Advertisement

Space Science Reviews

, 214:114 | Cite as

On the Detectability and Use of Normal Modes for Determining Interior Structure of Mars

  • Felix BissigEmail author
  • Amir Khan
  • Martin van Driel
  • Simon C. Stähler
  • Domenico Giardini
  • Mark Panning
  • Mélanie Drilleau
  • Philippe Lognonné
  • Tamara V. Gudkova
  • Vladimir N. Zharkov
  • Ana-Catalina Plesa
  • William B. Banerdt
Article
  • 241 Downloads
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

The InSight mission to Mars is well underway and will be the first mission to acquire seismic data from a planet other than Earth. In order to maximise the science return of the InSight data, a multifaceted approach will be needed that seeks to investigate the seismic data from a series of different frequency windows, including body waves, surface waves, and normal modes. Here, we present a methodology based on globally-averaged models that employs the long-period information encoded in the seismic data by looking for fundamental-mode spheroidal oscillations. From a preliminary analysis of the expected signal-to-noise ratio, we find that normal modes should be detectable during nighttime in the frequency range 5–15 mHz. For improved picking of (fundamental) normal modes, we show first that those are equally spaced between 5–15 mHz and then show how this spectral spacing, obtained through autocorrelation of the Fourier-transformed time series can be further employed to select normal mode peaks more consistently. Based on this set of normal-mode spectral frequencies, we proceed to show how this data set can be inverted for globally-averaged models of interior structure (to a depth of \(\sim 250~\mbox{km}\)), while simultaneously using the resultant synthetically-approximated normal mode peaks to verify the initial peak selection. This procedure can be applied iteratively to produce a “cleaned-up” set of spectral peaks that are ultimately inverted for a “final” interior-structure model. To investigate the effect of three-dimensional (3D) structure on normal mode spectra, we constructed a 3D model of Mars that includes variations in surface and Moho topography and lateral variations in mantle structure and employed this model to compute full 3D waveforms. The resultant time series are converted to spectra and the inter-station variation hereof is compared to the variation in spectra computed using different 1D models. The comparison shows that 3D effects are less significant than the variation incurred by the difference in radial models, which suggests that our 1D approach represents an adequate approximation of the global average structure of Mars.

Keywords

Mars Seismology Normal modes Interior structure Inverse problems 

Notes

Acknowledgements

We thank two anonymous reviewers for comments that helped improve the manuscript. We would like to acknowledge support from the Swiss National Science Foundation (SNSF project 200021\(\_\)172508). This work was also supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s830. Part of the computations were performed on the ETH cluster Euler. This is InSight contribution 72.

Supplementary material

11214_2018_547_MOESM1_ESM.pdf (855 kb)
Additional material can be found in the Online Resource of this article. It contains figures showing 1) additionally investigated radial models, 2) corresponding dispersion curves and spacing of fundamental modes (\(\Delta f\)), and 3) comparison of estimated and theoretical \(\Delta f\). (PDF 855 kB)

References

  1. M. Afanasiev, C. Boehm, M. van Driel, L. Krischer, M. Rietmann, D. May, M. Knepley, A. Fichtner, Salvus: A high-performance package for full waveform modelling and inversion from laboratory to global scales. Geophys. J. Int. (2018 submitted). ID GJI-S-17-1139 Google Scholar
  2. D. Al-Attar, J.H. Woodhouse, Calculation of seismic displacement fields in self-gravitating Earth models—applications of minors vectors and symplectic structure. Geophys. J. Int. 175(3), 1176–1208 (2008).  https://doi.org/10.1111/j.1365-246X.2008.03961.x ADSCrossRefGoogle Scholar
  3. D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksoz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewicz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Res. 82(28), 4524–4546 (1977).  https://doi.org/10.1029/JS082i028p04524 ADSCrossRefGoogle Scholar
  4. W.B. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S.W. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T. van Zoest, R. Weber, M.A. Wieczorek, R. Garcia, K. Hurst, InSight: a discovery mission to explore the interior of Mars, in Lunar and Planetary Science Conference. Lunar and Planetary Institute Technical Report, vol. 44, 2013, p. 1915 Google Scholar
  5. D. Baratoux, H. Samuel, C. Michaut, M.J. Toplis, M. Monnereau, M. Wieczorek, R. Garcia, K. Kurita, Petrological constraints on the density of the Martian crust. J. Geophys. Res. 119(E7), 1707–1727 (2014).  https://doi.org/10.1002/2014JE004642 CrossRefGoogle Scholar
  6. C.M. Bertka, Y. Fei, Mineralogy of the Martian interior up to core-mantle boundary pressures. J. Geophys. Res. 102(B3), 5251–5264 (1997).  https://doi.org/10.1029/96JB03270 ADSCrossRefGoogle Scholar
  7. P. Bogiatzis, M. Ishii, Constraints on the moment tensor of the 2011 Tohoku-Oki earthquake from Earth’s free oscillations. Bull. Seismol. Soc. Am. 104(2), 875–884 (2014).  https://doi.org/10.1785/0120130243 CrossRefGoogle Scholar
  8. B.A. Bolt, J.S. Derr, Free bodily vibrations of the terrestrial planets. Vistas Astron. 11, 69–102 (1969) ADSCrossRefGoogle Scholar
  9. M. Böse, J.F. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, P. Lognonné, W.B. Banerdt, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. 262, 48–65 (2017).  https://doi.org/10.1016/j.pepi.2016.11.003 ADSCrossRefGoogle Scholar
  10. E. Bozdağ, Y. Ruan, N. Metthez, A. Khan, K. Leng, M. van Driel, M. Wieczorek, A. Rivoldini, C.S. Larmat, D. Giardini, J. Tromp, P. Lognonné, W.B. Banerdt, Simulations of seismic wave propagation on Mars. Space Sci. Rev. 211, 571–594 (2017).  https://doi.org/10.1007/s11214-017-0350-z ADSCrossRefGoogle Scholar
  11. R.E. Carr, R.L. Kovach, Toroidal oscillations of the Moon. Icarus 1(1), 75–76 (1962) ADSCrossRefGoogle Scholar
  12. S. Ceylan, M. van Driel, F. Euchner, A. Khan, J. Clinton, L. Krischer, M. Böse, S.C. Stähler, D. Giardini, From Initial models of seismicity, structure, and noise to synthetic seismograms for Mars. Space Sci. Rev. 211, 595–610 (2017).  https://doi.org/10.1007/s11214-017-0380-6 ADSCrossRefGoogle Scholar
  13. J.F. Clinton, D. Giardini, P. Lognonné, W.B. Banerdt, M. van Driel, M. Drilleau, N. Murdoch, M. Panning, R. Garcia, D. Mimoun, M. Golombek, J. Tromp, R. Weber, M. Böse, S. Ceylan, I. Daubar, B. Kenda, A. Khan, L. Perrin, A. Spiga, Preparing for InSight: an invitation to participate in a blind test for Martian seismicity. Seismol. Res. Lett. 88(5), 1290–1302 (2017).  https://doi.org/10.1785/0220170094 CrossRefGoogle Scholar
  14. J.A.D. Connolly, The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10(10), Q10014. (2009).  https://doi.org/10.1029/2009GC002540 ADSCrossRefGoogle Scholar
  15. F.A. Dahlen, R.V. Sailor, Rotational and elliptical splitting of the free oscillations of the Earth. Geophys. J. Int. 58(3), 609–623 (1979).  https://doi.org/10.1111/j.1365-246X.1979.tb04797.x ADSCrossRefGoogle Scholar
  16. V. Debaille, Q.-Z. Yin, A.D. Brandon, B. Jacobsen, Martian mantle mineralogy investigated by the 176Lu–176Hf and 147Sm–143Nd systematics of shergottites. Earth Planet. Sci. Lett. 269(1–2), 186–199 (2008).  https://doi.org/10.1016/j.epsl.2008.02.008 ADSCrossRefGoogle Scholar
  17. J.S. Derr, Free oscillations of new lunar models. Phys. Earth Planet. Inter. 2(2), 61–68 (1969) ADSCrossRefGoogle Scholar
  18. G. Dreibus, H. Wänke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985) ADSGoogle Scholar
  19. J.J. Durek, G. Ekström, A radial model of anelasticity consistent with long-period surface-wave attenuation. Bull. Seismol. Soc. Am. 86(1A), 144–158 (1996) Google Scholar
  20. W.M. Folkner, S.W. Asmar, V. Dehant, R.W. Warwick, The Rotation and Interior Structure Experiment (RISE) for the InSight mission to Mars, in Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 43, 2012, p. 1721 Google Scholar
  21. J. Gagnepain-Beyneix, P. Lognonné, H. Chenet, D. Lombardi, T. Spohn, A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet. Inter. 159(3–4), 140–166 (2006).  https://doi.org/10.1016/j.pepi.2006.05.009 ADSCrossRefGoogle Scholar
  22. P. Gaulme, B. Mosser, F.-X. Schmider, T. Guillot, Seismology of giant planets, in Extraterrestrial Seismology, ed. by V. Tong, R. García (Cambridge University Press, Cambridge, 2015), pp. 189–202. 978-1-107-04172-1.  https://doi.org/10.1017/CBO9781107300668.017 CrossRefGoogle Scholar
  23. F. Gilbert, A. Dziewonski, An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philos. Trans. R. Soc. Lond. A 278(1280), 187–269 (1975).  https://doi.org/10.1098/rsta.1975.0025 ADSCrossRefGoogle Scholar
  24. N.R. Goins, A.R. Lazarewicz, Martian seismicity. Geophys. Res. Lett. 6(5), 368–370 (1979).  https://doi.org/10.1029/GL006i005p00368 ADSCrossRefGoogle Scholar
  25. M.P. Golombek, A revision of Mars seismicity from surface faulting, in Abstracts of Papers Submitted to the Lunar and Planetary Science Conference, vol. 33 (2002) Google Scholar
  26. M.P. Golombek, W.B. Banerdt, K.L. Tanaka, D.M. Tralli, A prediction of Mars seismicity from surface faulting. Science 258(5084), 979–981 (1992).  https://doi.org/10.1126/science.258.5084.979 ADSCrossRefGoogle Scholar
  27. T.V. Gudkova, S.N. Raevskii, Spectrum of the free oscillations of the Moon. Sol. Syst. Res. 47(1), 11–19 (2013).  https://doi.org/10.1134/S0038094613010024 ADSCrossRefGoogle Scholar
  28. T.V. Gudkova, V.N. Zharkov, The exploration of Martian interiors using the spheroidal oscillation method. Planet. Space Sci. 44(11), 1223–1230 (1996).  https://doi.org/10.1016/S0032-0633(96)00124-9 ADSCrossRefGoogle Scholar
  29. T.V. Gudkova, V.N. Zharkov, The spectrum of torsional oscillations of the Moon. Sol. Syst. Res. 34(6), 460–468 (2000).  https://doi.org/10.1023/A:1005214012072 ADSCrossRefGoogle Scholar
  30. T.V. Gudkova, V.N. Zharkov, On the excitation of free oscillations on the Moon. Astron. Lett. 27(10), 658–670 (2001).  https://doi.org/10.1134/1.1404460 ADSCrossRefGoogle Scholar
  31. T.V. Gudkova, V.N. Zharkov, The exploration of the lunar interior using torsional oscillations. Planet. Space Sci. 50(10–11), 1037–1048 (2002).  https://doi.org/10.1016/S0032-0633(02)00070-3 ADSCrossRefGoogle Scholar
  32. T.V. Gudkova, V.N. Zharkov, Mars: interior structure and excitation of free oscillations. Phys. Earth Planet. Inter. 142(1–2), 1–22 (2004).  https://doi.org/10.1016/j.pepi.2003.10.004 ADSCrossRefGoogle Scholar
  33. T.V. Gudkova, V.N. Zharkov, Theoretical free oscillations spectrum for Saturn interior models. Adv. Space Res. 38(4), 764–769 (2006).  https://doi.org/10.1016/j.asr.2006.02.042 ADSCrossRefGoogle Scholar
  34. T.V. Gudkova, V.N. Zharkov, S.A. Lebedev, Theoretical spectrum of free oscillations of Mars. Sol. Syst. Res. 27, 129–148 (1993) ADSGoogle Scholar
  35. T.V. Gudkova, B. Mosser, J. Provost, G. Gabrier, D. Gautier, T. Guillot, Seismological comparison of giant planet interior models. Astron. Astrophys. 303, 594–603 (1995) ADSGoogle Scholar
  36. T.V. Gudkova, P. Lognonné, J. Gagnepain-Beyneix, Large impacts detected by the Apollo seismometers: impactor mass and source cutoff frequency estimations. Icarus 211, 1049–1065 (2011).  https://doi.org/10.1016/j.icarus.2010.10.028 ADSCrossRefGoogle Scholar
  37. I. Jackson, U.H. Faul, Grainsize-sensitive viscoelastic relaxation in olivine: towards a robust laboratory-based model for seismological application. Phys. Earth Planet. Inter. 183(1–2), 151–163 (2010).  https://doi.org/10.1016/j.pepi.2010.09.005 ADSCrossRefGoogle Scholar
  38. B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R. Lorenz, D. Banfield, M. Golombek, Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. 211(1), 501–524 (2017).  https://doi.org/10.1007/s11214-017-0378-0 ADSCrossRefGoogle Scholar
  39. A. Khan, K. Mosegaard, New information on the deep lunar interior from an inversion of lunar free oscillation periods. Geophys. Res. Lett. 28(9), 1791–1794 (2001) ADSCrossRefGoogle Scholar
  40. A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016).  https://doi.org/10.1016/j.pepi.2016.05.017 ADSCrossRefGoogle Scholar
  41. A. Khan, C. Liebske, A. Rozel, A. Rivoldini, F. Nimmo, J.A.D. Connolly, A.-C. Plesa, D. Giardini, A geophysical perspective on the bulk composition of Mars. J. Geophys. Res. 123(E2), 575–611 (2018).  https://doi.org/10.1002/2017JE005371 CrossRefGoogle Scholar
  42. M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111(E11), 1–23 (2006).  https://doi.org/10.1029/2006JE002708 CrossRefGoogle Scholar
  43. N. Kobayashi, K. Nishida, Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature 395(6700), 357–360 (1998) ADSCrossRefGoogle Scholar
  44. C. Larmat, J.-P. Montagner, Y. Capdeville, W.B. Banerdt, P. Lognonné, J.-P. Vilotte, Numerical assessment of the effects of topography and crustal thickness on martian seismograms using a coupled modal solution spectral element method. Icarus 196(1), 78–89 (2008).  https://doi.org/10.1016/j.icarus.2007.12.030 ADSCrossRefGoogle Scholar
  45. P. Lognonné, C. Johnson, Planetary seismology, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2014), pp. 69–122. 978-0-444-52748-6.  https://doi.org/10.1016/B978-044452748-6.00154-1 CrossRefGoogle Scholar
  46. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14(3), 239–302 (1993).  https://doi.org/10.1007/BF00690946 ADSCrossRefGoogle Scholar
  47. P. Lognonné, B. Mosser, F.A. Dahlen, Excitation of Jovian seismic waves by the Shoemaker-Levy 9 cometary impact. Icarus 110(2), 180–195 (1994).  https://doi.org/10.1006/icar.1994.1115 ADSCrossRefGoogle Scholar
  48. P. Lognonné, J. Gagnepain-Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44(11), 1237–1249 (1996).  https://doi.org/10.1016/S0032-0633(96)00083-9 ADSCrossRefGoogle Scholar
  49. P. Lognonné, W.B. Banerdt, D. Giardini, U. Christensen, D. Mimoun, S. de Raucourt, A. Spiga, R. Garcia, A. Mocquet, M. Panning, E. Beucler, L. Boschi, W. Goetz, T. Pike, C. Johnson, R. Weber, M. Wieczorek, K. Larmat, N. Kobayashi, J. Tromp, Insight and single-station broadband seismology: from signal and noise to interior structure determination, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 43, 2012, p. 1983 Google Scholar
  50. P. Lognonné, F. Karakostas, L. Rolland, Y. Nishikawa, Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: from Earth observation to Mars and Venus perspectives. J. Acoust. Soc. Am. 140(2), 1447–1468 (2016).  https://doi.org/10.1121/1.4960788 ADSCrossRefGoogle Scholar
  51. R.D. Lorenz, Y. Nakamura, J.R. Murphy, Viking-2 seismometer measurements on Mars: PDS data archive and meteorological applications. Earth Space Sci. 4(11), 681–688 (2017).  https://doi.org/10.1002/2017EA000306 ADSCrossRefGoogle Scholar
  52. T. Lyubetskaya, J. Korenaga, Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J. Geophys. Res. 112(B3), B03211 (2007).  https://doi.org/10.1029/2005JB004223 ADSCrossRefGoogle Scholar
  53. G. Masters, J.H. Woodhouse, G. Freeman, 2011. Mineos v1.0.2 [software], Computational Infrastructure for Geodynamics, https://geodynamics.org/cig/software/mineos/
  54. W.F. McDonough, S.-S. Sun, The composition of the Earth. Chem. Geol. 120(3–4), 223–253 (1995).  https://doi.org/10.1016/0009-2541(94)00140-4 ADSCrossRefGoogle Scholar
  55. H.Y. McSween Jr., What we have learned about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994) ADSCrossRefGoogle Scholar
  56. W. Menke, Solution of the linear, Gaussian inverse problem, Viewpoint 1: the length method, in Geophysical Data Analysis: Discrete Inverse Theory, ed. by W. Menke (Elsevier, Boston, 2012), pp. 39–68. 978-0-12-397160-9 CrossRefGoogle Scholar
  57. D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, B. Banerdt (SEIS-Team), The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci. Rev. 211(1–4), 383–428 (2017).  https://doi.org/10.1007/s11214-017-0409-x ADSCrossRefGoogle Scholar
  58. K. Mosegaard, A. Tarantola, Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. 100(B7), 12431–12447 (1995) ADSCrossRefGoogle Scholar
  59. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the Insight mission. Space Sci. Rev. 211(1–4), 457–483 (2017a).  https://doi.org/10.1007/s11214-017-0343-y ADSCrossRefGoogle Scholar
  60. N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, D. Banfield, W.B. Banerdt, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. 211(1–4), 429–455 (2017b).  https://doi.org/10.1007/s11214-016-0311-y ADSCrossRefGoogle Scholar
  61. G.A. Neumann, M.T. Zuber, M.A. Wieczorek, P.J. McGovern, F.G. Lemoine, D.E. Smith, Crustal structure of Mars from gravity and topography. J. Geophys. Res. 109, E08002 (2004).  https://doi.org/10.1029/2004JE002262 ADSCrossRefGoogle Scholar
  62. F. Nimmo, U.H. Faul, Dissipation at tidal and seismic frequencies in a melt-free, anhydrous Mars. J. Geophys. Res. 118(E12), 2558–2569 (2013).  https://doi.org/10.1002/2013JE004499 CrossRefGoogle Scholar
  63. E.A. Okal, D.L. Anderson, Theoretical models for Mars and their seismic properties. Icarus 33(3), 514–528 (1978).  https://doi.org/10.1016/0019-1035(78)90187-2 ADSCrossRefGoogle Scholar
  64. E.A. Okal, S. Hongsresawat, S. Stein, Split-mode evidence for no ultraslow component to the source of the 2010 Maule, Chile, earthquake. Bull. Seismol. Soc. Am. 102(1), 391–397 (2012).  https://doi.org/10.1785/0120100240 CrossRefGoogle Scholar
  65. M.P. Panning, É. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015).  https://doi.org/10.1016/j.icarus.2014.10.035 ADSCrossRefGoogle Scholar
  66. M.P. Panning, P. Lognonné, W.B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, E. Bozdağ, M. Drilleau, T.V. Gudkova, S. Hempel, A. Khan, V. Lekić, N. Murdoch, A.-C. Plesa, A. Rivoldini, N. Schmerr, Y. Ruan, O. Verhoeven, C. Gao, U. Christensen, J. Clinton, V. Dehant, D. Giardini, D. Mimoun, W. Thomas Pike, S. Smrekar, M. Wieczorek, M. Knapmeyer, J. Wookey, Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 211(1), 611–650 (2017).  https://doi.org/10.1007/s11214-016-0317-5 ADSCrossRefGoogle Scholar
  67. R. Phillips, Expected rate of marsquakes, in Scientific Rationale and Requirements for a Global Seismic Network on Mars. LPI Technical Rep., vol. 91-02 (Lunar and Planetary Institute, Houston, 1991), pp. 35–38 Google Scholar
  68. A.-C. Plesa, M. Grott, N. Tosi, D. Breuer, T. Spohn, M.A. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res. 121(E12), 2386–2403 (2016).  https://doi.org/10.1002/2016JE005126 CrossRefGoogle Scholar
  69. A.-C. Plesa, M. Knapmeyer, M.P. Golombek, D. Breuer, M. Grott, T. Kawamura, P. Lognonne, N. Tosi, R.C. Weber, Present-day Mars’ seismicity predicted from 3-D thermal evolution models of interior dynamics. Geophys. Res. Lett. 45(6), 2580–2589 (2018).  https://doi.org/10.1002/2017GL076124 ADSCrossRefGoogle Scholar
  70. M. Schimmel, E. Stutzmann, S. Ventosa, Low-frequency ambient noise autocorrelations: waveforms and normal modes. Seismol. Res. Lett. 89(4), 1488–1496 (2018).  https://doi.org/10.1785/0220180027 CrossRefGoogle Scholar
  71. S.C. Solomon, D.L. Anderson, W.B. Banerdt, R.G. Butler, P.M. Davis, F.K. Duennebier, Y. Nakamura, E.A. Okal, R.J. Phillips, Scientific Rationale and Requirements for a Global Seismic Network on Mars. Report of a Workshop (Lunar and Planetary Institute, Houston, 1991) Google Scholar
  72. T. Spohn, M. Grott, S. Smrekar, C. Krause, T.L. Hudson (HP3 Instrument Team), Measuring the Martian heat flow using the Heat Flow and Physical Properties Package (HP3), in Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 45, 2014, p. 1916 Google Scholar
  73. L. Stixrude, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals—I. Physical properties. Geophys. J. Int. 162(2), 610–632 (2005).  https://doi.org/10.1111/j.1365-246X.2005.02642.x ADSCrossRefGoogle Scholar
  74. L. Stixrude, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals—II. Phase equilibria. Geophys. J. Int. 184(3), 1180–1213 (2011).  https://doi.org/10.1111/j.1365-246X.2010.04890.x ADSCrossRefGoogle Scholar
  75. G.J. Taylor, The bulk composition of Mars. Chem. Erde 73(4), 401–420 (2013).  https://doi.org/10.1016/j.chemer.2013.09.006 CrossRefGoogle Scholar
  76. S.R. Taylor, S. McLennan, Planetary Crusts: Their Composition, Origin and Evolution (Cambridge University Press, Cambridge, 2009) Google Scholar
  77. N.A. Teanby, J. Wookey, Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter. 186(1–2), 70–80 (2011).  https://doi.org/10.1016/j.pepi.2011.03.004 ADSCrossRefGoogle Scholar
  78. A.H. Treiman, The parental magma of the Nakhla achondrite: ultrabasic volcanism on the shergottite parent body. Geochim. Cosmochim. Acta 50, 1061–1070 (1986).  https://doi.org/10.1016/0016-7037(86)90388-1 ADSCrossRefGoogle Scholar
  79. S.V. Vorontsov, V.N. Zharkov, V.M. Lubimov, The free oscillations of Jupiter and Saturn. Icarus 27, 109–118 (1976) ADSCrossRefGoogle Scholar
  80. V.N. Zharkov, T.V. Gudkova, A.V. Batov, On estimating the dissipative factor of the Martian interior. Sol. Syst. Res. 51(6), 479–490 (2017).  https://doi.org/10.1134/S0038094617060089 ADSCrossRefGoogle Scholar
  81. Y. Zheng, F. Nimmo, T. Lay, Seismological implications of a lithospheric low seismic velocity zone in Mars. Phys. Earth Planet. Inter. 240, 132–141 (2015).  https://doi.org/10.1016/j.pepi.2014.10.004 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Felix Bissig
    • 1
    Email author
  • Amir Khan
    • 1
  • Martin van Driel
    • 1
  • Simon C. Stähler
    • 1
  • Domenico Giardini
    • 1
  • Mark Panning
    • 4
  • Mélanie Drilleau
    • 2
  • Philippe Lognonné
    • 2
  • Tamara V. Gudkova
    • 3
  • Vladimir N. Zharkov
    • 3
  • Ana-Catalina Plesa
    • 5
  • William B. Banerdt
    • 4
  1. 1.Institute of GeophysicsETH ZürichZürichSwitzerland
  2. 2.Institut de Physique du Globe de ParisUniv Paris Diderot-Sorbonne Paris CitéParis Cedex 13France
  3. 3.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  5. 5.Planetary Physics, Institute of Planetary ResearchGerman Aerospace Center (DLR)BerlinGermany

Personalised recommendations