Advertisement

Space Science Reviews

, 214:117 | Cite as

Flexible Mode Modelling of the InSight Lander and Consequences for the SEIS Instrument

  • N. Murdoch
  • D. Alazard
  • B. Knapmeyer-Endrun
  • N. A. Teanby
  • R. Myhill
Article
  • 150 Downloads
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

We present an updated model for estimating the lander mechanical noise on the InSight seismometer SEIS, taking into account the flexible modes of the InSight lander. This new flexible mode model uses the Satellite Dynamics Toolbox to compute the direct and the inverse dynamic model of a satellite composed of a main body fitted with one or several dynamic appendages. Through a detailed study of the sensitivity of our results to key environment parameters we find that the frequencies of the six dominant lander resonant modes increase logarithmically with increasing ground stiffness. On the other hand, the wind strength and the incoming wind angle modify only the signal amplitude but not the frequencies of the resonances. For the baseline parameters chosen for this study, the lander mechanical noise on the SEIS instrument is not expected to exceed the instrument total noise requirements. However, in the case that the lander mechanical noise is observable in the seismic data acquired by SEIS, this may provide a complementary method for studying the ground and wind properties on Mars.

Keywords

Mars Seismology Atmosphere Regolith Geophysics Structural dynamics 

Notes

Acknowledgements

NAT and RM acknowledge support from the UK Space Agency. We acknowledge the following students from ISAE-SUPAERO who helped to prepare the flexible mode model: Alexandre Acerra-Gil, Aurelio de Aguiar-Rodrigues and Mouadh Bouayad. We would also like to thank an anonymous reviewer for their very constructive comments. This paper is InSight Contribution Number 61.

References

  1. D. Alazard and Ch. Cumer, Satellite Dynamics Toolbox: Principle, User Guide and tutorials (2014). https://personnel.isae-supaero.fr/daniel-alazard/matlab-packages/satellite-dynamics-toolbox.html
  2. D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksoz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewicz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Res. 82, 4524–4546 (1977).  https://doi.org/10.1029/JS082i028p04524 ADSCrossRefGoogle Scholar
  3. R. Bachrach, J. Dvorkin, A. Nur, High-resolution shallow-seismic experiments in sand, part II: velocities in shallow unconsolidated sand. Geophysics 63, 1234 (1998).  https://doi.org/10.1190/1.1444424 ADSCrossRefGoogle Scholar
  4. M.J. Boussinesq, Application des potentiels a l’étude de l’équilibre et du mouvement des solides élastiques (Gauthier-Villars, Paris, 1885), p. 722. zbMATHGoogle Scholar
  5. J. Chebbi, V. Dubanchet, J.A.P. Gonzalez, D. Alazard, Linear dynamics of flexible multibody systems: a system-based approach. Multibody Syst. Dyn. 41, 75–100 (2017). http://link.springer.com/journal/11044, http://oatao.univ-toulouse.fr/16559/ MathSciNetCrossRefGoogle Scholar
  6. P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonne, M. Golombek, E.D. Laure, K. Hurst, J.-C. Dupla, S. Kedar, Y.J. Cui, W.B. Banerdt, An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. 211, 191–213 (2017).  https://doi.org/10.1007/s11214-017-0339-7 ADSCrossRefGoogle Scholar
  7. L. Fayon, B. Knapmeyer-Endrun, P. Lognonne, M. Bierwirth, et al., A numerical model of the SEIS Leveling system Transfer matrix and resonances: application to SEIS rotational seismology capability and SEIS dynamic ground interaction. Space Sci. Rev. (2018), submitted for publication Google Scholar
  8. M. Golombek, M. Grott, G. Kargl, J. Andrade, et al., Geology and physical properties investigations by the InSight lander. Space Sci. Rev. 214, 84 (2018) ADSCrossRefGoogle Scholar
  9. J.A.P. Gonzalez, D. Alazard, T. Loquen, C. Pittet, C. Cumer, Flexible multibody system linear modeling for control using component modes synthesis and double-port approach. J. Dyn. Syst. Meas. Control 138(12), 121004 (2016). http://oatao.univ-toulouse.fr/16566/ CrossRefGoogle Scholar
  10. N. Guy, D. Alazard, C. Cumer, C. Charbonnel, Dynamic modeling and analysis of spacecraft with variable tilt of flexible appendages. J. Dyn. Syst. Meas. Control 136(2), 021020 (2014).  https://doi.org/10.1115/1.4025998. CrossRefGoogle Scholar
  11. P. Horvath, G.V. Latham, Y. Nakamura, H.J. Dorman, Lunar near-surface shear wave velocities at the Apollo landing sites as inferred from spectral amplitude ratios. J. Geophys. Res. 85, 6572–6578 (1980).  https://doi.org/10.1029/JB085iB11p06572 ADSCrossRefGoogle Scholar
  12. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. A Course of Theoretical Physics, vol. 7. (Pergamon, Elmsford, 1970) zbMATHGoogle Scholar
  13. P. Lognonné, T. Pike, in Planetary Seismometry, ed. by V.C.H. Tong, R.A. Garcia (Cambridge University Press, Cambridge, 2015) CrossRefGoogle Scholar
  14. P. Lognonné, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44(11), 1237–1249 (1996).  https://doi.org/10.1016/S0032-0633(96)00083-9. http://www.sciencedirect.com/science/article/pii/S0032063396000839 ADSCrossRefGoogle Scholar
  15. R.D. Lorenz, Planetary seismology—expectations for lander and wind noise with application to Venus. Planet. Space Sci. 62, 86–96 (2012).  https://doi.org/10.1016/j.pss.2011.12.010 ADSCrossRefGoogle Scholar
  16. N. Mark, G.H. Sutton, Lunar shear velocity structure at Apollo sites 12, 14, and 15. J. Geophys. Res. 80, 4932–4938 (1975).  https://doi.org/10.1029/JB080i035p04932 ADSCrossRefGoogle Scholar
  17. E. Millour, F. Forget, A. Spiga, T. Navarro, J.-B. Madeleine, L. Montabone, A. Pottier, F. Lefevre, F. Montmessin, J.-Y. Chaufray, M.A. Lopez-Valverde, F. Gonzalez-Galindo, S.R. Lewis, P.L. Read, J.-P. Huot, M.-C. Desjean, MCD/GCM development Team, The Mars climate database (MCD version 5.2), in European Planetary Science Congress 2015, 27 September–2 October, 2015, Nantes, France, vol. 10 (2015). EPSC2015-438. http://meetingorganizer.copernicus.org/EPSC2015 Google Scholar
  18. D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, W.B. Banerdt, S. Team, The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci. Rev. (2017).  https://doi.org/10.1007/s11214-017-0409-x CrossRefGoogle Scholar
  19. P. Morgan, M. Grott, G. M., P. Delage, B. Knapmeyer-Endrun, A pre-landing assessment of regolith properties at the InSight landing site. Space Sci. Rev. 214, 104 (2018) ADSCrossRefGoogle Scholar
  20. N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2017a).  https://doi.org/10.1007/s11214-016-0311-y CrossRefGoogle Scholar
  21. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from large eddy simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. (2017b).  https://doi.org/10.1007/s11214-017-0343-y CrossRefGoogle Scholar
  22. R. Myhill, J. Teanby, N. Wookey, N. Murdoch, Frequency dependence of seismic attenuation and coupling through Mars’ regolith: implications for the InSight Mission. Space Sci. Rev. (2018).  https://doi.org/10.1007/s11214-018-0514-5
  23. Y. Nakamura, D.L. Anderson, Martian wind activity detected by a seismometer at Viking lander 2 site. Geophys. Res. Lett. 6, 499–502 (1979).  https://doi.org/10.1029/GL006i006p00499 ADSCrossRefGoogle Scholar
  24. Y. Nishikawa, A. Araya, K. Kurita, N. Kobayashi, T. Kawamura, Designing a torque-less wind shield for broadband observation of marsquakes. Planet. Space Sci. 104, 288–294 (2014).  https://doi.org/10.1016/j.pss.2014.10.011 ADSCrossRefGoogle Scholar
  25. D. Sollberger, C. Schmelzbach, J.O.A. Robertsson, S.A. Greenhalgh, Y. Nakamura, A. Khan, The shallow elastic structure of the lunar crust: new insights from seismic wavefield gradient analysis. Geophys. Res. Lett. 43, 10 (2016).  https://doi.org/10.1002/2016GL070883 CrossRefGoogle Scholar
  26. A. Spiga, N.A. Teanby, F. Forget, A. Lucas, D. Banfield, et al., Atmospheric science with InSight. Space Sci. Rev. 214, 109 (2018) ADSCrossRefGoogle Scholar
  27. T. Spohn, M. Grott, S. Smrekar, C. Krause, T.L. Hudson, HP3 Instrument Team, Measuring the Martian heat flow using the heat flow and physical properties package (HP3), in Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 45 (2014), p. 1916 Google Scholar
  28. G.H. Sutton, F.K. Duennebier, Elastic properties of the lunar surface from surveyor spacecraft data. J. Geophys. Res. 75, 7439–7444 (1970).  https://doi.org/10.1029/JB075i035p07439 ADSCrossRefGoogle Scholar
  29. N.A. Teanby, J. Stevanovic, J. Wookey, N. Murdoch, J. Hurley, R. Myhill, N.E. Bowles, S.B. Calcut, W.T. Pike, Anelastic seismic coupling of wind noise through Mars’ regolith for NASA’s InSight Lander at short periods. Space Sci. Rev. (2016).  https://doi.org/10.1007/s11214-016-0310-z

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • N. Murdoch
    • 1
  • D. Alazard
    • 1
  • B. Knapmeyer-Endrun
    • 2
  • N. A. Teanby
    • 3
  • R. Myhill
    • 3
  1. 1.Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)Université de ToulouseToulouse Cedex 4France
  2. 2.Department of Planets and CometsMax Planck Institute for Solar System ResearchGottingenGermany
  3. 3.School of Earth SciencesUniversity of BristolBristolUK

Personalised recommendations