Schmelzbach, D. Banfield, A. Trebi-Ollennu, J. Maki, S. Kedar, D. Mimoun, N. Murdoch, S. Piqueux, P. Delage, W.T. Pike, C. Charalambous, R. Lorenz, L. Fayon, A. Lucas, S. Rodriguez, P. Morgan, A. Spiga, M. Panning, T. Spohn, S. Smrekar, T. Gudkova, R. Garcia, D. Giardini, U. Christensen, T. Nicollier, D. Sollberger, J. Robertsson, K. Ali, B. Kenda, W.B. Banerdt, Geology and physical properties investigation by the InSight lander. Space Sci. Rev. 214(5), 1–52 (2018).  https://doi.org/10.1007/s11214-018-0512-7, 2nd special issue ADSCrossRefGoogle Scholar
  12. L.G. Holcomb, A direct method for calculating instrument noise levels in side-by-side seismometer evaluation (1989). Open File Rep. 89-214, U.S. Geolog. Surv. Google Scholar
  13. H. Igel, M. Bernauer, J. Wassermann, K.U. Schreiber, Rotational seismology: theory, instrumentation, observations, applications, in Encyclopedia of Complexity and Systems Science (Springer, New York, 2015) Google Scholar
  14. S. Kedar, J. Andrade, B. Banerdt, P. Delage, M. Golombek, M. Grott, T. Hudson, A. Kiely, M. Knapmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonné, T. Pike, Y. Ruan, T. Spohn, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSight’s HP3 penetrator. Space Sci. Rev. 211, 315–337 (2017).  https://doi.org/10.1007/s11214-017-0391-3 ADSCrossRefGoogle Scholar
  15. B. Knapmeyer-Endrun, N. Murdoch, B. Kenda, M.P. Golombek, M. Knapmeyer, L. Witte, N. Verdier, S. Kedar, P. Lognonné, W.B. Banerdt, Influence of body waves, instrumentation resonances, and prior assumptions on Rayleigh wave ellipticity inversion for shallow structure at the insight landing site. Space Sci. Rev. 214(5), 1–42 (2018), 2nd special issue Google Scholar
  16. P. Lognonné, W.T. Pike, Planetary Seismometry (Cambridge University Press, Cambridge, 2015) CrossRefGoogle Scholar
  17. P. Lognonné, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44, 1237 (1996).  https://doi.org/10.1016/S0032-0633(96)00083-9 ADSCrossRefGoogle Scholar
  18. P. Lognonné, B.W. Banerdt, D. Giardini, T. Pike, U. Christensen, P. Laudet, S. de Raucourt, P. Zweifel, S. Calcut, M. Bierwirth, K. Hurst, F. Ijpelaan, J. Umland, R. Roger Llorca, S. Larson, R. Garcia, S. Kedar, B. Knapmeyer-Endrun, D. Mimoun, A. Mocquet, M. Panning, R. Weber, A. Sylvestre-Baron, G. Pont, N. Verdier, L. Kerjean, T. Hoffman, J. Willis, S. Smrekar, M. Eberhardt, A. Kramer, W. Kühne, E.-P. Miettinen, M. Monecke, J.P. Scheffler, C. Aicardi, K. Brethomé, C. Brysbaert, T. Carlier, J.M. Desmarres, D. Faye, R. Gonzalez, L. Luno, J.M. Mouret, M. Nonon, A. Paillet, G. Perez, B. Pouilloux, A. Rosak, I. Savin de Larclause, N. Toulemont, B. Vella, C. Yana, P. Delage, L. Fayon, N. Murdoch, R. Widmer-Schnidrig, SEIS: the Seismic Experiment for Internal Structure of InSight. Space Sci. Rev. (2018), 2nd special issue Google Scholar
  19. D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, W.B. Banerdt, The noise model of the SEIS seismometer of the InSight Mission to Mars. Space Sci. Rev. 211, 383–428 (2017).  https://doi.org/10.1007/s11214-017-0409-x ADSCrossRefGoogle Scholar
  20. P. Morgan, M. Grott, B. Knapmeyer-Endrun, M. Golombek, P. Delage, P. Lognonné, S. Piqueux, I. Daubar, N. Murdoch, C. Charalambous, W.T. Pike, N. Muller, A. Hagermann, M. Siegler, R. Lichtenheldt, N. Teanby, S. Kedar, A pre-landing assessment of regolith properties at the insight landing site. Space Sci. Rev. 214(6), 1–47 (2018), 2nd special issue CrossRefGoogle Scholar
  21. R. Myhill, N. Teanby, J. Wookey, Frequency dependence of seismic attenuation and coupling through Mars’ regolith: implications for the InSight mission. Space Sci. Rev. (2018).  https://doi.org/10.1007/s11214-018-0514-5, 2nd special issue CrossRefGoogle Scholar
  22. Y. Nakamura, D.L. Anderson, Martian wind activity detected by a seismometer at Viking lander 2 site. Geophys. Res. Lett. 6, 499–502 (1979) ADSCrossRefGoogle Scholar
  23. G.L. Pavlis, F.L. Vernon, Calibration of seismometers using ground noise. Bull. Seismol. Soc. Am. 84, 1243–1255 (1994) Google Scholar
  24. G.H. Peters, W. Abbey, G.H. Bearman, G.S. Mungas, J.A. Smith, R.C. Anderson, S. Douglas, L.W. Beegle, Mojave Mars simulant—characterization of a new geologic Mars analog. Icarus 197, 470–479 (2008).  https://doi.org/10.1016/j.icarus.2008.05.004 ADSCrossRefGoogle Scholar
  25. H.G. Poulos, E.H. Davis, Elastic Solutions for Soil and Rock Mechanics (Wiley, New York, 1974) Google Scholar
  26. A.T. Ringler, C.R. Hutt, J.R. Evans, L.D. Sandoval, A comparison of seismic instrument noise coherence analysis techniques. Bull. Seismol. Soc. Am. 101, 558–567 (2011) CrossRefGoogle Scholar
  27. C. Schmelzbach, S. Donner, H. Igel, D. Sollberger, T. Taufiqurrahman, F. Bernauer, M. Hausler, C. Van Renterghem, J. Wassermann, J. Robertsson, Advances in 6-C seismology: applications of combined translational and rotational motion measurements in global and exploration seismology. Geophysics 83, Issue(3), 1–58 (2018).  https://doi.org/10.1190/geo2017-0492.1 CrossRefGoogle Scholar
  28. D. Sollberger, C. Schmelzbach, J.O.A. Robertsson, S.A. Greenhalgh, Y. Nakamura, A. Khan, The shallow elastic structure of the lunar crust: new insights from seismic wavefield gradient analysis. Geophys. Res. Lett. 43, 10 (2016).  https://doi.org/10.1002/2016GL070883 CrossRefGoogle Scholar
  29. D. Sollberger, S.A. Greenhalgh, C. Schmelzbach, C. Van Renterghem, J.O.A. Robertsson, 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications. Geophys. J. Int. 213, 77–97 (2018).  https://doi.org/10.1093/gji/ggx542 ADSCrossRefGoogle Scholar
  30. P. Spudich, L.K. Steck, M. Hellweg, J.B. Fletcher, L.M. Baker, Transient stresses at Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: observations from the UPSAR dense seismograph array. J. Geophys. Res. 100, 675–690 (1995).  https://doi.org/10.1029/94JB02477 ADSCrossRefGoogle Scholar
  31. N. Teanby, J. Stevanović, J. Wookey, N. Murdoch, J. Hurley, R. Myhill, N.E. Bowles, S.B. Calcutt, W.T. Pike, Seismic coupling of short-period wind noise through Mars’ regolith for NASA’s InSight lander. Space Sci. Rev. 211, 485–500 (2017).  https://doi.org/10.1007/s11214-016-0310-z ADSCrossRefGoogle Scholar
  32. N.H. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: Implications of Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. 211, 147–190 (2017).  https://doi.org/10.1007/s11214-017-0352-x ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Lucile Fayon
    • 1
    Email author
  • Brigitte Knapmeyer-Endrun
    • 2
  • Philippe Lognonné
    • 1
  • Marco Bierwirth
    • 3
  • Aron Kramer
    • 3
  • Pierre Delage
    • 4
  • Foivos Karakostas
    • 1
  • Sharon Kedar
    • 5
  • Naomi Murdoch
    • 6
  • Raphael F. Garcia
    • 6
  • Nicolas Verdier
    • 7
  • Sylvain Tillier
    • 1
  • William T. Pike
    • 8
  • Ken Hurst
    • 5
  • Cédric Schmelzbach
    • 9
  • William B. Banerdt
    • 5
  1. 1.Institut de Physique du Globe de Paris-Sorbonne Paris CitéUniversité Paris DiderotParisFrance
  2. 2.Earthquake Observatory BensbergUniversity of CologneBergish GladbachGermany
  3. 3.Max Planck Institute for Solar System ResearchGöttingenGermany
  4. 4.Laboratoire Navier (CERMES)Ecole des Ponts ParisTechParisFrance
  5. 5.Jet Propulsion Laboratory (JPL)California Institut of TechnologyPasadenaUSA
  6. 6.Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)Université de ToulouseToulouseFrance
  7. 7.Centre National d’Etudes Spatiales (CNES)ToulouseFrance
  8. 8.Imperial CollegeLondonUnited Kingdom
  9. 9.ETHZurichSwitzerland

Personalised recommendations