Space Science Reviews

, 214:121 | Cite as

Feedstocks of the Terrestrial Planets

  • Richard W. CarlsonEmail author
  • Ramon Brasser
  • Qing-Zhu Yin
  • Mario Fischer-Gödde
  • Liping Qin
Part of the following topical collections:
  1. The Solar System's Evolution Before the Moon


The processes of planet formation in our Solar System resulted in a final product of a small number of discreet planets and planetesimals characterized by clear compositional distinctions. A key advance on this subject was provided when nucleosynthetic isotopic variability was discovered between different meteorite groups and the terrestrial planets. This information has now been coupled with theoretical models of planetesimal growth and giant planet migration to better understand the nature of the materials accumulated into the terrestrial planets. First order conclusions include that carbonaceous chondrites appear to contribute a much smaller mass fraction to the terrestrial planets than previously suspected, that gas-driven giant planet migration could have pushed volatile-rich material into the inner Solar System, and that planetesimal formation was occurring on a sufficiently rapid time scale that global melting of asteroid-sized objects was instigated by radioactive decay of 26Al. The isotopic evidence highlights the important role of enstatite chondrites, or something with their mix of nucleosynthetic components, as feedstock for the terrestrial planets. A common degree of depletion of moderately volatile elements in the terrestrial planets points to a mechanism that can effectively separate volatile and refractory elements over a spatial scale the size of the whole inner Solar System. The large variability in iron to silicon ratios between both different meteorite groups and between the terrestrial planets suggests that mechanisms that can segregate iron metal from silicate should be given greater importance in future investigations. Such processes likely include both density separation of small grains in the nebula, but also preferential impact erosion of either the mantle or core from differentiated planets/planetesimals. The latter highlights the important role for giant impacts and collisional erosion during the late stages of planet formation.


Planet formation Nucleosynthetic isotope anomalies Volatile elements Collisional erosion Grand Tack Meteorites 



The authors thank the Earth Life Science Institute for its hospitality and support for the Before the Moon meeting. The detailed and constructive reviews by Sean Raymond and editor Steve Mojzsis are much appreciated. RWC acknowledges support from the Carnegie Institution for Science, RB is grateful for financial support from JSPS KAKENHI (JP16K17662), MFG acknowledges support from the Deutsche Forschungsgemeinschaft (SFB-TRR 170, subproject B2-1), and QZY acknowledges NASA Emerging Worlds (NNX16AD34G) for support.


  1. W. Akram, M. Schönbächler, S. Bisterzo, R. Gallino, Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system. Geochim. Cosmochim. Acta 165, 484–500 (2015) ADSGoogle Scholar
  2. F. Albarede et al., Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus 222, 44–52 (2013) ADSGoogle Scholar
  3. C.M.O.D. Alexander, The origin of inner Solar System water. Philos. Trans. R. Soc. Lond. A 375, 20150384 (2017) ADSGoogle Scholar
  4. Y. Amelin, U–Pb ages of angrites. Geochim. Cosmochim. Acta 72(1), 221–232 (2008) ADSGoogle Scholar
  5. Y. Amelin et al., U–Pb, Rb–Sr, and Ar–Ar systematics of the ungrouped achondrites Northwest Africa 6704 and Northwest Africa 6693. Geochim. Cosmochim. Acta (2018). CrossRefGoogle Scholar
  6. E. Anders, N. Grevesse, Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989) ADSGoogle Scholar
  7. R. Andreasen, M. Sharma, Solar nebula heterogeneity in p-process samarium and neodymium isotopes. Science 314(5800), 806–809 (2006) ADSGoogle Scholar
  8. C. Arlandini et al., Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525, 886–900 (1999) ADSGoogle Scholar
  9. E. Asphaug, C.B. Agnor, Q. Williams, Hit-and-run planetary collisions. Nature 439, 155–160 (2006) ADSGoogle Scholar
  10. H. Becker et al., Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 70, 4528–4550 (2006) ADSGoogle Scholar
  11. W. Benz, W.L. Slattery, A.G.W. Cameron, Collisional stripping of Mercury’s mantle. Icarus 74, 516–528 (1988) ADSGoogle Scholar
  12. W. Benz, A. Anic, J. Horner, J.A. Whitby, The origin of Mercury. Space Sci. Rev. 132, 189–202 (2007) ADSGoogle Scholar
  13. D.C. Black, R.O. Pepin, Trapped neon in meteorites – II. Earth Planet. Sci. Lett. 6, 395–405 (1969) ADSGoogle Scholar
  14. P.A. Bland et al., Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proc. Natl. Acad. Sci. 102, 13755–13760 (2005) ADSGoogle Scholar
  15. A. Bonsor et al., A collisional origin to Earth’s non-chondritic composition? Icarus 247, 291–300 (2015) ADSGoogle Scholar
  16. W.F. Bottke, D. Nesvorny, R.E. Grimm, A. Morbidelli, D.P. O’Brien, Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006) ADSGoogle Scholar
  17. W.F. Bottke, R.J. Walker, J.M.D. Day, D. Nesvorny, L. Elkins-Tanton, Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010) ADSGoogle Scholar
  18. A. Bouvier, M. Boyet, Primitive solar system materials and Earth share a common initial 142Nd abundance. Nature 537, 399–402 (2016) ADSGoogle Scholar
  19. M. Boyet, R.W. Carlson, 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005) ADSGoogle Scholar
  20. M. Boyet, R.W. Carlson, A new geochemical model for the Earth’s mantle inferred from 146Sm–142Nd systematics. Earth Planet. Sci. Lett. 250, 254–268 (2006) ADSGoogle Scholar
  21. R. Brasser, M.H. Lee, Tilting Saturn without tilting Jupiter: constraints on giant planet migration. Astron. J. 150, 157 (2015) ADSGoogle Scholar
  22. R. Brasser, S.J. Mojzsis, A colossal impact enriched Mars’ mantle with noble metals. Geophys. Res. Lett. 44, 5978–5985 (2017) ADSGoogle Scholar
  23. R. Brasser, A. Morbidelli, R. Gomes, K. Tsiganis, H.-F. Levison, Constructing the secular architecture of the solar system II: the terrestrial planets. Astron. Astrophys. 507, 1053–1065 (2009) ADSGoogle Scholar
  24. R. Brasser, S. Matsumura, S. Ida, S.J. Mojzsis, S.C. Werner, Analysis of terrestrial planet formation by the grand tack model: system architecture and tack location. Astrophys. J. 821, 75 (2016a) ADSGoogle Scholar
  25. R. Brasser, S.J. Mojzsis, S.C. Werner, S. Matsumura, S. Ida, Late veneer and late accretion to the terrestrial planets. Earth Planet. Sci. Lett. 455, 85–93 (2016b) ADSGoogle Scholar
  26. R. Brasser, S.J. Mojzsis, S. Matsumura, S. Ida, The cool and distant formation of Mars. Earth Planet. Sci. Lett. 468, 85–93 (2017) ADSGoogle Scholar
  27. R. Brasser, N. Dauphas, S.J. Mojzsis, Jupiter’s influence on the building blocks of Mars and Earth. Geophys. Res. Lett. 45, 5908–5917 (2018) Google Scholar
  28. G.A. Brennecka, M. Wadhwa, Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications of the early Solar System. Proc. Natl. Acad. Sci. 109, 9299–9303 (2012) ADSGoogle Scholar
  29. G.A. Brennecka, L.E. Borg, M. Wadhwa, Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis. Proc. Natl. Acad. Sci. 110, 17241–17246 (2013) ADSGoogle Scholar
  30. G. Budde et al., Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett. 454, 293–303 (2016a) ADSGoogle Scholar
  31. G. Budde, T. Kleine, T.S. Kruijer, C. Burkhardt, K. Metzler, Tungsten isotopic constraints on the age and origin of chondrules. Proc. Natl. Acad. Sci. 113, 2886–2891 (2016b) ADSGoogle Scholar
  32. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–654 (1957) ADSGoogle Scholar
  33. C. Burkhardt et al., Molybdenum isotope anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett. 312, 390–400 (2011) ADSGoogle Scholar
  34. C. Burkhardt et al., A nucleosynthetic origin for the Earth’s anomalous 142Nd composition. Nature 537, 394–398 (2016) ADSGoogle Scholar
  35. R.W. Carlson, M. Boyet, Composition of Earth’s interior: the importance of early events. Philos. Trans. R. Soc. Lond. A 366, 4077–4103 (2008) ADSGoogle Scholar
  36. R.W. Carlson, M. Boyet, M. Horan, Chondrite barium, neodymium, and samarium isotopic heterogeneity and early earth differentiation. Science 316, 1175–1178 (2007) ADSGoogle Scholar
  37. R.W. Carlson, M. Boyet, J. O’Neil, H. Rizo, R.J. Walker, Early differentiation and its long term consequences for Earth evolution, in The Earth: Accretion and Differentiation, ed. by J. Badro, M. Walter (American Geophysical Union, Washington, 2015), pp. 143–172 Google Scholar
  38. G. Caro, B. Bourdon, A.N. Halliday, G. Quitte, Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452(7185), 336–339 (2008) ADSGoogle Scholar
  39. J.E. Chambers, Making more terrestrial planets. Icarus 152, 205–224 (2001) ADSGoogle Scholar
  40. J.E. Chambers, A semi-analytic model for oligarchic growth. Icarus 180, 496–513 (2006) ADSGoogle Scholar
  41. J.E. Chambers, G.W. Wetherill, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998) ADSGoogle Scholar
  42. J.H. Chen, D.A. Papanastassiou, G.J. Wasserburg, Ruthenium endemic isotope effects in chondrites and differentiated meteorites. Geochim. Cosmochim. Acta 74, 3851–3862 (2010) ADSGoogle Scholar
  43. H.-W. Chen, T. Lee, D.-C. Lee, J.J.-S. Shen, J.-C. Chen, 48Ca heterogeneity in differentiated meteorites. Astrophys. J. Lett. 743, L23 (2011) ADSGoogle Scholar
  44. C.-L. Chou, D.M. Shaw, J.H. Crocket, Siderophile trace elements in the Earth’s oceanic crust and upper mantle. J. Geophys. Res. 88, A507–A518 (1983) Google Scholar
  45. F.J. Ciesla, L.L. Hood, The nebular shock wave model for chondrule formation: shock processing in a particle-gas suspension. Icarus 158, 281–293 (2002) ADSGoogle Scholar
  46. R.N. Clayton, A classification of meteorites based on oxygen isotopes. Earth Planet. Sci. Lett. 30, 10–18 (1976) ADSGoogle Scholar
  47. R.N. Clayton, Oxygen isotopes in meteorites, in Treatise on Geochemistry, ed. by A.M. Davis (Elsevier, Amsterdam, 2003), pp. 129–142 Google Scholar
  48. D.D. Clayton, L.R. Nittler, Astrophysics with presolar stardust. Annu. Rev. Astron. Astrophys. 42, 39–78 (2004) ADSGoogle Scholar
  49. R.N. Clayton, L. Grossman, T.K. Mayeda, A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488 (1973) ADSGoogle Scholar
  50. M.S. Clement, N.A. Kaib, S.N. Raymond, K.J. Walsh, Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018) ADSGoogle Scholar
  51. N. Dauphas, The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017) ADSGoogle Scholar
  52. N. Dauphas, B. Marty, L. Reisberg, Molybdenum evidence for inherited planetary scale isotope heterogeneity of the protosolar nebula. Astrophys. J. 565, 640–644 (2002a) ADSGoogle Scholar
  53. N. Dauphas, B. Marty, L. Reisberg, Molybdenum nucleosynthetic dichotomy revealed in primitive meteorites. Astrophys. J. 569, L139–L142 (2002b) ADSGoogle Scholar
  54. N. Dauphas et al., Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet. Sci. Lett. 407, 96–108 (2014b) ADSGoogle Scholar
  55. N. Dauphas, C. Burkhardt, P.H. Warren, F.-Z. Teng, Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. Lond. A 372, 20130244 (2014a) ADSGoogle Scholar
  56. J.M.D. Day, R.J. Walker, L.P. Qin, D. Rumble, Late accretion as a natural consequence of planetary growth. Nat. Geosci. 5, 614–617 (2012) ADSGoogle Scholar
  57. J.M.D. Day, A.D. Brandon, R.J. Walker, Highly siderophile elements in Earth, Mars, the Moon, and asteroids. Rev. Mineral. Geochem. 81, 161–238 (2016) Google Scholar
  58. F.E. DeMeo, B. Carry, Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014) ADSGoogle Scholar
  59. R. Diehl, Measuring 26Al and 60Fe in the galaxy. New Astron. Rev. 50, 534–539 (2006) ADSGoogle Scholar
  60. J. Drazkowska, Y. Alibert, B. Moore, Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, A105 (2016) ADSGoogle Scholar
  61. R.A. Fischer, F. Nimmo, D.P. O’Brien, Radial mixing and Ru-Mo isotope systematics under different accretion scenarios. Earth Planet. Sci. Lett. 482, 105–114 (2018) ADSGoogle Scholar
  62. M. Fischer-Gödde, T. Kleine, Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature 541, 525–528 (2017) ADSGoogle Scholar
  63. M. Fischer-Gödde, C. Burkhardt, T. Kleine, Origin of the late veneer inferred from Ru isotope systematics, in 44th Lunar and Planetary Science Conference: Abstract 2876 (2013) Google Scholar
  64. M. Fischer-Gödde, C. Burkhardt, T.S. Kruijer, T. Kleine, Ru isotope heterogeneity in the solar protoplanetary disk. Geochim. Cosmochim. Acta 168, 151–171 (2015) ADSGoogle Scholar
  65. C. Fitoussi, B. Bourdon, Silicon isotope evidence against an enstatite chondrite Earth. Science 335, 1477–1480 (2012) ADSGoogle Scholar
  66. C. Fitoussi, B. Bourdon, T. Kleine, F. Oberli, B.C. Reynolds, Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet. Sci. Lett. 287(1–2), 77–85 (2009) ADSGoogle Scholar
  67. C. Fitoussi, B. Bourdon, X. Wang, The building blocks of Earth and Mars: a close genetic link. Earth Planet. Sci. Lett. 434, 151–160 (2016) ADSGoogle Scholar
  68. A. Gannoun, M. Boyet, H. Rizo, A.E. Goresy, 146Sm–142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula. Proc. Natl. Acad. Sci. 108, 7693–7697 (2011) ADSGoogle Scholar
  69. H. Genda, Y. Abe, Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Science 164, 149–162 (2003) Google Scholar
  70. H. Genda, Y. Abe, Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005) ADSGoogle Scholar
  71. R.B. Georg, A.N. Halliday, E.A. Schauble, B.C. Reynolds, Silicon in the Earth’s core. Nature 447(7148), 1102–1106 (2007) ADSGoogle Scholar
  72. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005) ADSGoogle Scholar
  73. L. Grossman, Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597–619 (1972) ADSGoogle Scholar
  74. A.N. Halliday, The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013) ADSGoogle Scholar
  75. A.N. Halliday, D. Porcelli, In search of lost planets – the paleocosmochemistry of the inner solar system. Earth Planet. Sci. Lett. 192, 545–559 (2001) ADSGoogle Scholar
  76. L. Hartmann, N. Calvet, E. Gullbring, P. D’Alessio, Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998) ADSGoogle Scholar
  77. R.H. Hewins, C.T. Herzberg, Nebular turbulence, chondrule formation, and the composition of the Earth. Earth Planet. Sci. Lett. 144, 1–7 (1996) ADSGoogle Scholar
  78. D.C. Hezel, H. Palme, The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth Planet. Sci. Lett. 294, 85–93 (2010) ADSGoogle Scholar
  79. H. Hidaka, Y. Ohta, S. Yoneda, Nucleosynthetic components of the early solar system inferred from Ba isotopic compositions in carbonaceous chondrites. Earth Planet. Sci. Lett. 214, 455–466 (2003) ADSGoogle Scholar
  80. R.C. Hin et al., Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549, 511–515 (2017) ADSGoogle Scholar
  81. M.F. Horan, R.J. Walker, J.W. Morgan, J.N. Grossman, A.E. Rubin, Highly siderophile elements in chondrites. Chem. Geol. 196(1–4), 27–42 (2003) ADSGoogle Scholar
  82. S. Ida, J. Makino, Scattering of planetesimals by a protoplanet – slowing down the runaway growth. Icarus 106, 210 (1993) ADSGoogle Scholar
  83. A. Izidoro, N. Haghighipour, O.C. Winter, M. Tsuchida, Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of Mars. Astrophys. J. 782, 31 (2014) ADSGoogle Scholar
  84. A. Izidoro, S.N. Raymond, A. Morbidelli, O.C. Winter, Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. R. Astron. Soc. 453, 3619–3634 (2015) ADSGoogle Scholar
  85. E. Jagoutz et al., The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules, in Proceedings of the 10th Lunar and Planetary Science Conference (1979), pp. 2031–2050 Google Scholar
  86. M. Javoy et al., The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010) ADSGoogle Scholar
  87. A. Johansen, M. Lambrechts, Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017) ADSGoogle Scholar
  88. K. Kimura, R.S. Lewis, E. Anders, Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundances of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974) ADSGoogle Scholar
  89. T. Kleine, C. Munker, K. Mezger, H. Palme, Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002) ADSGoogle Scholar
  90. T. Kleine et al., Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009) ADSGoogle Scholar
  91. H. Kobayashi, H. Tanaka, A.V. Krivov, S. Inaba, Planetary growth with collisional fragmentation and gas drag. Icarus 209, 836–847 (2010) ADSGoogle Scholar
  92. E. Kokubo, S. Ida, On runaway growth of planetesimals. Icarus 123, 180–191 (1996) ADSGoogle Scholar
  93. E. Kokubo, S. Ida, Oligarchic growth of planetesimals. Icarus 131, 171–178 (1998) ADSGoogle Scholar
  94. T.S. Kruijer et al., Hf-W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites. Geochim. Cosmochim. Acta 99, 287–304 (2012) ADSGoogle Scholar
  95. T.S. Kruijer et al., Neutron capture on Pt isotopes in iron meteorites and the Hf-W chronology of core formation in planetesimals. Earth Planet. Sci. Lett. 361, 162–172 (2013) ADSGoogle Scholar
  96. T.S. Kruijer et al., Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014) ADSGoogle Scholar
  97. T.S. Kruijer, C. Burkhardt, G. Budde, T. Kleine, Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl. Acad. Sci. 114, 6712–6716 (2017) ADSGoogle Scholar
  98. M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012) ADSGoogle Scholar
  99. H.F. Levison, A. Morbidelli, K. Tsiganis, D. Nesvorny, R. Gomes, Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011) ADSGoogle Scholar
  100. H.F. Levison, K.A. Kretke, M.J. Duncan, Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015a) ADSGoogle Scholar
  101. H.F. Levison, K.A. Kretke, K.J. Walsh, W.F. Bottke, Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proc. Natl. Acad. Sci. 112, 14180–14185 (2015b) ADSGoogle Scholar
  102. I. Leya, M. Schönbächler, U. Wiechert, U. Krahenbuhl, A.N. Halliday, Titanium isotopes and the radial heterogeneity of the Solar System. Earth Planet. Sci. Lett. 266, 233–244 (2008) ADSGoogle Scholar
  103. D.N.C. Lin, J.C.B. Papaloizou, On the tidal interaction between protoplanets and the protoplanetary disk III – orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986) ADSGoogle Scholar
  104. K. Lodders, An oxygen isotope mixing model for the accretion and composition of rocky planets. Space Sci. Rev. 92, 341–354 (2000) ADSGoogle Scholar
  105. K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003) ADSGoogle Scholar
  106. G.J. MacPherson, Calcium-Aluminum-rich inclusions in chondritic meteorites, in Treatise on Geochemistry, Volume 1, Meteorites, Comets, and Planets, ed. by A.M. Davis (Elsevier, Amsterdam, 2003), pp. 201–246 Google Scholar
  107. G.W. Marcy, R.P. Butler, Detection of extrasolar giant planets. Annu. Rev. Astron. Astrophys. 36, 57–97 (1998) ADSGoogle Scholar
  108. B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012) ADSGoogle Scholar
  109. B. Marty et al., Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017) ADSGoogle Scholar
  110. F. Masset, M. Snellgrove, Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 320, L55–L59 (2001) ADSGoogle Scholar
  111. S. Matsumura, R. Brasser, S. Ida, Effects of dynamical evolution of giant planets on the delivery of atmophile elements during terrestrial planet formation. Astrophys. J. 818, 15 (2016) ADSGoogle Scholar
  112. B. Mayer, N. Wittig, M. Humayun, I. Leya, Palladium isotopic evidence for nucleosynthetic and cosmogenic isotope anomalies in IVB iron meteorites. Astrophys. J. 809, 180–187 (2015) ADSGoogle Scholar
  113. M. Mayor, D. Queloz, A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995) ADSGoogle Scholar
  114. M.T. McCulloch, G.J. Wasserburg, Barium and neodymium isotopic anomalies in the Allende meteorite. Astrophys. J. 220, L15–L19 (1978) ADSGoogle Scholar
  115. W.F. McDonough, S-s. Sun, The composition of the Earth. Chem. Geol. 120, 223–253 (1995) ADSGoogle Scholar
  116. A. Morbidelli, B.J. Wood, Late accretion and the late veneer, in The Early Earth: Accretion and Differentiation, Geophysical Monograph 212, ed. by J. Badro, M. Walter (Wiley, New York, 2015), pp. 71–82 Google Scholar
  117. A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005) ADSGoogle Scholar
  118. A. Morbidelli, R. Brasser, R. Gomes, H.F. Levison, K. Tsiganis, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010) ADSGoogle Scholar
  119. A. Morbidelli, J.I. Lunine, D.P. O’Brien, S.N. Raymond, K.J. Walsh, Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012) ADSGoogle Scholar
  120. J.W. Morgan, Ultramafic xenoliths: clues to Earth’s late accretionary history. J. Geophys. Res. 91, 12,375–12,387 (1986) ADSGoogle Scholar
  121. J.W. Morgan, E. Anders, Chemical composition of Earth, Venus, and Mercury. Proc. Natl. Acad. Sci. 77, 6973–6977 (1980) ADSGoogle Scholar
  122. D. Nesvorny, A. Morbidelli, Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012) ADSGoogle Scholar
  123. F.R. Niederer, D.A. Papanastassiou, G.J. Wasserburg, Endemic isotopic anomalies in titanium. Astrophys. J. 240, L73–L77 (1980) ADSGoogle Scholar
  124. S. Niemeyer, G.W. Lugmair, Ubiquitous isotopic anomalies in Ti from normal Allende inclusions. Earth Planet. Sci. Lett. 53, 211–225 (1981) ADSGoogle Scholar
  125. C.A. Norris, B.J. Wood, Earth’s volatile contents established by melting and vaporization. Nature 549, 507–510 (2017) ADSGoogle Scholar
  126. L.E. Nyquist, T. Kleine, C.-Y. Shih, Y.D. Reese, The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochim. Cosmochim. Acta 73, 5115–5136 (2009) ADSGoogle Scholar
  127. D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006) ADSGoogle Scholar
  128. H.S.C. O’Neill, H. Palme, Collisional erosion and the non-chondritic composition of the terrestrial planets. Philos. Trans. R. Soc. Lond. A 366, 4205–4238 (2008) ADSGoogle Scholar
  129. C.W. Ormel, H.H. Klahr, The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010) ADSGoogle Scholar
  130. H. Palme, A. Jones, Solar System abundances of the elements, in Treatise on Geochemistry, ed. by A.M. Davis (Elsevier, Amsterdam, 2003), pp. 41–61 Google Scholar
  131. H. Palme, H.S.C. O’Neill, Cosmochemical estimates of mantle composition, in Treatise on Geochemistry, ed. by R.W. Carlson (Elsevier, Amsterdam, 2014), pp. 1–39 Google Scholar
  132. P.N. Peplowski et al., Radioactive elements on Mercury’s surface from MESSENGER: implications for the planet’s formation and evolution. Science 333, 1850–1852 (2011) ADSGoogle Scholar
  133. A. Pierens, S.N. Raymond, D. Nesvorny, A. Morbidelli, Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the Grand Tack and Nice models. Astrophys. J. 795, L11 (2014) ADSGoogle Scholar
  134. G.M. Poole, M. Rehkamper, B.J. Coles, T. Goldberg, C.L. Smith, Nucleosynthetic molybdenum isotope anomalies in iron meteorites – new evidence for thermal processing of solar nebula material. Earth Planet. Sci. Lett. 473, 215–226 (2017) ADSGoogle Scholar
  135. E.M. Pringle, F. Moynier, F. Savage, J. Badro, J.-A. Barrat, Silicon isotopes in angrites and volatile loss in planetesimals. Proc. Natl. Acad. Sci. 111, 17029–17032 (2014) ADSGoogle Scholar
  136. L. Qin, R.W. Carlson, Nucleosynthetic isotope anomalies and their cosmochemical significance. Geochem. J. 50, 43–65 (2016) Google Scholar
  137. L. Qin et al., Tungsten nuclear anomalies in planetesimal cores. Astrophys. J. 674, 1234–1241 (2008) ADSGoogle Scholar
  138. L. Qin, C.M.O.D. Alexander, R.W. Carlson, M.F. Horan, T. Yokoyama, Contributors to chromium isotope variation in meteorites. Geochim. Cosmochim. Acta 74, 1122–1145 (2010) ADSGoogle Scholar
  139. S.N. Raymond, A. Izidoro, The empty primordial asteroid belt. Sci. Adv. 3, 1–6 (2017a) Google Scholar
  140. S.N. Raymond, A. Izidoro, Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017b) ADSGoogle Scholar
  141. S.N. Raymond, T. Quinn, J.I. Lunine, High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006) ADSGoogle Scholar
  142. S.N. Raymond, D.P. O’Brien, A. Morbidelli, N. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009) ADSGoogle Scholar
  143. M. Regelous, T. Elliott, C.D. Coath, Nickel isotope heterogeneity in the early Solar System. Earth Planet. Sci. Lett. 272(1–2), 330–338 (2008) ADSGoogle Scholar
  144. J. Render, M. Fischer-Gödde, C. Burkhardt, T. Kleine, The cosmic molybdenum-neodymium isotope correlation and the building material of the Earth. Geochem. Perspect. Lett. 3, 170–178 (2017) Google Scholar
  145. C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999) ADSGoogle Scholar
  146. A.R. Sarafian et al., Angrite meteorites record the onset and flux of water to the inner solar system. Geochim. Cosmochim. Acta 212, 156–166 (2017) ADSGoogle Scholar
  147. H.E. Schlichting, P.H. Warren, Q.Z. Yin, The last stages of terrestrial planet formation: dynamical friction and the late veneer. Astrophys. J. 752, 8 (2012) ADSGoogle Scholar
  148. H.E. Schlichting, R. Sari, A. Yalinewich, Atmospheric mass loss during planet formation: the importance of planetesimal impacts. Icarus 247, 81–94 (2015) ADSGoogle Scholar
  149. B. Schmitz et al., A new type of solar-system material recovered from Ordovician marine limestone. Nat. Commun. 7, 11851 (2016) ADSGoogle Scholar
  150. M. Schönbächler et al., Zirconium isotope evidence for incomplete admixing of r-process components in the solar nebula. Earth Planet. Sci. Lett. 216, 467–481 (2003) ADSGoogle Scholar
  151. H. Shimizu, M. Matsushima, F. Takahashi, H. Shibuya, H. Tsunakawa, Constraint on lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite. Icarus 222, 32–43 (2012) ADSGoogle Scholar
  152. J.I. Simon, D.J. DePaolo, F. Moynier, Calcium isotope composition of meteorites, Earth and Mars. Astrophys. J. 702, 707–715 (2009) ADSGoogle Scholar
  153. R.C.J. Steele, T. Elliot, C.D. Coath, M. Regelous, Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochim. Cosmochim. Acta 75, 7906–7925 (2011) ADSGoogle Scholar
  154. D.J. Stevenson, Origin of the Moon – the collision hypothesis. Annu. Rev. Earth Planet. Sci. 15, 271–315 (1987) ADSGoogle Scholar
  155. H. Tang, N. Dauphas, 60Fe-60Ni chronology of core formation in Mars. Earth Planet. Sci. Lett. 390, 264–274 (2014) ADSGoogle Scholar
  156. F. Tera, D.A. Papanastassiou, G.J. Wasserburg, Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974) ADSGoogle Scholar
  157. F.-K. Thielemann, M. Eichler, I.V. Panov, B. Wehmeyer, Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. Sci. 67, 253–274 (2017) ADSGoogle Scholar
  158. M. Thiemens, J.E. Heidenreich, Mass independent fractionation of oxygen: a novel isotopic effect and its possible cosmochemical implications. Science 219, 1073–1075 (1983) ADSGoogle Scholar
  159. E.W. Thommes, M.J. Duncan, H.F. Levison, The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System. Nature 402, 635–638 (1999) ADSGoogle Scholar
  160. A. Trinquier, J.-L. Birck, C.J. Allègre, Widespread 54Cr heterogeneity in the inner solar system. Astrophys. J. 655, 1179–1185 (2007) ADSGoogle Scholar
  161. A. Trinquier et al., Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324(5925), 374–376 (2009) ADSGoogle Scholar
  162. K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005) ADSGoogle Scholar
  163. J.M. Tucker, S. Mukhopadhyay, Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014) ADSGoogle Scholar
  164. R.J. Walker, Highly siderophile elements in the Earth, Moon, and Mars: update and implications for planetary accretion and differentiation. Chem. Erde 69, 101–125 (2009) Google Scholar
  165. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011) ADSGoogle Scholar
  166. Z. Wang, H. Becker, Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013) ADSGoogle Scholar
  167. H. Wänke, G. Dreibus, Chemical composition and accretion history of terrestrial planets. Philos. Trans. R. Soc. Lond. A 325, 545–557 (1988) ADSGoogle Scholar
  168. H. Wänke, G. Driebus, E. Jagoutz, Mantle chemistry and accretion history of the Earth, in Archaean Geochemistry, ed. by A. Kroner, G.N. Hanson, A.M. Goodwin (Springer, Berlin, 1984), pp. 1–24 Google Scholar
  169. P.H. Warren, Stable-isotope anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011) ADSGoogle Scholar
  170. J.T. Wasson, G.W. Kallemeyn, Composition of chondrites. Philos. Trans. R. Soc. Lond. A 325, 535–544 (1988) ADSGoogle Scholar
  171. S.J. Weidenschilling, The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977) ADSGoogle Scholar
  172. G.W. Wetherill, Late heavy bombardment of the Moon and terrestrial planets, in Proceedings of the 6th Lunar and Planetary Science Conference (1975), pp. 1539–1561 Google Scholar
  173. G.W. Wetherill, Formation of the terrestrial planets. Annu. Rev. Astron. Astrophys. 18, 77–113 (1980) ADSGoogle Scholar
  174. G.W. Wetherill, G.R. Stewart, Accumulation of a swarm of small planetesimals. Icarus 77, 330–357 (1989) ADSGoogle Scholar
  175. N. Wittig, M. Humayun, A.D. Brandon, S. Huang, I. Leya, Coupled W-Os-Pt isotope systematics in IVB meteorites: in situ neutron dosimetry for W isotope chronology. Earth Planet. Sci. Lett. 361, 152–161 (2013) ADSGoogle Scholar
  176. J.M.Y. Woo, R. Brasser, S. Matsumura, S.J. Mojzsis, S. Ida, The curious case of Mars’ formation. Astron. Astrophys. 617, A17 (2018) ADSGoogle Scholar
  177. Q.-Z. Yin, From dust to planets: the tale told by moderately volatile elements, in Chondrites and the Protoplanetary Disk, ed. by A.N. Krot, E.R.D. Scott, B. Reipurth. ASP Conference Series (2005), pp. 632–644 Google Scholar
  178. Q. Yin et al., A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418, 949–952 (2002a) ADSGoogle Scholar
  179. Q.-Z. Yin, S.B. Jacobsen, K. Yamashita, Diverse supernova sources of pre-solar material inferred from molybdenum isotopes in meteorites. Nature 415, 881–883 (2002b) ADSGoogle Scholar
  180. H. Zhang, J.-L. Zhou, On the orbital evolution of a giant planet pair embedded in a gaseous disk. I. Jupiter-Saturn configuration. Astrophys. J. 714, 532–548 (2010) ADSGoogle Scholar
  181. J. Zhang, N. Dauphas, A.M. Davis, I. Leya, A. Fedkin, The proto-Earth as a significant source of lunar material. Nat. Geosci. 5, 251–255 (2012) ADSGoogle Scholar
  182. E. Zinner, Presolar material in meteorites: an overview, in Astrophysical Implications of the Laboratory Study of Presolar Materials, ed. by T.J. Bernatowicz, E.K. Zinner (AIP Conference Proceedings, Woodbury, 1996), pp. 3–26 Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Terrestrial MagnetismCarnegie Institution for ScienceWashingtonUSA
  2. 2.Earth Life Science InstituteTokyo Institute of TechnologyTokyoJapan
  3. 3.Department of Earth and Planetary SciencesUniversity of California, DavisDavisUSA
  4. 4.Institut für Geologie und MineralogieUniversity of CologneCologneGermany
  5. 5.CAS Key Laboratory of Crust-Mantle Materials and EnvironmentUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations