Advertisement

Space Science Reviews

, 214:118 | Cite as

Past, Present and Future of Active Radio Frequency Experiments in Space

  • A. V. StreltsovEmail author
  • J.-J. Berthelier
  • A. A. Chernyshov
  • V. L. Frolov
  • F. Honary
  • M. J. Kosch
  • R. P. McCoy
  • E. V. Mishin
  • M. T. Rietveld
Article

Abstract

Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating-initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field.

Keywords

Active experiments Ionospheric heating HAARP SURA Arecibo ULF wave Ionospheric feedback instability VLF waves Ionospheric irregularities Plasma instabilities Wave-particle interactions Artificial aurora EISCAT Ionosphere DEMETER Ionospheric resonator 

Acronyms

AA

anomalous absorption

AGW

acoustic gravity wave

AKR

auroral kilometric radiation

API

artificial periodic irregularity

ASE

artificially stimulated emissions

BF layer

the region of scattering from the bottom side F region

BUM

broad upshifted maximum

BUS

broad upshifted structure

BSS

broad symmetrical structure

CADI

Canadian Advanced Digital Ionosonde

CNA

cosmic noise absorption

DL

descending layer

DM

downshifted maximum

DMSP

Defense Meteorological Satellite Program

DP

downshifted peak

DSX

Demonstration and Science Experiments satellite

DVH

descending virtual height

DW

diagnostic wave

EISCAT

European Incoherent SCATter Scientific Association

EMIC

electromagnetic ion cyclotron wave

ERP

effective radiated power

FAC

field-aligned current

FAI

field-aligned irregularity

HAARP

High Frequency Active Auroral Research Program

HIPAS

HIgh Power Auroral Stimulation observatory

IAPD

Ion Acoustic Parametric Decay instability

IAR

ionospheric Alfvén resonator

IDM

intermediate downshifted maximum

IDV

ionosphere disturbed volume

IFI

ionospheric feedback instability

IRI

Ionospheric Research Instrument

ISR

incoherent scatter radar

LH

lower hybrid

LSI

large-scale irregularity

LT

Langmuir turbulence

MI

modulational instability

MUIR

modular UHF ionospheric radar (at HAARP)

MSI

medium-scale irregularity

MZ

magnetic zenith

NC

narrow continuum

NEIAL

naturally enhanced ion acoustic line

OTHR

over-the-horizon radar

OTSI

oscillating two-stream instability

PDI

parametric decay instability

PFISR

Poker Flat incoherent scatter radar

PL

plasma line

PMSE

polar mesospheric summer echoes

PMWE

polar mesospheric winter echoes

PPI

ponderomotive parametric instability

PW

pump wave

QPO

quasi-periodic oscillation

SAPS

subauroral polarization stream

SAID

subauroral ion drift

SEE

stimulated electromagnetic emission

SLT

strong Langmuir turbulence

SSA

striction self-action

SSI

small-scale irregularity

SSSI

supra-small-scale irregularities

SST

super strong (Langmuir) turbulence

TEC

total electron content

TID

travelling ionospheric disturbance

TPI

thermal parametric instability

TSFI

thermal self-focusing instability

UH

upper hybrid

UHR

upper hybrid resonance

UWE

upshifted wideband emission

VPM

VLF and Particle Mapper satellite

WAILES

wide-altitude extent ion line enhancements

WT

weak turbulence

Notes

Acknowledgements

We acknowledge fruitful discussion of active experiments and heating facilities with H.C. Carlson, M. Cohen, M. Golkowski, S. Grach, M.M. Mogilevsky, E. Nossa, K.D. Papadopoulos, T. Pedersen, B. Watkins.

This work was made possible by the ISSI funding of the international scince team “Past, Present and Future of Active Experiments in Space” and supported in part through CNES grant DEMETER 2874949; US National Academy of Sciences; Air Force Office of Scientific Research; Russian Education Ministry project 3.1844.2017.

References

  1. E.M. Allen, G.D. Thome, P.B. Rao, HF phased array observations of heater-induced spread-F. Radio Sci. 9(11), 905–916 (1974) ADSGoogle Scholar
  2. E.S. Andreeva, V.L. Frolov, V.E. Kunitsyn, A.S. Kryukovskii, D.S. Lukin, M.O. Nazarenko, A.M. Padokhin, Radiotomography and HF ray tracing of the artificially disturbed ionosphere above the SURA heating facility. Radio Sci. 51(6), 638–644 (2016).  https://doi.org/10.1002/2015RS005939 ADSCrossRefGoogle Scholar
  3. M. Ashrafi, M.J. Kosch, F. Honary, Heater-Induced altitude descent of the EISCAT UHF ion line enhancements: observations and modelling. Adv. Space Res. 38(11), 2645–2652 (2006) ADSGoogle Scholar
  4. M. Ashrafi, M.J. Kosch, K. Kaila, B. Isham, Spatiotemporal evolution of radio wave pump-induced ionospheric phenomena near the fourth electron gyroharmonic. J. Geophys. Res. 112, A05314 (2007).  https://doi.org/10.1029/2006JA011938 ADSCrossRefGoogle Scholar
  5. G. Atkinson, Auroral arcs: result of the interaction of a dynamic magnetosphere with the ionosphere. J. Geophys. Res. 75, 4746 (1970) ADSGoogle Scholar
  6. H. Bahcivan, J.W. Cutler, J.C. Springmann, R. Doe, M.J. Nicolls, Magnetic aspect sensitivity of high-latitude E region irregularities measured by the RAX-2 CubeSat. J. Geophys. Res. 119(2), 1233–1249 (2014) Google Scholar
  7. V.A. Bailey, Interaction by resonance of radio waves. Nature 139, 68–69 (1937) Google Scholar
  8. N.V. Bakhmet’eva, V.V. Belikovich, L.M. Kagan, A.A. Ponyatov, A.V. Tolmacheva, M.C. Kelley, M.J. Nicolls, New results of studying the lower ionosphere by the method of resonance scattering of radio waves from artificial periodic inhomogeneities. Radiophys. Quantum Electron. 48(9), 673–685 (2005) ADSGoogle Scholar
  9. R. Barr, VLF wave generation using VLF heating and the cubic nonlinearity of the ionosphere. Geophys. Res. Lett. 23, 2165 (1996).  https://doi.org/10.1029/96GL02024 ADSCrossRefGoogle Scholar
  10. R. Barr, P. Stubbe, ELF and VLF wave generation by HF heating: a comparison of AM and CW techniques. J. Atmos. Terr. Phys. 59(18), 2265–2279 (1997) ADSGoogle Scholar
  11. R. Barr, M.T. Rietveld, H. Kopka, P. Stubbe, E. Nielsen, Extra-low-frequency radiation from the polar electrojet antenna. Nature 317(6033), 155–157 (1985a) ADSGoogle Scholar
  12. R. Barr, M.T. Rietveld, P. Stubbe, H. Kopka, The diffraction of VLF radio Waves by a patch of ionosphere illuminated by a powerful HF transmitter. J. Geophys. Res. 90(A3), 2861–2875 (1985b) ADSGoogle Scholar
  13. R. Barr, P. Stubbe, M.T. Rietveld, H. Kopka, ELF and VLF signals radiated by the ‘Polar Electrojet Antenna’: experimental results. J. Geophys. Res. 91(A4), 4451–4459 (1986) ADSGoogle Scholar
  14. R. Barr, M.T. Rietveld, P. Stubbe, H. Kopka, Ionospheric heater beam scanning: a realistic model of this mobile source of ELF/VLF radiation. Radio Sci. 23(3), 379–388 (1988) ADSGoogle Scholar
  15. R. Barr, P. Stubbe, M.T. Rietveld, ELF wave generation in the ionosphere using pulse modulated HF heating: initial tests of a technique for increasing ELF wave generation efficiency. Ann. Geophys. 17, 759–769 (1999) ADSGoogle Scholar
  16. A.F. Belenov, V.A. Bubnov, L.M. Erukhimov, V. Kiselev Yu, G.P. Komrakov, E.E. Mityakova, L.N. Rubtsov, V.P. Uryadov, V.L. Frolov, YuV. Chugunov, On parameters of artificial small-scale ionospheric irregularities. Radiophys. Quantum Electron. 20, 1240–1245 (1977) ADSGoogle Scholar
  17. V.V. Belikovich, E.A. Benediktov, G.G. Getmantsev, L.M. Erukhimov, N.A. Zuikov, G.P. Komrakov, Yu.S. Korobkov, N.A. Mityakov, V.O. Rapoport, V.Yu. Trakhtengertz V.L. Frolov, New results of investigations of nonlinear phenomena in the ionosphere. Radiophys. Quantum Electron. 18(4), 377–383 (1975) ADSGoogle Scholar
  18. V.V. Belikovich, L.M. Erukhimov, V.A. Zyuzin, S. Korobkov Yu, O.I. Maksimenko, A.M. Nasyrov, E.N. Sergeev, V.L. Frolov, P.B. Shavin, Times of development and relaxation of artificial small-scale irregularities. Radiophys. Quantum Electron. 31, 181–185 (1988) ADSGoogle Scholar
  19. V.V. Belikovich, S.M. Grach, A.N. Karashtin, D.S. Kotik, Yu.V. Tokarev, The SURA facility: study of the atmosphere and space. Radiophys. Quantum Electron. 50(7), 497–526 (2007) ADSGoogle Scholar
  20. P. Belyaev, S. Polyakov, V. Rappoport, V. Trakhtengerts, The ionospheric Alfvén resonator. J. Atmos. Terr. Phys. 52, 781 (1990) ADSGoogle Scholar
  21. I.V. Berezin, G.N. Boiko, V.M. Volkov, V.A. Zyuzin, G.P. Komrakov, A.M. Leonov, A.N. Maresov, V.A. Ryzhov, V.A. Solynin, Peculiarities of the development and saturation of artificial ionospheric turbulence during a high-power disturbing transitions. Radiophys. Quantum Electron. 30(6), 522–529 (1987) ADSGoogle Scholar
  22. P.A. Bernhardt, C.A. Selcher, R.H. Lehmberg et al., Stimulated Brillouin scatter in magnetized ionospheric plasma. Phys. Rev. Lett. 104, 165004 (2010).  https://doi.org/10.1103/PhysRevLett.104.165004 ADSCrossRefGoogle Scholar
  23. P.A. Bernhardt, C.A. Selcher, S. Kowtha, Electron and ion Bernstein waves excited in the ionosphere by high power EM waves at the second harmonic of the electron cyclotron frequency. Geophys. Res. Lett. 38, L19107 (2011).  https://doi.org/10.1029/2011GL049390 ADSCrossRefGoogle Scholar
  24. P. Bernhardt, C. Siefring, S. Briczinski, R. Michell, Large ionospheric disturbances produced by the HAARP HF facility. Radio Sci. 51, 1081–1093 (2016).  https://doi.org/10.1002/2015RS005883 ADSCrossRefGoogle Scholar
  25. N.F. Blagoveshchenskaya, V.A. Kornienko, T.D. Borisova, B. Thidé, M.J. Kosch, M.T. Rietveld, E.V. Mishin, R.Y. Luk’yanova, O.A. Troschichev, Ionospheric HF pump wave triggering of local auroral activation. J. Geophys. Res. 106(A12), 29071–29090 (2001) ADSGoogle Scholar
  26. N.F. Blagoveshchenskaya, V.A. Kornienko, T.D. Borisova, M.T. Rietveld, T. Bösinger, B. Thidé, T.B. Leyser, A. Brekke, Heater-induced phenomena in a coupled ionosphere–magnetosphere system. Adv. Space Res. 38, 2495–2502 (2006).  https://doi.org/10.1016/j.asr.2004.12.047 ADSCrossRefGoogle Scholar
  27. N.F. Blagoveshchenskaya, T.D. Borisova, V.A. Kornienko, M.T. Rietveld, T.K. Yeoman, D.M. Wright, M. Rother, H. Lühr, E.V. Mishin, C. Roth, V.L. Frolov, M. Parot, J.L. Rauch, Modification of the high-latitude ionosphere by high-power HF radio waves, 2: results of coordinated satellite and ground-based observations. Radiophys. Quantum Electron. 54, 89–101, 0033-8443/11/5402-0089 (2011) ADSGoogle Scholar
  28. N.F. Blagoveshchenskaya, T.D. Borisova, T.K. Yeoman, M.T. Rietveld, I. Häggström, I.M. Ivanova, Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere. J. Atmos. Sol.-Terr. Phys. 105–106, 231–244 (2013) ADSGoogle Scholar
  29. N.F. Blagoveshchenskaya, T.D. Borisova, M. Kosch, T. Sergienko, U. Brändström, T.K. Yeoman, I. Häggström, Optical and ionospheric phenomena at EISCAT under continuous X-mode HF pumping. J. Geophys. Res. 119 (2014).  https://doi.org/10.1002/2014JA020658
  30. N.F. Blagoveshchenskaya, T.D. Borisova, T.K. Yeoman, I. Häggström, A.S. Kalishin, Modification of the high latitude ionosphere F region by X-mode powerful HF radiowaves: experimental results from multi-instrument diagnostics. J. Atmos. Sol.-Terr. Phys. 135, 50–63 (2015).  https://doi.org/10.1016/j.jastp.2015.10.009 ADSCrossRefGoogle Scholar
  31. N.F. Blagoveshchenskaya, T.D. Borisova, A.S. Kalishin, T.K. Yeoman, I. Häggström, First observations of electron gyro-harmonic effects under X-mode HF pumping the high latitude ionospheric F-region. J. Atmos. Sol.-Terr. Phys. 155, 36–49 (2017) ADSGoogle Scholar
  32. G.N. Boiko, L.M. Erukhimov, V.L. Frolov, Excitation of small-scale irregularities near the pump wave reflection level. Geomagn. Aeron. 30(6), 843–846 (1990) Google Scholar
  33. N. Borisov, A. Gurevich, K. Papadopoulos, Direct Cerenkov excitation of waveguide modes by a mobile ionospheric heater. Radio Sci. 33(4), 859 (1996) ADSGoogle Scholar
  34. T.D. Borisova, N.F. Blagoveshchenskaya, T.K. Yeoman, I. Häggström, Excitation of artificial ionospheric turbulence in the high-latitude ionospheric F region as a function of the EISCAT/heating effective radiated power. Radiophys. Quantum Electron. 60, 4 (2017).  https://doi.org/10.1007/s11141-017-9798-7 CrossRefGoogle Scholar
  35. T. Bösinger, A. Kero, P. Pollari, A. Pashin, P. Belyaev, M. Rietveld, T. Turunen, J. Kangas, Generation of artificial magnetic pulsations in the Pc1 frequency range by periodic heating of the Earth’s ionosphere: indications of Alfven resonator effects. J. Atmos. Sol.-Terr. Phys. 62(4), 277–297 (2000) ADSGoogle Scholar
  36. C.J. Bryers, M.J. Kosch, A. Senior, M.T. Rietveld, T.K. Yeoman, The threshold of plasma instabilities pumped by high frequency radio waves at EISCAT. J. Geophys. Res. 118, 7472–7481 (2013a).  https://doi.org/10.1002/2013JA019429 CrossRefGoogle Scholar
  37. C.J. Bryers, M.J. Kosch, A. Senior, M.T. Rietveld, W. Singer, A comparison between resonant and non-resonant heating at EISCAT. J. Geophys. Res. 118, 6766–6776 (2013b).  https://doi.org/10.1002/jgra.50605 CrossRefGoogle Scholar
  38. T. Burinskaya, A. Volokitin, Nonlinear dynamics of thermal modulational instability. Physica 2D, 117–125 (1981) ADSGoogle Scholar
  39. V. Bychenkov, V. Silin, S. Uryupin, Ion-acoustic turbulence and anomalous transport. Phys. Rep. 164, 119–215 (1988) ADSGoogle Scholar
  40. P. Cannon, F. Honary, A GPU-accelerated finite-difference time-domain scheme for electromagnetic wave interaction with plasma. IEEE Trans. Antennas Propag. 63(7), 3042–3054 (2015).  https://doi.org/10.1109/TAP.2015.2423710 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. P.D. Cannon, F. Honary, N. Borisov, Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere. J. Geophys. Res. Space Phys. 121(3), 2755–2782 (2016).  https://doi.org/10.1002/2015JA022105 ADSCrossRefGoogle Scholar
  42. H.C. Carlson, High power HF modification-geophysics, span of EM effects, and energy budget. Adv. Space Res. 13, 1015–1024 (1993).  https://doi.org/10.1016/0273-1177(93)90046-E CrossRefGoogle Scholar
  43. H. Carlson, V. Wickwar, G. Mantas, Observations of fluxes of suprathermal electrons accelerated by HF excited Langmuir instabilities. J. Atmos. Terr. Phys. 12, 1089 (1982) ADSGoogle Scholar
  44. H. Carlson, F. Djuth, L. Zhang, Creating space plasma from the ground. J. Geophys. Res. Space Phys. 122, 978 (2017).  https://doi.org/10.1002/2016JA023380 ADSCrossRefGoogle Scholar
  45. L.F. Chernogor, V.L. Frolov, Features of the wave disturbances in the ionosphere during periodic heating of the plasma by the SURA radiation. Radiophys. Quantum Electron. 56(5), 276–289 (2013) ADSGoogle Scholar
  46. A.A. Chernyshov et al., Approaches to studying the multiscale ionospheric structure using nanosatellites. Geomagn. Aeron. 56(1), 72–79 (2016).  https://doi.org/10.1134/S0016793216010047 ADSCrossRefGoogle Scholar
  47. P.B. Chilson, E. Belova, M.T. Rietveld, S. Kirkwood, U.-P. Hoppe, First artificially induced modulation of PMSE using the EISCAT heating facility. Geophys. Res. Lett. 27(23), 3801–3804 (2000) ADSGoogle Scholar
  48. M.B. Cohen, U.S. Inan, Terrestrial VLF transmitter injection into the magnetosphere. J. Geophys. Res. 117, A08310 (2012).  https://doi.org/10.1029/2012JA017992 ADSCrossRefGoogle Scholar
  49. R. Cohen, J.D. Whitehead, Radio reflectivity of artificial modification of the ionospheric F layer. Geophys. Res. 75(31), 6439–6445 (1970) ADSGoogle Scholar
  50. M.B. Cohen, M. Golkowski, U.S. Inan, Orientation of the HAARP ELF ionospheric dipole and the auroral electrojet. Geophys. Res. Lett. 35, L02806 (2008).  https://doi.org/10.1029/2007GL032424 ADSCrossRefGoogle Scholar
  51. M.B. Cohen, U.S. Inan, M.A. Golkowski, M.J. McCarrick, ELF/VLF wave generation via ionospheric HF heating: experimental comparison of amplitude modulation, beam painting, and geometric modulation. J. Geophys. Res. 115, A02302 (2010).  https://doi.org/10.1029/2009JA014410 ADSCrossRefGoogle Scholar
  52. M.B. Cohen, U.S. Inan, D. Piddyachiy, N.G. Lehtinen, M. Golkowski, Magnetospheric injection of ELF/VLF waves with steerable HF heating of the lower ionosphere. J. Geophys. Res. 116, A06308 (2011).  https://doi.org/10.1029/2010JA016194 ADSCrossRefGoogle Scholar
  53. M. Cohen, M. Golkowski, N. Lehtinen, U. Inan, M. McCarrick, HF beam parameters in ELF/VLF wave generation via modulated heating of the ionosphere. J. Geophys. Res. 117 (2012a).  https://doi.org/10.1029/2012JA017585
  54. M.B. Cohen, R.C. Moore, M. Golkowski, N.G. Lehtinen, ELF/VLF wave generation from the beating of two HF ionospheric heating sources. J. Geophys. Res. 117, A12310 (2012b).  https://doi.org/10.1029/2012JA018140 ADSCrossRefGoogle Scholar
  55. T. Cussac, M.A. Clair, P. Ultré-Guerard, F. Buisson, G. Lassalle-Balier, M. Ledu, C. Elisabelar, X. Passot, N. Rey, The DEMETER microsatellite and ground segment. Planet. Space Sci. 54(5), 413–427 (2006) ADSGoogle Scholar
  56. A.G. Demekhov, V.Y. Trakhtengerts, M.M. Mogilevsky, L.M. Zelenyi, Current problems in studies of magnetospheric cyclotron masers and new space project “RESONANCE”. Adv. Space Res. 32(3), 355–374 (2003) ADSGoogle Scholar
  57. R.S. Dhillon, T.R. Robinson, Observations of time dependence and aspect sensitivity of regions of enhanced UHF backscatter associated with RF heating. Ann. Geophys. 23, 75 (2005) ADSGoogle Scholar
  58. Y. Dimant, A. Gurevich, K. Zybin, Acceleration of electrons under the action of intense radio-waves near electron cyclotron harmonics. J. Atmos. Terr. Phys. 54, 425–436 (1992) ADSGoogle Scholar
  59. F. Djuth, D. DuBois, Temporal development of HF-excited Langmuir and ion turbulence at Arecibo. Earth Moon Planets 116, 19–53 (2015).  https://doi.org/10.1007/s11038-015-9458-x ADSCrossRefGoogle Scholar
  60. F. Djuth, P. Stubbe, M. Sulzer, H. Kohl, M. Rietveld, J. Elder, Altitude characteristics of plasma turbulence excited with the Tromsøsuperheater. J. Geophys. Res. 99, 333–339 (1994) ADSGoogle Scholar
  61. F. Djuth, T. Pedersen, E. Gerken, P. Bernhardt, C. Selcher, W. Bristow, M. Kosch, Ionospheric modification at twice the electron cyclotron frequency. Phys. Rev. Lett. 94, 125001 (2005).  https://doi.org/10.1103/PhysRevLett.94.125001 ADSCrossRefGoogle Scholar
  62. D.F. DuBois, D.A. Russell, P.Y. Cheung, M.P. Sulzer, High-power high-frequency-induced Langmuir turbulence in the smooth ionosphere at Arecibo, I: theoretical predictions for altitude-resolved plasma line radar spectra. Phys. Plasmas 8(3), 791–801 (2001) ADSGoogle Scholar
  63. K. Dysthe, E. Mjølhus, H. Pécseli, K. Rypdal, Thermal cavitons. Phys. Scr. T2B, 548–559 (1982) ADSzbMATHGoogle Scholar
  64. B. Eliasson, Full-scale simulations of ionospheric Langmuir turbulence. Mod. Phys. Lett. B 27(8), 1330005 (2013).  https://doi.org/10.1142/S0217984913300056 ADSCrossRefGoogle Scholar
  65. B. Eliasson, C.-L. Chang, K. Papadopoulos, Generation of ELF and ULF electromagnetic waves by modulated heating of the ionospheric F2 region. J. Geophys. Res. 117, A10320 (2012a).  https://doi.org/10.1029/2012JA017935 ADSCrossRefGoogle Scholar
  66. B. Eliasson, X. Shao, G. Milikh, E.V. Mishin, K. Papadopoulos, Numerical modeling of artificial ionospheric layers driven by high-power HF-heating. J. Geophys. Res. 117, A10321 (2012b).  https://doi.org/10.1029/2012JA018105 ADSCrossRefGoogle Scholar
  67. B. Eliasson, G. Milikh, X. Shao, E. Mishin, K. Papadopoulos, Incidence angle dependence of Langmuir turbulence and artificial ionospheric layers driven by high-power HF-heating. J. Plasma Phys. 81, 415810201 (2015).  https://doi.org/10.1017/S0022377814000968 CrossRefGoogle Scholar
  68. L.M. Erukhimov, S.A. Metelev, N.A. Mityakov, V.L. Frolov, Hysteresis phenomenon by artificial excitation of irregularities in ionospheric plasma. Radiophys. Quantum Electron. 21, 1209–1211 (1978) ADSGoogle Scholar
  69. L.M. Erukhimov, S.A. Metelev, N.A. Mityakov, V.L. Frolov, Initial stage of interaction of intense radio waves with the plasma in the upper ionosphere. Geomagn. Aeron. 23(3), 352–356 (1983) Google Scholar
  70. L.M. Erukhimov, S.A. Metelev, E.N. Myasnikov, N.A. Mityakov, V.L. Frolov, Artificial ionospheric turbulence. Radiophys. Quantum Electron. 30, 156–171 (1987) ADSGoogle Scholar
  71. L.M. Erukhimov, C.A. Metelev, D.V. Razumov, Diagnostics of ionospheric irregularities due to artificial radio radiation. Radiophys. Quantum Electron. 31, 928–935 (1988) ADSGoogle Scholar
  72. D.T. Farley, C. La, Hoz.B. Fejer, Studies of the self-focusing instability at Arecibo. J. Geophys. Res. 88(A3), 2093–2102 (1983) ADSGoogle Scholar
  73. J.A. Fejer, Ionospheric modification and parametric instabilities. Rev. Geophys. Space Phys. 17, 135–153 (1979) ADSGoogle Scholar
  74. J.A. Fejer, H.M. Ierkic, R.F. Woodman, J. Rottger, M. Sulzer, R.A. Behnke, A. Veldhuis, Observations of the HF-enhanced plasma line with a 46.8-MHz radar and reinterpretation of previous observations with the 430-MHz radar. J. Geophys. Res. 88(A3), 2083–2092 (1983) ADSGoogle Scholar
  75. J. Fennelly, Demonstration and Science Experiment (DSX) Space Weather Experiment (SWx), in Solar Physics and Space Weather Instrumentation III, ed. by S. Fineschi, J. Fennelly. Proc. of SPIE, vol. 7438 (2009), p. 743805-1-10.  https://doi.org/10.1117/12.828321 CrossRefGoogle Scholar
  76. C.S. Fish et al., Design, development, implementation, and on-orbit performance of the Dynamic Ionosphere CubeSat Experiment mission. Space Sci. Rev. 181, 61–120 (2014).  https://doi.org/10.1007/s11214-014-0034-x ADSCrossRefGoogle Scholar
  77. D. Forslund, Instabilities associated with heat conduction in the solar wind and their consequences. J. Geophys. Res. 75, 17–28 (1970).  https://doi.org/10.1029/JA075i001p00017 ADSCrossRefGoogle Scholar
  78. V.L. Frolov, Influence of modulation transfer in the action of a powerful emission on the ionospheric plasma. Radiophys. Quantum Electron. 24, 354–356 (1981) ADSGoogle Scholar
  79. V.L. Frolov, Control of spectral characteristics of artificial low-frequency ionosphere turbulence. Int. J. Geomagn. Aeron. 4(2), 159–165 (2003) Google Scholar
  80. V.L. Frolov et al., On the study of artificial ionospheric turbulence by means of stimulated electromagnetic emission. Radiophys. Quantum Electron. 37(7), 593–603 (1994) ADSGoogle Scholar
  81. V.L. Frolov, L.M. Erukhimov, S.A. Metelev, E.N. Sergeev, Temporal behavior of artificial small-scale ionospheric irregularities: Review of experimental results. J. Atmos. Sol.-Terr. Phys. 59(18), 2317–2333 (1997) ADSGoogle Scholar
  82. V.L. Frolov, E.N. Ermakova, L.M. Kagan et al., Features of the broad upshifted structure in stimulated electromagnetic emission spectra. J. Geophys. Res. 105(A9), 20,919–20,933 (2000) ADSGoogle Scholar
  83. V.L. Frolov, E.N. Sergeev, E.N. Ermakova et al., Spectral features of stimulated electromagnetic emissions, measured in the 4.3–9.5 MHz pump wave frequency range. Geophys. Res. Lett. 28(16), 3103–3106 (2001) ADSGoogle Scholar
  84. V.L. Frolov, E.N. Sergeev, G.P. Komrakov et al., The ponderomotive narrow continuum (NCp) component in stimulated electromagnetic emission spectra. J. Geophys. Res. 109, A07304 (2004).  https://doi.org/10.1029/2001JA005063 ADSCrossRefGoogle Scholar
  85. V.L. Frolov et al., Modification of the terrestrial ionosphere by high-power short-wave radio radiation. Phys. Usp. 50(3), 15–24 (2007).  https://doi.org/10.1070/PU2007v050n03ABEH006282 CrossRefGoogle Scholar
  86. V.L. Frolov et al., Gyroharmonic features of the irregularities HF-induced in the ionosphere. Radiophys. Quantum Electron. 55(6), 357–381 (2012) ADSGoogle Scholar
  87. V.L. Frolov et al., Generation of artificial ionospheric irregularities in the mid-latitude ionosphere modified by high-power high-frequency X-mode radio waves. Radiophys. Quantum Electron. 57(6), 393–416 (2014).  https://doi.org/10.1007/s11141-014-9523-8 ADSCrossRefGoogle Scholar
  88. V.L. Frolov, V.O. Rapoport, E.A. Schorokhova, A.S. Belov, M. Parrot, J.-L. Rauch, Features of the electromagnetic and plasma disturbances induced at the altitudes of the Earth’s outer ionosphere by modification of the ionospheric F2 region using high-power waves radiated by the SURA heating facility. Radiophys. Quantum Electron. 59(3), 177–198 (2016).  https://doi.org/10.1007/s11141-016-9688-4 ADSCrossRefGoogle Scholar
  89. V.L. Frolov, I.A. Bolotin, G.G. Vertogradov, V.G. Vertogradov, Generation of super small-scale artificial ionospheric irregularities in the ionosphere pumped by high-power HF radio waves. Radiophys. Quantum Electron. 60(6), 450–455 (2017).  https://doi.org/10.1007/s11141-017-9813-z ADSCrossRefGoogle Scholar
  90. A. Galeev, R. Sagdeev, Nonlinear plasma theory, in Reviews of Plasma Phys., vol. 7, ed. by M.A. Leontovich (Consultants Bureau, New York, 1979), pp. 1–180 Google Scholar
  91. A. Galeev, R. Sagdeev, V. Shapiro, V. Shevchenko, Langmuir turbulence and dissipation of high-frequency energy. Sov. Phys. JETP 46, 711–719 (1977) ADSGoogle Scholar
  92. A. Galeev, R. Sagdeev, V. Shapiro, V. Shevehenko, Beam plasma discharge and suprathermal electron tails, in Active Experiments in Space (Alpbach, Austria). Eur. Space Agency Spec. Publ., vol. ESA SP-195 (1983), pp. 151–155 Google Scholar
  93. G.L. Gdalevich, Z. Klos, Y.M. Mikhailov, Excitation of ELF-VLF electric fields in ionospheric plasma in active experiments (Intercosmos-24 data). Geomagn. Aeron. 43(5), 602–609 (2003) Google Scholar
  94. L. Gelinas, M. Kelley, M. Sulzer, E. Mishin, M. Starks, In situ observations during an HF heating experiment at Arecibo: Evidence for Z-mode and electron cyclotron harmonic effects. J. Geophys. Res. 108, 1382 (2003).  https://doi.org/10.1029/2003JA009922 CrossRefGoogle Scholar
  95. G. Getmantsev, N. Zuikov, D. Kotik, L. Mironenko, N. Mityakov, V. Rapoport, Y. Sazonov, V. Trakhtengerts, V. Eidman, Combination frequencies in the interaction between high-power short-wave radiation and ionospheric plasma. JETP Lett. 20, 101 (1974) ADSGoogle Scholar
  96. A. Gigliotti, W. Gekelman, P. Pribyl, S. Vincena, A. Karavaev, X. Shao, A.S. Sharma, D. Papadopoulos, Generation of polarized shear Alfven waves by rotating magnetic field source. Phys. Plasmas 16, 092106 (2009) ADSGoogle Scholar
  97. M. Gołkowski, U.S. Inan, A.R. Gibby, M.B. Cohen, Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater. J. Geophys. Res. 113, A10201 (2008).  https://doi.org/10.1029/2008JA013157 ADSCrossRefGoogle Scholar
  98. M. Gołkowski, U.S. Inan, M.B. Cohen, Cross modulation of whistler mode and HF waves above the HAARP ionospheric heater. Geophys. Res. Lett. 36, L15103 (2009).  https://doi.org/10.1029/2009GL039669 ADSCrossRefGoogle Scholar
  99. M. Gołkowski, U.S. Inan, M.B. Cohen, A.R. Gibby, Amplitude and phase of nonlinear magnetospheric wave growth excited by the HAARP HF heater. J. Geophys. Res. 115, A00F04 (2010).  https://doi.org/10.1029/2009JA014610 ADSCrossRefGoogle Scholar
  100. M. Gołkowski, M.B. Cohen, D.L. Carpenter, U.S. Inan, On the occurrence of ground observations of ELF/VLF magnetospheric amplification induced by the HAARP facility. J. Geophys. Res. 116, A04208 (2011).  https://doi.org/10.1029/2010JA016261 ADSCrossRefGoogle Scholar
  101. W.E. Gordon, H.C. Carlson, R.L. Showen, Ionospheric heating at Arecibo: first tests. J. Geophys. Rev. 76(31), 7808–7813 (1971) ADSGoogle Scholar
  102. S. Grach, Thermal parametric instability in ionospheric plasma at frequencies close to \(\omega _{He}\) and 2\(\omega _{He}\). Radiophys. Quantum Electron. 22, 357–361 (1979) ADSGoogle Scholar
  103. S. Grach, N. Mityakov, V. Rapoport, V. Trakhtengertz, Thermal parametric turbulence in a plasma. Physica D 2, 102–106 (1981) ADSzbMATHGoogle Scholar
  104. S.M. Grach, B. Thidé, T.B. Leyser, Plasma waves near the double resonance layer in the ionosphere. Radiophys. Quantum Electron. 37, 392–402 (1994) ADSGoogle Scholar
  105. S. Grach, S. Sergeev, V. Yashnov, V. Kotov, Spectra of stimulated electromagnetic emission of the ionosphere during pump frequency sweeping near gyroharmonics. II. Discussion of the results. Radiophys. Quantum Electron. 51, 499–514 (2008) ADSGoogle Scholar
  106. S. Grach, E. Sergeev, E. Mishin, A. Shindin, M. McCarrick, Intermediate downshifted maximum of stimulated electromagnetic emission at high-power HF heating: A new twist on an old problem. J. Geophys. Res. Space Phys. 120, 666–674 (2015).  https://doi.org/10.1002/2014JA020423 ADSCrossRefGoogle Scholar
  107. S. Grach, E. Sergeev, E. Mishin, A. Shindin, Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves. Phys. Usp. 59, 1091–1128 (2016).  https://doi.org/10.3367/UFNe.2016.07.03786 ADSCrossRefGoogle Scholar
  108. A. Gurevich, Nonlinear Phenomena in the Ionosphere (Springer, New York, 1978) Google Scholar
  109. A. Gurevich, Nonlinear effects in the ionosphere. Phys. Usp. 50, 1091–1121 (2007).  https://doi.org/10.1070/PU2007v050n11ABEH006212 ADSCrossRefGoogle Scholar
  110. A.V. Gurevich, V.V. Migulin, Investigations in the U.S.S.R. of non-linear phenomena in the ionosphere. J. Atmos. Terr. Phys. 44(12), 1019–1024 (1982) ADSGoogle Scholar
  111. A.V. Gurevich, K.P. Zybin, Strong field aligned scattering of UHF radio waves in ionospheric modification. Phys. Lett. A 358, 159–165 (2006) ADSzbMATHGoogle Scholar
  112. A.V. Gurevich, A.V. Lukyanov, K.P. Zybin, Stationary state of isolated striations developed during ionospheric modification. Phys. Lett. A. 206, 247–259 (1995) ADSGoogle Scholar
  113. A. Gurevich, A. Lukyanov, K. Zybin, Anomalous absorption of powerful radio waves on the striations developed during ionospheric modification. Phys. Lett. A 211, 363–372 (1996) ADSGoogle Scholar
  114. A. Gurevich, T. Hagfors, H. Carlson, A. Karashtin, K. Zybin, Self oscillations and bunching of striations in ionospheric modifications. Phys. Lett. A. 239, 385–392 (1998) ADSGoogle Scholar
  115. A. Gurevich, K. Zybin, H. Carlson, T. Pedersen, Magnetic zenith effect in ionospheric modifications. Phys. Lett. A 305, 264–274 (2002) ADSGoogle Scholar
  116. B. Gustavsson, B. Eliasson, HF radio wave acceleration of ionospheric electrons: analysis of HF-induced optical enhancements. J. Geophys. Res. 113, A08319 (2008).  https://doi.org/10.1029/2007JA012913 ADSCrossRefGoogle Scholar
  117. B. Gustavsson, T. Sergienko, M.J. Kosch, M.T. Rietveld, A. Steen, B.U.E. Brandstrom, T.B. Leyser, B. Isham, P. Gallop, T. Aso, M. Ejiri, K. Kaila, J. Jussila, H. Holma, The electron distribution during HF pumping—a picture painted in all colours. Ann. Geophys. 23, 1747–1754 (2005) ADSGoogle Scholar
  118. B. Gustavsson, T. Leyser, M. Kosch, M. Rietveld, Å. Steen, B. Brändström, T. Aso, Electron gyroharmonic effects in ionization and electron acceleration during High-Frequency pumping in the ionosphere. Phys. Rev. Lett. 97, 195002 (2006).  https://doi.org/10.1103/PhysRevLett.97.195002 ADSCrossRefGoogle Scholar
  119. B. Gustavsson, M. Kosch, A. Wong, T. Pedersen, C. Heinselman, C. Mutiso, B. Bristow, J. Hughes, W. Wang, First estimates of volume distribution of HF-pump enhanced emissions at 6300 and 5577 Å: a comparison between observations and theory. Ann. Geophys. 26, 3999–4012 (2008) ADSGoogle Scholar
  120. B. Gustavsson, R. Newsome, T.B. Leyser, M.J. Kosch, L. Norin, M. McCarrick, T. Pedersen, B.J. Watkins, First observations of X-mode suppression of O-mode HF enhancements at 6300 Å. Geophys. Res. Lett. 36, L20102 (2009).  https://doi.org/10.1029/2009GL039421 ADSCrossRefGoogle Scholar
  121. B. Gustavsson, M.T. Rietveld, N.V. Ivchenko, M.J. Kosch, The rise and fall of electron temperatures, I: Ohmic heating of ionospheric electrons from under-dense HF-radio wave pumping. J. Geophys. Res. 115, A12332 (2010).  https://doi.org/10.1029/2010JA015873 ADSCrossRefGoogle Scholar
  122. P. Guzdar, P. Chaturvedi, K. Papadopoulos, S. Ossakow, The thermal self-focussing instability near the critical surface in the high-latitude ionosphere. J. Geophys. Res. 103, 2231–2237 (1998) ADSGoogle Scholar
  123. O. Havnes, C. La Hoz, L.I. Naesheim, M.T. Rietveld, First observations of the PMSE overshoot effect and its use for investigating the conditions in the summer mesosphere. Geophys. Res. Lett. 30(23), 2229 (2003).  https://doi.org/10.1029/2003GL018429 ADSCrossRefGoogle Scholar
  124. R. Helliwell, Whistlers and Related Ionospheric Phenomena (Stanford University Press, Stanford, 1965) Google Scholar
  125. R. Helliwell, VLF simulated experiments in the magnetosphere from Siple station, Antarctica. Rev. Geophys. 26, 551 (1988) ADSGoogle Scholar
  126. F.H. Hibberd, E. Nielsen, P. Stubbe, H. Kopka, M.T. Rietveld, Production of auroral zone E region irregularities by powerful HF heating. J. Geophys. Res. 88(A8), 6347–6351 (1983) ADSGoogle Scholar
  127. P. Hoeg, Directional changes in the irregularity drift during artificial generation of striations. Phys. Scr. 33, 469–474 (1986) ADSGoogle Scholar
  128. H. Holma, K. Kaila, M.J. Kosch, M.T. Rietveld, Recognising the blue emission in artificial aurora. Adv. Space Res. 38(11), 2653–2658 (2006) ADSGoogle Scholar
  129. O. Holt, A. Brekke, T. Hansen, H. Kopka, P. Stubbe, HF modification of the auroral D-region detected by a partial reflection experiment. J. Atmos. Terr. Phys. 47(6), 537–545 (1985) ADSGoogle Scholar
  130. F. Honary, T. Robinson, D. Wright, A. Stocker, M. Rietveld, I. McCrea, First direct evidence of the reduced striations at pump frequencies close to the electron gyroharmonics. Ann. Geophys. 17, 1235–1238 (1999) ADSGoogle Scholar
  131. F. Honary, N. Borisov, M. Beharrell, A. Senior, Temporal development of the magnetic zenith effect. J. Geophys. Res. 116, A06309 (2011).  https://doi.org/10.1029/2010JA016029 ADSCrossRefGoogle Scholar
  132. J. Huang, S. Kuo, A theoretical model for the broad upshifted maximum in the stimulated electromagnetic emission spectrum. J. Geophys. Res. 99, 19,569–19,576 (1994) ADSGoogle Scholar
  133. J. Huang, S.P. Kuo, A generation mechanism for the downshifted peak in stimulated electromagnetic emission spectrum. J. Geophys. Res. 100, 21,433–21,438 (1995).  https://doi.org/10.1029/95JA02302 ADSCrossRefGoogle Scholar
  134. A. Hussein, W. Scales, J. Huang, Theoretical and simulation studies of broad up-shifted sideband generation in ionospheric stimulated radiation. Geophys. Res. Lett. 25, 955–958 (1998) ADSGoogle Scholar
  135. D.L. Hysell, M.C. Kelley, Y.M. Yampolski, V.S. Beley, A.V. Koloskov, P.V. Ponomarenko, O.F. Tyrnov, HF radar observations of decaying artificial field-aligned irregularities. J. Geophys. Res. 101(A12), 26981–26993 (1996).  https://doi.org/10.1029/96JA02647 ADSCrossRefGoogle Scholar
  136. D.L. Hysell, E. Nossa, M. McCarrick, Excitation threshold and gyroharmonic suppression of artificial E region field-aligned plasma density irregularities. Radio Sci. 45, RS6003 (2010).  https://doi.org/10.1029/2010RS004360 ADSCrossRefGoogle Scholar
  137. D. Hysell, R. Miceli, E. Kendall, N. Schlatter, R. Varney, B. Watkins, T. Pedersen, P. Bernhardt, J. Huba, Heater-induced ionization inferred from spectrometric airglow measurements. J. Geophys. Res. 119 (2014).  https://doi.org/10.1002/2013JA019663
  138. U. Inan, H. Chang, R. Helliwell, W. Imhof, J. Reagan, M. Walt, Precipitation of radiation belt electrons by man-made waves: a comparison between theory and measurement. J. Geophys. Res. 90, 359 (1985) ADSGoogle Scholar
  139. U. Inan, T. Bell, J. Bortnik, J. Albert, Controlled precipitation of radiation belt electrons. J. Geophys. Res. 108, 1186 (2003).  https://doi.org/10.1029/2002JA009580 CrossRefGoogle Scholar
  140. U.S. Inan, M. Gołkowski, D.L. Carpenter, N. Reddell, R.C. Moore, T.F. Bell, E. Paschal, P. Kossey, E. Kennedy, S.Z. Meth, Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater. Geophys. Res. Lett. 31, L24805 (2004).  https://doi.org/10.1029/2004GL021647 ADSCrossRefGoogle Scholar
  141. B. Isham, T. Hagfors, E. Mishin, M. Rietveld, C. LaHoz, W. Kofman, T. Leyser, A search for the location of the HF excitation of enhanced ion acoustic and Langmuir waves with EISCAT and the Tromsøheater. Radiophys. Quantum Electron. 42, 607–618 (1999b) Google Scholar
  142. B. Isham, C. Hoz, M. Rietveld, T. Hagfors, T. Leyser, Cavitating Langmuir turbulence observed during EISCAT high latitude ionospheric interaction experiments. Phys. Rev. Lett. 83, 2576 (1999a) ADSGoogle Scholar
  143. B. Isham, C.A. Tepley, M.P. Sulzer, Q.H. Zhou, M.C. Kelley, J.S. Friedman, S.A. Gonz´alez, Upper atmospheric observations at the Arecibo Observatory: Examples obtained using new capabilities. J. Geophys. Res. 105, 18609–18637 (2000).  https://doi.org/10.1029/1999JA900315 ADSCrossRefGoogle Scholar
  144. Y. Istomin, T. Leyser, Parametric decay of an electromagnetic wave near electron cyclotron harmonics. Phys. Plasmas 2, 2084–2097 (1995) ADSGoogle Scholar
  145. H.G. James, V.L. Frolov, E.S. Andreeva, A.M. Padokhin, C.L. Siefring, SURA heating facility transmissions to the CASSIOPE/e-POP satellite. Radio Sci. 52, 259–270 (2017).  https://doi.org/10.1002/2016RS006190 ADSCrossRefGoogle Scholar
  146. T.B. Jones, T. Robinson, P. Stubbe, H. Kopka, A hysteresis effect in the generation of field-aligned irregularities by a high-power radio wave. Radio Sci. 18(6), 835–839 (1983) ADSGoogle Scholar
  147. L.M. Kagan, V.L. Frolov, Significance of field-aligned currents for F-region perturbation. J. Atmos. Terr. Phys. 58(13), 1465–1474 (1996) ADSGoogle Scholar
  148. L.M. Kagan, M.C. Kelley, F. Garcia et al., The structure of electromagnetic wave-induced 557.7-nm emission associated with a aporadic-E event over Arecibo. Phys. Rev. Lett. 85(1), 218–221 (2000) ADSGoogle Scholar
  149. L.M. Kagan et al., Optical and RF diagnostics of the ionosphere over the SURA facility: review of results. Radio Phys. Radio Astron. 11(3), 221–241 (2006) ADSGoogle Scholar
  150. K.S. Kalogerakis, T.G. Slanger, E.A. Kendall, T.R. Pedersen, M.J. Kosch, B. Gustavsson, M.T. Rietveld, Remote Oxygen Sensing by Ionospheric Excitation (ROSIE). Ann. Geophys. 27, 1–7 (2009) Google Scholar
  151. A.V. Karavaev, N.A. Gumerov, K. Papadopoulos, X. Shao, A.S. Sharma, W. Gekelman, A. Gigliotti, P. Pribyl, S. Vincena, Generation of whistler waves by a rotating magnetic field source. Phys. Plasmas 17, 012102 (2010) ADSGoogle Scholar
  152. A.V. Karavaev, N.A. Gumerov, K. Papadopoulos, X. Shao, A.S. Sharma, W. Gekelman, A. Gligliotti, P. Pribyl, S. Vincena, Generation of shear Alfvén waves by a rotating magnetic field source: 3D simulations. Phys. Plasmas 18, 032113 (2011) ADSGoogle Scholar
  153. A.J. Kavanagh, F. Honary, M.T. Rietveld, A. Senior, First observations of the artificial modulation of polar mesospheric winter echoes. Geophys. Res. Lett. 33, L19801 (2006).  https://doi.org/10.1029/2006GL027565 ADSCrossRefGoogle Scholar
  154. M.C. Kelley, T.L. Arce, J. Salowey, M. Sulzer, W.T. Armstrong, M. Carter, L. Duncan, Density depletions at the 10-m scale induced by the Arecibo heater. J. Geophys. Res. 100, 17367–17376 (1995) ADSGoogle Scholar
  155. E. Kendall, R. Marshall, R.T. Parris, A. Bhatt, A. Coster, T. Pedersen, P. Bernhardt, C. Selcher, Decameter structure in heater-induced airglow at the high frequency active auroral research program facility. J. Geophys. Res. 115, A08306 (2010).  https://doi.org/10.1029/2009JA015043 ADSCrossRefGoogle Scholar
  156. A. Kero, T. Bösinger, P. Pollari, E. Turunen, M. Rietveld, First EISCAT measurement of electron-gas temperature in the artificially heated D-region ionosphere. Ann. Geophys. 18(9), 1210–1215 (2000) ADSGoogle Scholar
  157. E. Kolesnikova, T.R. Robinson, J.A. Davies, D.M. Wright, M. Lester, Excitation of Alfven waves by modulated HF heating of the ionosphere, with application to FAST observations. Ann. Geophys. 20, 57–67 (2002) ADSGoogle Scholar
  158. M. Kosch, T. Rietveld, T. Hagfors, T. Leyser, High-latitude HF-induced airglow displaced equatorwards of the pump beam. Geophys. Res. Lett. 27, 2817–2820 (2000).  https://doi.org/10.1029/2000GL003754 ADSCrossRefGoogle Scholar
  159. M.J. Kosch, M.T. Rietveld, A.J. Kavanagh, C. Davis, T. Yeoman, F. Honary, T. Hagfors, High-latitude pump-induced optical emissions for frequencies close to the third electron gyro-harmonic. Geophys. Res. Lett. 29(23), 2112 (2002).  https://doi.org/10.1029/2002GL015744 ADSCrossRefGoogle Scholar
  160. M. Kosch, M. Rietveld, A. Senior, I. McCrea, A. Kavanagh, B. Isham, F. Honary, Novel artificial optical annular structures in the high latitude ionosphere. Geophys. Res. Lett. 31, L12805 (2004).  https://doi.org/10.1029/2004GL019713 ADSCrossRefGoogle Scholar
  161. M. Kosch, T. Pedersen, J. Hughes, R. Marshall, E. Gerken, A. Senior, D. Sentman, M. McCarrick, F. Djuth, Artificial optical emissions at HAARP for pump frequencies near the third and second gyroharmonic. Ann. Geophys. 23, 1585–1592 (2005) ADSGoogle Scholar
  162. M. Kosch, T. Pedersen, E. Mishin, S. Oyama, J. Hughes, A. Senior, B. Watkins, B. Bristow, Coordinated optical and radar observations of ionospheric pumping for a frequency pass through the second electron gyroharmonic at HAARP. J. Geophys. Res. 112, A06325 (2007a).  https://doi.org/10.1029/2006JA012146 ADSCrossRefGoogle Scholar
  163. M. Kosch, T. Pedersen, E. Mishin, M. Starks, E. Gerken-Kendall, D. Sentman, S. Oyama, B. Watkins, Temporal evolution of pump beam self-focusing at the high-frequency active auroral research program. J. Geophys. Res. 112, A08304 (2007b).  https://doi.org/10.1029/2007JA012264 ADSCrossRefGoogle Scholar
  164. M.J. Kosch, T. Pedersen, M.T. Rietveld, B. Gustavsson, S.M. Grach, T. Hagfors, Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: an observational review. Adv. Space Res. 40, 365–376 (2007c).  https://doi.org/10.1016/j.asr.2007.02.061 ADSCrossRefGoogle Scholar
  165. M. Kosch, Y. Ogawa, M. Rietveld, S. Nozawa, R. Fujii, An analysis of pump-induced artificial ionospheric ion upwelling at EISCAT. J. Geophys. Res. 115, A12317 (2010).  https://doi.org/10.1029/2010JA015854 ADSCrossRefGoogle Scholar
  166. M.J. Kosch, C. Bryers, M.T. Rietveld, T.K. Yeoman, Y. Ogawa, Aspect angle sensitivity of pump-induced optical emissions at EISCAT. Earth Planets Space 66, 159 (2014a).  https://doi.org/10.1186/s40623-014-0159-x CrossRefGoogle Scholar
  167. M.J. Kosch, H. Vickers, Y. Ogawa, A. Senior, N. Blagoveshchenskaya, First observation of the anomalous electric field in the topside ionosphere by ionospheric modification over EISCAT. Geophys. Res. Lett. 41(21), 7427–7435 (2014b).  https://doi.org/10.1002/2014GL061679 ADSCrossRefGoogle Scholar
  168. D.S. Kotik, E.N. Ermakova, Resonances in the generation of electromagnetic signals due to the thermal cubic nonlinearity in the lower ionosphere. J. Atmos. Sol.-Terr. Phys. 60(12), 1257 (1998) ADSGoogle Scholar
  169. V.E. Kunitsyn, E.D. Tereshchenko, E.S. Andreeva, I.A. Nesterov, Satellite radio probing and radio tomography of the ionosphere. Usp. Fiz. Nauk 180(5), 548–553 (2010).  https://doi.org/10.3367/UFNr.0180.201005k.0548 CrossRefGoogle Scholar
  170. V.E. Kunitsyn, E.S. Andreeva, V.L. Frolov, G.P. Komrakov, M.O. Nazarenko, A.M. Padokhin, Sounding of HF heating-induced artificial ionospheric disturbances by navigation satellite radio transmissions. Radio Sci. 47(4), RS0L15 (2012).  https://doi.org/10.1029/2011RS004957 CrossRefGoogle Scholar
  171. S. Kuo, Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere. Phys. Plasmas 20, 092124 (2013).  https://doi.org/10.1063/1.4822336 ADSCrossRefGoogle Scholar
  172. S. Kuo, Ionospheric modifications in high frequency heating experiments. Phys. Plasmas 22, 012901 (2015).  https://doi.org/10.1063/1.4905519 ADSCrossRefGoogle Scholar
  173. S. Kuo, M. Lee, P. Kossey, Excitation of oscillating two-stream instability by upper hybrid pump in ionospheric heating experiments at Tromsø. Geophys. Res. Lett. 24, 2969–2972 (1997) ADSGoogle Scholar
  174. S. Kuo, A. Snyder, P. Kossey, C.-L. Chang, J. Labenski, VLF wave generation by beating of two HF waves in the ionosphere. Geophys. Res. Lett. 38, L10608 (2011).  https://doi.org/10.1029/2011GL047514 ADSCrossRefGoogle Scholar
  175. S. Kuo, A. Snyder, P. Kossey, C.-L. Chang, J. Labenski, Beating HF waves to generate VLF waves in the ionosphere. J. Geophys. Res. 117, A03318 (2012).  https://doi.org/10.1029/2011JA017076 ADSCrossRefGoogle Scholar
  176. N. Lehtinen, U. Inan, Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet. J. Geophys. Res. 113, A06301 (2008).  https://doi.org/10.1029/2007JA012911 ADSCrossRefGoogle Scholar
  177. T.B. Leyser, Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma. Space Sci. Rev. 98, 223 (2001).  https://doi.org/10.1023/A:1013875603938 ADSCrossRefGoogle Scholar
  178. T.B. Leyser, E. Nordblad, Self-focused radio frequency L wave pumping of localized upper hybrid oscillations in high-latitude ionospheric plasma. Geophys. Res. Lett. 36(24), L24105 (2009).  https://doi.org/10.1029/2009GL041438 ADSCrossRefGoogle Scholar
  179. T.B. Leyser, A.Y. Wong, Powerful electromagnetic waves for active environmental research in geospace. Rev. Geophys. 47, 1 (2009).  https://doi.org/10.1029/2007rg000235 CrossRefGoogle Scholar
  180. T.B. Leyser, B. Thide, H. Derblom et al., Dependence of stimulated electromagnetic emission on the ionosphere and pump wave. J. Geophys. Res. 95(A10), 17,233–17,244 (1990) ADSGoogle Scholar
  181. T.B. Leyser, B. Thide, M. Waldenvik et al., Spectral structure of stimulated electromagnetic emission between electron cyclotron harmonics. J. Geophys. Res. 98(A10), 17,597–17,606 (1993) ADSGoogle Scholar
  182. T.B. Leyser, B. Thide, M. Waldenvik et al., Downshifted maximum features in stimulated electromagnetic emission spectra. J. Geophys. Res. 99(A10), 19,555–19,568 (1994) ADSGoogle Scholar
  183. T.B. Leyser, B. Gustavsson, B.U.E. Brandstrom, Å. Steen, F. Honary, M.T. Rietveld, T. Aso, M. Ejiri, Simultaneous measurements of high-frequency pump-enhanced airglow and ionospheric temperatures at auroral latitudes. Adv. Polar Upper Atmos. Res. 14, 1–11 (2000) Google Scholar
  184. A. Mahmoudian, W.A. Scales, M.J. Kosch, A. Senior, M. Rietveld, Dusty space plasma diagnosis using temporal behavior of polar mesospheric summer echoes during active modification. Ann. Geophys. 29, 2169–2179 (2011) ADSGoogle Scholar
  185. A. Mahmoudian, W. Scales, P. Bernhardt, A. Samimi, E. Kendall, J. Ruohoniemi, B. Isham, O. Vega-Cancel, M. Bordikar, Ion gyro-harmonic structuring in the stimulated radiation spectrum and optical emissions during electron gyro-harmonic heating. J. Geophys. Res. 118, 1270–1287 (2013).  https://doi.org/10.1002/jgra.50167 CrossRefGoogle Scholar
  186. T. Majeed, D.J. Strickland, New survey of electron impact cross sections for photoelectron and auroral electron energy loss calculations. J. Phys. Chem. Ref. Data 26, 335–349 (1997) ADSGoogle Scholar
  187. G.A. Markov, Excitation of a magnetospheric maser through modification of the Earth’s ionosphere by high-power HF radio emission from a ground-based transmitter. J. Exp. Theor. Phys. 111, 916 (2010).  https://doi.org/10.1134/S1063776110120046 ADSCrossRefGoogle Scholar
  188. J.D. Mathews, A short history of geophysical radar at Arecibo Observatory. Hist. Geo-Space Sci. 4, 19–33 (2013).  https://doi.org/10.5194/hgss-4-19-2013 ADSCrossRefGoogle Scholar
  189. A.S. Maxworth, M. Gołkowski, M.B. Cohen, R.C. Moore, H.T. Chorsi, S.D. Gedney, R. Jacobs, Multistation observations of the azimuth, polarization, and frequency dependence of ELF/VLF waves generated by electrojet modulation. Radio Sci. 50 (2015).  https://doi.org/10.1002/2015RS005683
  190. M.J. McCarrick, D. Sentman, A. Wong, R. Wuerker, B. Chouinard, Excitation of ELF waves in the Schumann resonance range by modulated HF heating of the polar electrojet. Radio Sci. 25, 1291 (1990) ADSGoogle Scholar
  191. I. McCrea, A. Aikio, L. Alfonsi, E. Belova, S. Buchert, M. Clilverd, N. Engler, B. Gustavsson, C. Heinselman, J. Kero, M. Kosch, H. Lamy, T. Leyser, Y. Ogawa, K. Oksavik, A. Pellinen-Wannberg, F. Pitout, M. Rapp, I. Stanislawska, J. Vierinen, The science case for the EISCAT_3D radar. Prog. Earth Planet. Sci. 2, 21 (2015).  https://doi.org/10.1186/s40645-015-0051-8 ADSCrossRefGoogle Scholar
  192. G.M. Milikh, K. Papadopoulos, Enhanced ionospheric ELF/VLF generation efficiency by multiple timescale modulated heating. Geophys. Res. Lett. 34, L20804 (2007).  https://doi.org/10.1029/2007GL031518 ADSCrossRefGoogle Scholar
  193. G. Milikh, A. Gurevich, K. Zybin, J. Secan, Perturbations of GPS signals by the ionospheric irregularities generated due to HF-heating at triple of electron gyrofrequency. Geophys. Res. Lett. 35, L22102 (2008b).  https://doi.org/10.1029/2008GL035527 ADSCrossRefGoogle Scholar
  194. G.M. Milikh, K. Papadopoulos, H. Shroff, C.L. Chang, T. Wallace, E.V. Mishin, M. Parrot, J.J. Berthelier, Formation of artificial ionospheric ducts. Geophys. Res. Lett. 35, L17104 (2008a).  https://doi.org/10.1029/2008GL034630 ADSCrossRefGoogle Scholar
  195. G.M. Milikh, A.G. Demekhov, K. Papadopoulos, A. Vartanyan, J.D. Huba, G. Joyce, Model for artificial ionospheric duct formation due to HF heating. Geophys. Res. Lett. 37, L07803 (2010b).  https://doi.org/10.1029/2010GL042684 ADSCrossRefGoogle Scholar
  196. G.M. Milikh, E. Mishin, I. Galkin, A. Vartanyan, C. Roth, B.W. Reinisch, Ion outflows and artificial ducts in the topside ionosphere at HAARP. Geophys. Res. Lett. 37, L18102 (2010a).  https://doi.org/10.1029/2010GL044636 ADSCrossRefGoogle Scholar
  197. J. Minkoff, P. Kugelman, I. Weissman, Radio frequency scattering from a heated ionospheric volume, 1, VHF/UHF field-aligned and plasma-line backscatter measurements. Radio Sci. 9(11), 941–955 (1974) ADSGoogle Scholar
  198. E. Mishin, Heat transport in the solar wind. Astrophys. Space Sci. 27, 367–382 (1974) ADSGoogle Scholar
  199. E. Mishin, T. Pedersen, Ionizing wave via high-power HF acceleration. Geophys. Res. Lett. 38, L01105 (2011).  https://doi.org/10.1029/2010GL046045 ADSCrossRefGoogle Scholar
  200. E. Mishin, V. Telegin, Spectrum of suprathermal electrons in the auroral plasma. Sov. J. Plasma Phys. 12, 509–511 (1986) Google Scholar
  201. E. Mishin, T. Hagfors, B. Isham, A generation mechanism for topside enhanced incoherent backscatter during high frequency modification experiments in Tromsø. Geophys. Res. Lett. 28, 479–482 (2001) ADSGoogle Scholar
  202. E. Mishin, W. Burke, T. Pedersen, On the onset of HF-induced airglow at magnetic zenith. J. Geophys. Res. 109, A02305 (2004).  https://doi.org/10.1029/2003JA010205 ADSCrossRefGoogle Scholar
  203. E. Mishin, W. Burke, T. Pedersen, HF-induced airglow at magnetic zenith: theoretical considerations. Ann. Geophys. 23, 47–53 (2005a) ADSGoogle Scholar
  204. E. Mishin, M. Kosch, T. Pedersen, W. Burke, HF-induced airglow at magnetic zenith: coexistence of the thermal and parametric instabilities near electron gyroharmonics. Geophys. Res. Lett. 32, L23106 (2005b).  https://doi.org/10.1029/2005GL023864 ADSCrossRefGoogle Scholar
  205. E. Mishin, E. Sutton, G. Milikh, I. Galkin, C. Roth, M. Förster, F2-region atmospheric gravity waves due to high-power HF heating and subauroral polarization streams. Geophys. Res. Lett. 39, L11101 (2012).  https://doi.org/10.1029/2012GL052004 ADSCrossRefGoogle Scholar
  206. E. Mishin, B. Watkins, N. Lehtinen, B. Eliasson, T. Pedersen, S. Grach, Artificial ionospheric layers driven by high-frequency radiowaves: An assessment. J. Geophys. Res. Space Phys. 121, 3497–3524 (2016).  https://doi.org/10.1002/2015JA021823 ADSCrossRefGoogle Scholar
  207. E. Mjølhus, On linear conversion in a magnetized plasma. Radio Sci. 25, 1321–1339 (1990) ADSGoogle Scholar
  208. E. Mjølhus, On the small scale striation effect in ionospheric radio modification experiments near harmonics of the electron gyro frequency. J. Atmos. Terr. Phys. 55, 907 (1993) ADSGoogle Scholar
  209. E. Mjølhus, E. Helmersen, D. DuBois, Geometric aspects of HF driven Langmuir turbulence in the ionosphere. Nonlinear Process. Geophys. 10, 151–177 (2003) ADSGoogle Scholar
  210. M.M. Mogilevsky, L.M. Zelenyi, A.G. Demekhov, A.A. Petrukovich, D.R. Shklyar, RESONANCE project for studies of wave-particle interactions in the inner magnetosphere, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, ed. by e.D. Summers, I.R. Mann, D.N. Baker, M. Schulz (American Geophysical Union, Washington, 2012).  https://doi.org/10.1029/2012GM001334 CrossRefGoogle Scholar
  211. R.C. Moore, S. Fujjimaru, M. Cohen, M. Golkowski, M.J. McCarrick, On the altitude of the ELF/VLF source region generated during “beat wave” HF heating experiments. Geophys. Res. Lett. 39, L18101 (2012).  https://doi.org/10.1029/2012GL053210 ADSCrossRefGoogle Scholar
  212. R.C. Moore, S. Fujimaru, D.A. Kotovsky, M. Gołkowski, Observations of ionospheric ELF and VLF wave generation by excitation of the thermal cubic nonlinearity. Phys. Rev. Lett. 111(23), 235007 (2013).  https://doi.org/10.1103/PhysRevLett.111.235007 ADSCrossRefGoogle Scholar
  213. S.L. Musher, A.M. Rubenchik, B.I. Sturman, Collective effects associated with lower hybrid heating of plasma. Plasma Phys. 20, 1131–1150 (1978) ADSGoogle Scholar
  214. C. Mutiso, J. Hughes, G. Sivjee, T. Pedersen, B. Gustavsson, M. Kosch, Previously unreported optical emissions generated during ionospheric heating. Geophys. Res. Lett. 35, L14103 (2008).  https://doi.org/10.1029/2008GL034563 ADSCrossRefGoogle Scholar
  215. A. Najmi, G. Milikh, J. Secan, K. Chiang, M. Psiaki, P. Bernhardt, S. Briczinski, C. Siefring, C.L. Chang, K. Papadopoulos, Generation and detection of super small striations by F region HF heating. J. Geophys. Res. Space Phys. 119(7) (2014).  https://doi.org/10.1002/2014JA020038
  216. A. Najmi, B. Eliasson, X. Shao, G. Milikh, K. Papadopoulos, Simulations of ionospheric turbulence produced by HF heating near the upper hybrid layer. Radio Sci. 51, 704–717 (2016).  https://doi.org/10.1002/2015RS005866 ADSCrossRefGoogle Scholar
  217. S. Oyama, B. Watkins, F. Djuth, M. Kosch, P. Bernhardt, C. Heinselman, Persistent enhancement of the HF pump-induced plasma line measured with a UHF diagnostic radar at HAARP. J. Geophys. Res. 111, A06309 (2006).  https://doi.org/10.1029/2005JA011363 ADSCrossRefGoogle Scholar
  218. K. Papadopoulos, H.-B. Zhou, C.-L. Chang, Cerenkov excitation of whistler/helicon waves by ionospheric HF heating. Geophys. Res. Lett. 21(17), 1767 (1994) ADSGoogle Scholar
  219. K. Papadopoulos, T. Wallace, M. McCarrick, G.M. Milikh, X. Yang, On the efficiency of ELF/VLF generation using HF heating of the auroral electrojet. Plasma Phys. Rep. 29, 561 (2003) ADSGoogle Scholar
  220. K. Papadopoulos, C.-L. Chang, J. Labenski, T. Wallace, First demonstration of HF driven ionospheric currents. Geophys. Res. Lett. 38, L20107 (2011b).  https://doi.org/10.1029/2011GL049263 ADSCrossRefGoogle Scholar
  221. K. Papadopoulos, N. Gumerov, X. Shao, C.-L. Cheng, I. Doxas, HF driven current in the polar ionosphere. Geophys. Res. Lett. 38, L12103 (2011a).  https://doi.org/10.1029/2011GL047368 ADSCrossRefGoogle Scholar
  222. T.R. Pedersen, H.C. Carlson, First observations of HF heater produced airglow at the High Frequency Active Auroral Research Program facility: thermal excitation and spatial structuring. Radio Sci. 36(5), 1013–1026 (2001).  https://doi.org/10.1029/2000RS002399 ADSCrossRefGoogle Scholar
  223. T.R. Pedersen, E. Gerken, Creation of visible artificial optical emissions in the aurora by high-power radio waves. Nature 433, 498–500 (2005).  https://doi.org/10.1038/nature03243 ADSCrossRefGoogle Scholar
  224. T. Pedersen, M. McCarrick, E. Gerken, C. Selcher, D. Sentman, H. Carlson, A. Gurevich, Magnetic zenith enhancement of HF radio-induced airglow production at HAARP. Geophys. Res. Lett. 30, 1169–1172 (2003).  https://doi.org/10.1029/2002GL016096 ADSCrossRefGoogle Scholar
  225. T. Pedersen, R. Esposito, E. Kendall, D. Sentman, M. Kosch, E. Mishin, R. Marshall, Observations of artificial and natural optical emissions at the HAARP facility. Ann. Geophys. 26, 1089–1099 (2008) ADSGoogle Scholar
  226. T. Pedersen, B. Gustavsson, E. Mishin, E. MacKenzie, H.C. Carlson, M. Starks, T. Mills, Optical ring formation and ionization production in high-power HF heating experiments at HAARP. Geophys. Res. Lett. 36, L18107 (2009).  https://doi.org/10.1029/2009GL040047 ADSCrossRefGoogle Scholar
  227. T. Pedersen, B. Gustavsson, E. Mishin, E. Kendall, T. Mills, H.C. Carlson, A.L. Snyder, Creation of artificial ionospheric layers using high-power HF waves. Geophys. Res. Lett. 37, L02106 (2010).  https://doi.org/10.1016/S0273-1177(02)00186-2 ADSCrossRefGoogle Scholar
  228. T. Pedersen, M. McCarrick, B. Reinisch, B. Watkins, R. Hamel, V. Paznukhov, Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic. Ann. Geophys. 29, 47–51 (2011).  https://doi.org/10.5194/angeo-29-47-2011 ADSCrossRefGoogle Scholar
  229. F.W. Perkins, A theoretical model for short-scale field-aligned plasma density striations. Radio Sci. 9(11), 1065–1070 (1974) ADSGoogle Scholar
  230. D. Piddyachiy, U.S. Inan, T.F. Bell, N.G. Lehtinen, M. Parrot, DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater. J. Geophys. Res. 113, A10308 (2008).  https://doi.org/10.1029/2008JA013208 ADSCrossRefGoogle Scholar
  231. S. Polyakov, V. Rapoport, The ionospheric Alfvén resonator. Geomagn. Aeron. 21, 816 (1981) ADSGoogle Scholar
  232. P.V. Ponomarenko, T.B. Leyser, B. Thide, New electron gyroharmonic effects in HF scatter from pump-excited magnetic field-aligned ionospheric irregularities. J. Geophys. Res. 104(A5), 10,081–10,087 (1999) ADSGoogle Scholar
  233. P.V. Ponomarenko, Yu.M. Yampolski, A.V. Zalizovsky, D. Hysell, O. Tyrnov, Interaction between artificial ionospheric irregularities and natural MHD waves. J. Geophys. Res. 105(A1), 171–181 (2000) ADSGoogle Scholar
  234. R. Pradipta, M.C. Lee, J.F. Cohen, D.J. Watkins, Generation of artificial acoustic-gravity waves and traveling ionospheric disturbances in HF heating experiments. Earth Moon Planets (2015).  https://doi.org/10.1007/s11038-015-9461-2 CrossRefGoogle Scholar
  235. V.O. Rapoport, V.L. Frolov, S.V. Polyakov, G.P. Komrakov, N.A. Ryzhov, G.A. Markov, A.S. Belov, M. Parrot, J.-L. Rauch, VLF electromagnetic field structures in the ionosphere disturbed by SURA RF heating facility. J. Geophys. Res. 115, A10322 (2010).  https://doi.org/10.1029/2010JA015484 ADSCrossRefGoogle Scholar
  236. B. Reinisch et al., First results from the Radio Plasma Imager on IMAGE. Geophys. Res. Lett. 28, 1167–1170 (2001).  https://doi.org/10.1029/2000GL012398 ADSCrossRefGoogle Scholar
  237. F.J. Rich, M. Hairston, Large-scale convection patterns observed by DMSP. J. Geophys. Res. 79, 3827 (1994) ADSGoogle Scholar
  238. M.T. Rietveld, P.N. Collis, J.-P.St. Maurice, Naturally enhanced ion-acoustic waves in the auroral ionosphere observed by the EISCAT 933 MHz radar. J. Geophys. Res. 96, 19291–19305 (1991) ADSGoogle Scholar
  239. M.T. Rietveld, H. Kohl, H. Kopka, P. Stubbe, Introduction to ionospheric heating at Tromsø. Experimental overview. J. Atmos. Terr. Phys. 55, 577–599 (1993) ADSGoogle Scholar
  240. M.T. Rietveld, B. Isham, H. Kohl, C. La Hoz, T. Hagfors, Measurements of HF-enhanced plasma and ion lines at EISCAT with high altitude resolution. J. Geophys. Res. 105(A4), 7429–7439 (2000) ADSGoogle Scholar
  241. M.T. Rietveld, B. Isham, T. Grydeland, C. La Hoz, T.B. Leyser, F. Honary, H. Ueda, M. Kosch, T. Hagfors, HF-pump-induced parametric instabilities in the auroral E-region. Adv. Space Res. 29(9), 1363–1368 (2002) ADSGoogle Scholar
  242. M.T. Rietveld, M.J. Kosch, N.F. Blagoveshchenskaya, V.A. Kornienko, T.B. Leyser, T.K. Yeoman, Ionospheric electron heating, optical emissions and striations induced by powerful HF radio waves at high latitudes: aspect angle dependence. J. Geophys. Res. 108(A4), 1141 (2003).  https://doi.org/10.1029/2002JA009543 CrossRefGoogle Scholar
  243. M.T. Rietveld, A. Senior, J. Markkanen, A. Westman, New capabilities of the upgraded EISCAT high-power HF facility. Radio Sci. 51 (2016).  https://doi.org/10.1002/2016RS006093
  244. T. Robinson, The heating of the high latitude ionosphere by high-power radio waves. Phys. Rep. 179, 79–209 (1989) ADSGoogle Scholar
  245. T.R. Robinson, The Role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere: Implications for RF heating of the auroral electrojet. Ann. Geophys. 12(4), 316–332 (1994) ADSGoogle Scholar
  246. P. Robinson, Nonlinear wave collapse and strong turbulence. Rev. Mod. Phys. 69, 507–573 (1997) ADSGoogle Scholar
  247. T.R. Robinson, F. Honary, A. Stocker, T.B. Jones, Factors influencing the heating of the auroral electrojet by high power radio waves. Adv. Space Res. 15(12), 41–44 (1995) ADSGoogle Scholar
  248. T.R. Robinson, G. Bond, P. Eglitis, F. Honary, M.T. Rietveld, RF heating of a strong auroral electrojet. Adv. Space Res. 21(5), 689–692 (1998) ADSGoogle Scholar
  249. T.R. Robinson, R. Strangeway, D.M. Wright, J.A. Davies, R.B. Horne, T.K. Yeoman, A.J. Stocker, M. Lester, M.T. Rietveld, I.R. Mann, C.W. Carlson, J.P. McFadden, FAST observations of ULF waves injected into the magnetosphere by means of modulated RF heating of the auroral electrojet. Geophys. Res. Lett. 27(19), 3165–3168 (2000) ADSGoogle Scholar
  250. T.R. Robinson, T.K. Yeoman, R.S. Dhillon, M. Lester, E.C. Thomas, J.D. Thornhill, D.M. Wright, A.P. van Eyken, I. McCrea, First observations of SPEAR induced artificial backscatter from CUTLASS and the EISCAT Svalbard radar. Ann. Geophys. 24, 291–309 (2006) ADSGoogle Scholar
  251. Yu. Ruzhin et al., On the possibility of localization of a substorm by using the SURA heating facility. Radiophys. Quantum Electron. 55(1–2), 85–94 (2012) ADSGoogle Scholar
  252. R. Sagdeev, The 1976 Oppenheimer Lectures: Critical problems in plasma astrophysics. Rev. Mod. Phys. 51, 1–20 (1979) ADSGoogle Scholar
  253. A. Samimi, W.A. Scales, P.A. Bernhardt, S.J. Briczinski, M.J. McCarrick, Ion gyroharmonic structures in stimulated radiation during second electron gyroharmonic heating, 1: theory. J. Geophys. Res. Space Phys. 118, 502–514 (2013).  https://doi.org/10.1029/2012JA018146 ADSCrossRefGoogle Scholar
  254. A. Samimi, W.A. Scales, P.A. Bernhardt, S.J. Briczinski, M.J. McCarrick, Ion gyroharmonic structures in stimulated radiation during second electron gyroharmonic heating, 2: simulations. J. Geophys. Res. Space Phys. 119, 462–478 (2014).  https://doi.org/10.1002/2013JA019341 ADSCrossRefGoogle Scholar
  255. J.C. Samson, D.D. Wallis, T.J. Hughes, F. Greutzberg, J.M. Ruohoniemi, R.A. Greenwald, Substorm intensifications and field line resonaces in the nightside magnetosphere. J. Geophys. Res. 97, 8495 (1992) ADSGoogle Scholar
  256. J.-A. Sauvaud, T. Moreau, R. Maggiolo, J.-P. Treilhou, C. Jacquey, A. Cros, J. Coutelier, J. Rouzaud, E. Penou, M. Gangloff, High-energy electron detection onboard DEMETER: The IDP spectrometer, description and first results on the inner belt. Planet. Space Sci. 54, 502–511 (2006) ADSGoogle Scholar
  257. M. Scherbarth, A. Adler, G. Ginet, Demonstration and Science Experiment (DSX) Mission, in Solar Physics and Space Weather Instrumentation III, ed. by S. Fineschi, J. Fennelly. Proc. of SPIE, vol. 7438 (2009), p. 74380B-1-10.  https://doi.org/10.1117/12.824898 CrossRefGoogle Scholar
  258. N.M. Schlatter, N. Ivchenko, B. Gustavsson, T. Leyser, M. Rietveld, Observations of HF induced instability in the auroral E region. Ann. Geophys. 31, 1103–1108 (2013).  https://doi.org/10.5194/angeo-31-1103-2013 ADSCrossRefGoogle Scholar
  259. N.M. Schlatter, V. Belyey, B. Gustavsson, N. Ivchenko, D. Whiter, H. Dahlgren, S. Tuttle, T. Grydeland, Auroral ion acoustic wave enhancement observed with a radar interferometer system. Ann. Geophys. 33, 837–844 (2015).  https://doi.org/10.5194/angeo-33-837-2015 ADSCrossRefGoogle Scholar
  260. W. Schumann, On the damping of electromagnetic self-oscillations in the system earth–air–ionosphere. Z. Naturforsch. 7(a2), 250149 (1952).  https://doi.org/10.1515/zna-1952-0202 (in German) ADSCrossRefGoogle Scholar
  261. H. Scoffield, T. Yeoman, T. Robinson, L. Baddeley, R. Dhillon, D. Wright, T. Raita, T. Turunen, First results of artificial stimulation of the ionospheric Alfvén resonator at 78 N. Geophys. Res. Lett. 33(L19), 103 (2006).  https://doi.org/10.1029/2006GL027 CrossRefGoogle Scholar
  262. K.J.F. Sedgemore-Schulthess, J.-P. St. Maurice, Naturally enhanced ion-acoustic spectra and their interpretation. Surv. Geophys. 22, 55–92 (2001) ADSGoogle Scholar
  263. A. Senior, F. Honary, P.J. Chapman, M.T. Rietveld, T.S. Kelso, M.J. Kosch, High-frequency magnetospheric sounding at EISCAT: some trials and their implications. Radio Sci. 43, RS4009 (2008).  https://doi.org/10.1029/2007RS003779 ADSCrossRefGoogle Scholar
  264. A. Senior, M.T. Rietveld, M.J. Kosch, W. Singer, Diagnosing radio plasma heating in the polar summer mesosphere using cross-modulation: Theory and observations. J. Geophys. Res. 115, A09318 (2010).  https://doi.org/10.1029/2010JA015379 ADSCrossRefGoogle Scholar
  265. A. Senior, M.T. Rietveld, F. Honary, W. Singer, M.J. Kosch, Measurements and modelling of cosmic noise absorption changes due to radio heating of the D-region ionosphere. J. Geophys. Res. 116, A04310 (2011).  https://doi.org/10.1029/2010JA016189 ADSCrossRefGoogle Scholar
  266. A. Senior, M.T. Rietveld, I. Haggstrom, M.J. Kosch, Radio-induced incoherent scatter ion line enhancements with wide altitude extents in the high-latitude ionosphere. Geophys. Res. Lett. 40(9), 1669–1674 (2013).  https://doi.org/10.1002/grl.50272 ADSCrossRefGoogle Scholar
  267. A. Senior, A. Mahmoudian, H. Pinedo, C. La Hoz, M.T. Rietveld, W.A. Scales, M.J. Kosch, First modulation of high-frequency polar mesospheric summer echoes by radio heating of the ionosphere. Geophys. Res. Lett. 41(15), 5347–5353 (2014).  https://doi.org/10.1002/2014GL060703 ADSCrossRefGoogle Scholar
  268. E.N. Sergeev et al., Exploring HF-induced ionospheric turbulence by Doppler sounding and stimulated electromagnetic emissions at HAARP heating facility. Radio Sci. 51 (2016).  https://doi.org/10.1002/2015RS005936
  269. E.N. Sergeev, V.L. Frolov, G.P. Komrakov, B. Thide, Temporal evolution of HF-excited plasma waves, measured at different pump frequencies by stimulated electromagnetic emission. J. Atmos. Sol.-Terr. Phys. 59(18), 2383–2400 (1997) ADSGoogle Scholar
  270. E.N. Sergeev, V.L. Frolov, G.N. Boiko, G.P. Komrakov, Results of investigation of the Langmuir and upper hybrid plasma turbulence evolution by means of the stimulated ionospheric emission. Radiophys. Quantum Electron. 41(3), 206–228 (1998) ADSGoogle Scholar
  271. E.N. Sergeev, S.M. Grach, G.P. Komrakov, V.L. Frolov, P. Stubbe, B. Thide, T.B. Leyser, T.D. Carozzi, Influence of small-scale irregularities on characteristics of the overshoot effect in the temporal evolution of stimulated electromagnetic emission. Part I. Development stage. Radiophys. Quantum Electron. 42(7), 544–556 (1999) ADSGoogle Scholar
  272. E.N. Sergeev, S.M. Grach, P.V. Kotov, Study of the excitation conditions and characteristics of ionospheric plasma turbulence at the development stage of the pondermotive parametric instability. Radiophys. Quantum Electron. 47(3), 185–204 (2004) ADSGoogle Scholar
  273. E.N. Sergeev, V.L. Frolov, S.M. Grach, P.V. Kotov, On the morphology of SEE spectral features in a wide pump wave frequency range. Adv. Space Res. 38(11), 2518–2526 (2006).  https://doi.org/10.1016/j.asr.2005.02.046 ADSCrossRefGoogle Scholar
  274. E. Sergeev, S. Grach, A. Shindin, E. Mishin, P. Bernhardt, S. Briczinski, B. Isham, M. Broughton, J. LaBelle, B. Watkins, Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP. Phys. Rev. Lett. 110 (2013).  https://doi.org/10.1134/S1028335814020074
  275. E.N. Sergeev, S.M. Grach, V.L. Frolov, A.V. Shinding, Diagnostics of the generation, decay, and transfer of artificial plasma perturbations by means of short pulses of a high-power radio emission. Radiophys. Quantum Electron. 59(11), 876–887 (2017).  https://doi.org/10.1007/s11141-017-9758-2 ADSCrossRefGoogle Scholar
  276. T. Sergienko, I. Kornilov, E. Belova et al., Optical effects in the aurora caused by ionospheric HF heating. J. Atmos. Sol.-Terr. Phys. 99(18), 2401–2407 (1997) ADSGoogle Scholar
  277. T. Sergienko, B. Gustavsson, U. Brandstrom, K. Axelsson, Modelling of optical emissions enhanced by the HF pumping of the ionospheric F-region. Ann. Geophys. 30, 885–895 (2010).  https://doi.org/10.5194/angeo-30-885-2012 ADSCrossRefGoogle Scholar
  278. V. Shapiro, V. Shevchenko, Strong turbulence of plasma oscillations, in Basic Plasma Physics, vol. 2, ed. by A. Galeev, R. Sudan (North-Holland, New York, 1984), pp. 123–182 Google Scholar
  279. A.V. Shindin et al., The 630 nm and 557.7 nm airglow during HF ionosphere pumping by the SURA facility radiation for pump frequencies near the fourth electron gyroharmonic. Radiophys. Quantum Electron. 57(11), 759–772 (2015) ADSGoogle Scholar
  280. M.M. Shvarts, S.M. Grach, E.N. Sergeev, V.L. Frolov, On the generation of the stimulated electromagnetic emission. The computer simulation results. Adv. Space Res. 15(12), 59–62 (1995) Google Scholar
  281. C.L. Siefring, P.A. Bernhardt, H.G. James, R.T. Parris, The CERTO beacon on CASSIOPE/e-POP and experiments using high-power HF ionospheric heaters. Space Sci. Rev. 189, 107–122 (2014).  https://doi.org/10.1007/s11214-014-0110-2 ADSCrossRefGoogle Scholar
  282. F. Simoes, R. Pfaff, H. Freudenreich, Satellite observations of Schumann resonances in the Earth’s ionosphere. Geophys. Res. Lett. 38(L22), 101 (2011).  https://doi.org/10.1029/2011GL049668 CrossRefGoogle Scholar
  283. M. Starodubtsev, V. Nazarov, A. Kostrov, Laboratory study of nonlinear trapping of magnetized Langmuir waves inside a density depletion. Phys. Rev. Lett. 98, 195001 (2007).  https://doi.org/10.1103/PhysRevLett.98.195001 ADSCrossRefGoogle Scholar
  284. A.V. Streltsov, T.R. Pedersen, An alternative method for generation of ULF waves by ionospheric heating. Geophys. Res. Lett. 37, L14101 (2010).  https://doi.org/10.1029/2010GL043543 ADSCrossRefGoogle Scholar
  285. A.V. Streltsov, T.R. Pedersen, Excitation of zero-frequency magnetic field-aligned currents by ionospheric heating. Ann. Geophys. 29, 1147 (2011).  https://doi.org/10.5194/angeo-29-1147-2011 ADSCrossRefGoogle Scholar
  286. A. Streltsov, W. Lotko, G. Milikh, Simulations of ULF field-aligned currents generated by HF heating of the ionosphere. J. Geophys. Res. 110, 629 (2005).  https://doi.org/10.1029/2004JA010 CrossRefGoogle Scholar
  287. A.V. Streltsov, T.R. Pedersen, E.V. Mishin, A.L. Snyder, Ionospheric feedback instability and substorm development. J. Geophys. Res. 115, A07205 (2010a).  https://doi.org/10.1029/2009JA014961 ADSCrossRefGoogle Scholar
  288. A.V. Streltsov, M. Gołkowski, U.S. Inan, K.D. Papadopoulos, Propagation of whistler-mode waves with a modulated frequency in the magnetosphere. J. Geophys. Res. 115, A09209 (2010b).  https://doi.org/10.1029/2009JA015155 ADSCrossRefGoogle Scholar
  289. A.V. Streltsov, C.-L. Chang, J. Labenski, G.M. Milikh, A. Vartanyan, A.L. Snyder, Excitation of the ionospheric Alfvén resonator from the ground: theory and experiments. J. Geophys. Res. 116, A10221 (2011).  https://doi.org/10.1029/2011JA016680 ADSCrossRefGoogle Scholar
  290. A.V. Streltsov, T. Guido, B. Tulegenov, J. Labenski, C.-L. Chang, Artificial excitation of ELF waves with frequency of Schumann resonance. J. Atmos. Sol.-Terr. Phys. 119, 110 (2014).  https://doi.org/10.1016/j.jastp.2014.07.004 ADSCrossRefGoogle Scholar
  291. P. Stubbe, Review of ionospheric modification experiments at Tromsø. J. Atmos. Terr. Phys. 58, 1–4 (1996). 349–368 Google Scholar
  292. P. Stubbe, T. Hagfors, The Earth’s ionosphere: a wall-less plasma laboratory. Surv. Geophys. 18(1), 57–127 (1997) ADSGoogle Scholar
  293. P. Stubbe, H. Kopka, Modulation of the polar electrojet by powerful HF waves. J. Geophys. Res. 82(16), 2319–2325 (1977) ADSGoogle Scholar
  294. P. Stubbe, H. Kopka, Stimulated electromagnetic emission in a magnetized plasma: A new symmetrical spectral feature. Phys. Rev. Lett. 65(2), 183–186 (1990) ADSGoogle Scholar
  295. P. Stubbe, H. Kopka, R.L. Dowden, Generation of ELF and VLF waves by polar electrojet modulation: Experimental results. J. Geophys. Res. 86(A11), 9073 (1981) ADSGoogle Scholar
  296. P. Stubbe, H. Kopka, H. Lauche, M.T. Rietveld, A. Brekke, O. Holt, T.B. Jones, T. Robinson, A. Hedberg, B. Thidé, B. Crochet, H.-J. Lotz, Ionospheric modification experiments in northern Scandinavia. J. Atmos. Terr. Phys. 44(12), 1025–1041 (1982) ADSGoogle Scholar
  297. P. Stubbe, H. Kopka, B. Thidé, H. Derblom, Stimulated electromagnetic emission: a new technique to study the parametric decay instability in the ionosphere. J. Geophys. Res. 89(A9), 7523–7536 (1984) ADSGoogle Scholar
  298. P. Stubbe, H. Kopka, M.T. Rietveld, A. Frey, P. Hoeg, H. Kohl, E. Nielsen, G. Rose, C. LaHoz, R. Barr, H. Derblom, A. Hedberg, B. Thide, T.B. Jones, T. Robinson, A. Brekke, T. Hansen, O. Holt, Ionospheric modification experiments with the Tromsøheating facility. J. Atmos. Terr. Phys. 47(12), 1151–1163 (1985) ADSGoogle Scholar
  299. P. Stubbe, A.J. Stocker, F. Honary, T.R. Robinson, T.B. Jones, Stimulated electromagnetic emissions (SEE) and anomalous HF wave absorption near electron gyroharmonics. J. Geophys. Res. 99, 6233–6246 (1994) ADSGoogle Scholar
  300. B. Sturman, Interaction of potential oscillations in a magnetoactive plasma. Radiophys. Quantum Electron. 17, 1349–1355 (1974) ADSGoogle Scholar
  301. M.P. Sulzer, J.D. Mathews, A.A. Tomko, A UHF cross-modulation D region heating experiment with aeronomic implications. Radio Sci. 17(2), 435–443 (1982) ADSGoogle Scholar
  302. V. Surkov, N. Nosikova, A. Plyasov, V. Pilipenko, V. Ignatov, Penetration of Schumann resonances into the upper ionosphere. J. Atmos. Sol.-Terr. Phys. 97, 65 (2013) ADSGoogle Scholar
  303. B.D.H. Tellegen, Interaction between radio waves. Nature 131, 840 (1933).  https://doi.org/10.1038/131840a0 ADSCrossRefGoogle Scholar
  304. E.D. Tereshchenko, B.Z. Khudukon, A.V. Gurevich, K.P. Zybin, V.L. Frolov, E.N. Myasnikov, N.V. Muravieva, H.C. Carlson, Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes. Phys. Lett. A 325, 381–388 (2004) ADSGoogle Scholar
  305. B. Thidé, H. Kopka, P. Stubbe, Observations of stimulated scattering of a strong high frequency radio wave in the ionosphere. Phys. Rev. Lett. 49, 1561–1564 (1982).  https://doi.org/10.1103/PhysRevLett.49.1561 ADSCrossRefGoogle Scholar
  306. G.D. Thome, D.W. Blood, First observations of RF backscatter from field-aligned irregularities produced by ionospheric heating. Radio Sci. 9(11), 917–921 (1974) ADSGoogle Scholar
  307. V. Trakhtengertz, A.Y. Feldstein, Quiet auroral arcs: ionospheric effect of magnetospheric convection stratification. Planet. Space Sci. 32, 127 (1984) ADSGoogle Scholar
  308. T.T. Tsuda, M.T. Rietveld, M.J. Kosch, S. Oyama, K. Hosokawa, S. Nozawa, T. Kawabata, A. Mizuno, Y. Ogawa, A survey of conditions for artificial aurora experiments at EISCAT Tromsø site using dynasonde data. Earth Planets Space 70, 40 (2018).  https://doi.org/10.5194/angeo-36-243-2018 ADSCrossRefGoogle Scholar
  309. V.P. Uryadov, G.G. Vertogradov, V.G. Vertogradov, G.P. Komrakov, N. Cherkashin Yu, V.V. Vas’kov, Field-aligned scattering of HF radio waves under modification of the ionosphere by high-power oblique radio waves. Radiophys. Quantum Electron. 50(8), 611–618 (2007) ADSGoogle Scholar
  310. A. Vartanyan, G.M. Milikh, E. Mishin, M. Parrot, I. Galkin, B. Reinisch, J. Huba, G. Joyce, K. Papadopoulos, Artificial ducts caused by HF heating of the ionosphere by HAARP. J. Geophys. Res. 117, A10307 (2012).  https://doi.org/10.1029/2012JA017563 ADSCrossRefGoogle Scholar
  311. A. Vartanyan, G.M. Milikh, B. Eliasson, A.C. Najmi, M. Parrot, K. Papadopoulos, Generation of whistler waves by continuous HF heating of the upper ionosphere. Radio Sci. 51, 1188 (2016).  https://doi.org/10.1002/2015RS005892 ADSCrossRefGoogle Scholar
  312. V.V. Vas’kov, N.I. Bud’ko, O.V. Kapustina, Y.M. Mikhailov, N.A. Ryabova, G.L. Gdalevich, G.P. Komrakov, A.N. Maresov, Detection on the INTERCOSMOS-24 satellite of VLF and ELF waves stimulated in the topside ionosphere by the heating facility SURA. J. Atmos. Sol.-Terr. Phys. 60(12), 1261–1274 (1998).  https://doi.org/10.1016/S1364-6826(98)00054-6 ADSCrossRefGoogle Scholar
  313. J. Vierinen, A. Kero, M.T. Rietveld, High latitude artificial periodic irregularity observations with the upgraded EISCAT heating facility. J. Atmos. Sol.-Terr. Phys. 105–106, 253–261 (2013) ADSGoogle Scholar
  314. M.N. Vlasov, M.C. Kelley, D.L. Hysell, The main types of electron energy distribution determined by model fitting to optical emissions during HF wave ionospheric modification experiments. J. Geophys. Res. 118, 3877–3890 (2013).  https://doi.org/10.1002/jgra.50364 CrossRefGoogle Scholar
  315. A. Volokitin, C. Krafft, Wave decay processes in a weakly magnetized plasma. Phys. Lett. A 336, 193–198 (2005) ADSGoogle Scholar
  316. A. Volokitin, E. Mishin, Relaxation of an electron beam in a plasma with infrequent collisions. Sov. J. Plasma Phys. 5, 654 (1979) ADSGoogle Scholar
  317. J. Wang, D. Newman, M. Goldman, Vlasov simulations of electron heating by Langmuir turbulence near the critical altitude in the radiation-modified ionosphere. J. Atmos. Sol.-Terr. Phys. 59, 2461 (1997).  https://doi.org/10.1016/S1364-6826(96)00140-X ADSCrossRefGoogle Scholar
  318. A.Y. Wong, J. Carroll, R. Dickman, W. Harrison, W. Huhn, B. Lure, M. McCarrick, J. Santoru, C. Schock, G. Wong, R.F. Wuerker, High-power radiating facility at the HIPAS Observatory. Radio Sci. 25(6), 1269–1282 (1990) ADSGoogle Scholar
  319. D.M. Wright, J.A. Davies, T.K. Yeoman, T. Robinson, S.R. Cash, E. Kolesnikova, M. Lester, P.J. Chapman, R.J. Strangeway, R.B. Horne, M.T. Rietveld, C.W. Carlson, Detection of artificially generated ULF waves by the FAST spacecraft and its application to the “tagging” of narrow flux tubes. J. Geophys. Res. 108(A2), 1090 (2003).  https://doi.org/10.1029/2002JA009483 CrossRefGoogle Scholar
  320. H. Xi, W. Scales, Numerical simulation studies on the broad upshifted maximum of ionospheric stimulated electromagnetic emission. J. Geophys. Res. 106, 12,787 (2001).  https://doi.org/10.1029/2000JA000322 ADSCrossRefGoogle Scholar
  321. N.A. Zabotin, E.S. Kovalenko, Simple numerical model of radio wave multiple scattering effects in the ionospheric plasma layer. Waves Random Media 9(3), 393–399 (1999).  https://doi.org/10.1088/0959-7174/9/3/307 ADSCrossRefzbMATHGoogle Scholar
  322. V. Zakharov, Collapse and self-focusing of Langmuir waves, in Basic Plasma Physics, vol. 2, ed. by A. Galeev, R. Sudan (North-Holland, New York, 1984), pp. 81–121 Google Scholar
  323. H.L. Zhou, J. Huang, S.P. Kuo, Cascading of the upper hybrid/electron Bernstein wave in ionospheric heating experiments. Phys. Plasmas 1, 3044–3052 (1994) ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • A. V. Streltsov
    • 1
    • 2
    Email author return OK on get
  • J.-J. Berthelier
    • 3
  • A. A. Chernyshov
    • 4
  • V. L. Frolov
    • 5
    • 6
  • F. Honary
    • 7
  • M. J. Kosch
    • 7
    • 8
    • 9
  • R. P. McCoy
    • 10
  • E. V. Mishin
    • 11
  • M. T. Rietveld
    • 12
    • 13
  1. 1.Embry-Riddle Aeronautical UniversityDaytona BeachUSA
  2. 2.National Academy of Sciences at Space Vehicles DirectorateAir Force Research LaboratoryAlbuquerqueUSA
  3. 3.LATMOS/IPSL, CNRS-UPMC-UVSQUPMCParisFrance
  4. 4.Space Research InstituteMoscowRussia
  5. 5.Nizhny Novgorod State UniversityNizhny NovgorodRussia
  6. 6.Kazan Federal UniversityKazanRussia
  7. 7.Lancaster UniversityLancasterUK
  8. 8.South African National Space AgencyHermanusSouth Africa
  9. 9.University of the Western CapeBellvilleSouth Africa
  10. 10.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA
  11. 11.Air Force Research LaboratorySpace Vehicles DirectorateAlbuquerqueUSA
  12. 12.EISCATRamfjordbotnNorway
  13. 13.UiT The Arctic University of NorwayTromsøNorway

Personalised recommendations