Advertisement

Space Science Reviews

, 214:111 | Cite as

Thermal Properties of Icy Surfaces in the Outer Solar System

  • C. FerrariEmail author
Article
  • 198 Downloads
Part of the following topical collections:
  1. Ices in the Solar System

Abstract

The thermal properties of airless icy surfaces are providing a wealth of information on their regolith structure after eons of space weathering. Numerous observations of the thermal cycles of Jupiter and Saturn icy satellites or Centaurs and TNOs have been acquired in the latest decades thanks to the Galileo and Cassini missions and to the Spitzer and Herschel telescopes. These observations and the latest developments on thermophysical modeling which have been achieved to link the thermal inertia to the regolith structure are reviewed here. Measured thermal inertias of these surfaces covered with water ice are very low, roughly between about 1 and 100 J/m2/K/s1/2. Often interpreted as due to unconsolidated or highly porous regoliths, these low values may result from a composition of amorphous ice or from the roughness of grains defacing contacts in a regolith of normal compaction. Taken together, thermal inertias appear to increase with probed depth and to decrease with heliocentric distance. This latter effect can be easily reproduced if heat transfer is dominated by radiation in pores, despite low temperatures, because the conduction through grains is limited, either due to the presence of amorphous ice or because of the roughness of grains.

Keywords

Thermal inertia Heat and radiative Transfer Icy satellites Trans-neptunian objects Regoliths 

Notes

Acknowledgements

This research is being supported by the Centre National d’Etudes Spatiales (CNES).

References

  1. O. Andersson, H. Suga, Solid State Commun. 91(12), 985 (1994) ADSCrossRefGoogle Scholar
  2. R.A. Baragiola, Planet. Space Sci. 51, 953 (2003) ADSCrossRefGoogle Scholar
  3. R.A. Baragiola et al., in The Science of Solar System Ices, ed. by M.S. Gudipati, J. Castillo-Rogez (Springer, Berlin, 2013), p. 527 CrossRefGoogle Scholar
  4. D.G. Blackburn, B. Buratti, R. Ulrich, Icarus 212, 329–338 (2011) ADSCrossRefGoogle Scholar
  5. M. Brown, D. Matson, Icarus 72, 84–94 (1987) ADSCrossRefGoogle Scholar
  6. D.W. Carrier, J.K. Mitchell, A. Mahmood, in Proc. of the 4th LSC, Suppl. 4, Geochimica et Cosmochimica Acta, vol. 3 (1973), pp. 2403–2411 Google Scholar
  7. D.P. Cruikshank, L.A. Lebofsky, J. Veverka, in Satellites of Saturn: Optical Properties in Saturn, ed. by T. Gehrels, M.S. Shapley (University of Arizona Press, Tucson, 1984), pp. 640–667 Google Scholar
  8. B.J.R. Davidsson et al., Icarus 252, 1–21 (2015) ADSCrossRefGoogle Scholar
  9. M. Delbo et al., in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (University of Arizona Press, Tucson, 2015), pp. 107–128 Google Scholar
  10. Elder et al., Bull. Am. Astron. Soc. 39, 429 (2007) ADSGoogle Scholar
  11. C. Ferrari, A. Lucas, Astron. Astrophys. 588, A133 (2016) ADSCrossRefGoogle Scholar
  12. C. Ferrari, A. Lucas, in 49th LPS Conf., The Woodlands, Tx, 19–23rd March, 2018 Google Scholar
  13. G. Filacchione et al., Icarus 206, 507–523 (2010) ADSCrossRefGoogle Scholar
  14. G. Filacchione et al., Icarus 271, 292–313 (2016) ADSCrossRefGoogle Scholar
  15. M. Flasar et al., Space Sci. Rev. 115, 169 (2004) ADSCrossRefGoogle Scholar
  16. S. Fornasier et al., Astron. Astrophys. 555, A15 (2013) CrossRefGoogle Scholar
  17. O. Groussin, P. Lamy, L. Jorda, Astron. Astrophys. 413, 1163–1175 (2004) ADSCrossRefGoogle Scholar
  18. M.S. Gudipati, J. Castillo-Rogez (eds.), The Science of Solar System Ices (Springer, Berlin, 2013) Google Scholar
  19. R. Hanel et al., Science 215, 544–548 (1982) ADSCrossRefGoogle Scholar
  20. R. Hanel et al., Science 233, 70–74 (1986) ADSCrossRefGoogle Scholar
  21. R. Hanel et al., Science 246, 1454–1459 (1989) ADSCrossRefGoogle Scholar
  22. O.L. Hansen, Icarus 18, 237–246 (1973) ADSCrossRefGoogle Scholar
  23. G.B. Hansen, T.B. McCord, J. Geophys. Res. 109, E01012 (2004).  https://doi.org/10.1029/2003JE002149 ADSCrossRefGoogle Scholar
  24. B. Hapke, J. Geophys. Res. 101, 16,817–16,832 (1996a) ADSCrossRefGoogle Scholar
  25. B. Hapke, J. Geophys. Res. 101, 16,833–16,840 (1996b) ADSCrossRefGoogle Scholar
  26. B.J. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, Cambridge, 2012) Google Scholar
  27. H.G. Heide, Ultramicroscopy 14, 271–278 (1984) CrossRefGoogle Scholar
  28. C.J.A. Howett et al., Icarus 206, 573–593 (2010).  https://doi.org/10.1016/j.icarus.2009.07.016 ADSCrossRefGoogle Scholar
  29. C.J.A. Howett et al., Icarus 216, 221–226 (2011).  https://doi.org/10.1016/j.icarus.2011.09.007 ADSCrossRefGoogle Scholar
  30. C.J.A. Howett et al., Icarus 221, 1084–1088 (2012).  https://doi.org/10.1016/j.icarus.2012.10.013 ADSCrossRefGoogle Scholar
  31. C.J.A. Howett et al., Icarus 241, 239–247 (2014).  https://doi.org/10.1016/j.icarus.2014.05.047 ADSCrossRefGoogle Scholar
  32. C.J.A. Howett, J.R. Spencer, T. Hurford, A. Verbiscer, M. Segura, Icarus 272, 140–148 (2016) ADSCrossRefGoogle Scholar
  33. C.J.A. Howett et al., in Enceladus and the Icy Moons of Saturn, ed. by P.M. Schenk, R.N. Clark, C.J.A. Howett, A.J. Verbiscer, H.J. Waite (University of Arizona Press, Tucson, 2018) Google Scholar
  34. P. Jenniskens, D.F. Blake, Science 265, 753–756 (1994) ADSCrossRefGoogle Scholar
  35. P. Jenniskens, D.F. Blake, Astrophys. J. 473, 1104–1113 (1996) ADSCrossRefGoogle Scholar
  36. R.E. Johnson, in Solar System Ices, ed. by Schmitt, B. de Bergh, M. Festou (Springer, Berlin, 1998), pp. 303–336 CrossRefGoogle Scholar
  37. R.E. Johnson et al., in Jupiter. The Planet, Satellites and Magnetosphere (2002), pp. 485–512 Google Scholar
  38. R.E. Johnson et al., in The Science of Solar System Ices Gudipati, ed. by M.S. Gudipati, J. Castillo-Rogez (Springer, Berlin, 2013), pp. 551–582 CrossRefGoogle Scholar
  39. J. Klinger, Science 209, 271–272 (1980) ADSCrossRefGoogle Scholar
  40. J.S.V. Lagerros, Astron. Astrophys. 310, 1011–1020 (1996) ADSGoogle Scholar
  41. J.S.V. Lagerros, Astron. Astrophys. 332, 1123–1132 (1998) ADSGoogle Scholar
  42. A. Le Gall et al., Icarus 241, 221–238 (2014) ADSCrossRefGoogle Scholar
  43. A. Le Gall et al., Nat. Astron. 1, 0063 (2017).  https://doi.org/10.1038/s41550-017-0063 CrossRefGoogle Scholar
  44. L.A. Lebofsky, J.R. Spencer, in Asteroids II (University of Arizona Press, Tucson, 1989), pp. 128–147 Google Scholar
  45. E. Lellouch et al., Icarus 147, 220–250 (2000) ADSCrossRefGoogle Scholar
  46. E. Lellouch et al., Astron. Astrophys. 557, A60 (2013) CrossRefGoogle Scholar
  47. I. Linscott et al., American Astronomical Society. DPS meeting #48, id.213.04 (2016) Google Scholar
  48. R.M.E. Mastrapa, W.M. Grundy, M.S. Gudipati, in The Science of Solar System Ices, ed. by M.S. Gudipati, J. Castillo-Rogez (Springer, Berlin, 2013), p. 371 CrossRefGoogle Scholar
  49. M.H. Moore, R.L. Hudson, Astrophys. J. 401, 353–360 (1992) ADSCrossRefGoogle Scholar
  50. D. Morrison, D.P. Cruikshank, Icarus 18, 224–236 (1973) ADSCrossRefGoogle Scholar
  51. D. Morrison et al., Astrophys. J. 167, L107–L111 (1971) ADSCrossRefGoogle Scholar
  52. G. Neugebauer et al., Icarus 177, 63–68 (2005) ADSCrossRefGoogle Scholar
  53. S.F. Newmann et al., Icarus 193, 397–406 (2008) ADSCrossRefGoogle Scholar
  54. T.A. Nordheim et al., Icarus 286, 56–68 (2017) ADSCrossRefGoogle Scholar
  55. P. Paillou et al., Geophys. Res. Lett. 35, L18202 (2008).  https://doi.org/10.1029/2008GL035216 ADSCrossRefGoogle Scholar
  56. J. Pearl et al., Bull. Am. Astron. Soc. 40, 510 (2008) ADSGoogle Scholar
  57. N. Pinilla-Alonso et al., Astron. Astrophys. 496, 547–556 (2009) ADSCrossRefGoogle Scholar
  58. S. Piqueux, P.R. Christensen, J. Geophys. Res. 114, E09005 (2009).  https://doi.org/10.1029/2008JE003308 ADSCrossRefGoogle Scholar
  59. K.M. Pitman, B.J. Buratti, J.A. Mosher, Icarus 206, 537–560 (2010) ADSCrossRefGoogle Scholar
  60. L.M. Prockter et al., in Satellites of the Solar System, ed. by O. Grasset, M. Blanc, A. Coustenis, W.B. Durham, H. Hussmann, R.T. Pappalardo, D. Turrini (Springer, Berlin, 2010) Google Scholar
  61. J.A. Rathbun, N.J. Rodriguez, J.R. Spencer, Icarus 210, 763–769 (2010) ADSCrossRefGoogle Scholar
  62. P.A. Ries, M. Janssen, Icarus 257, 88–102 (2015) ADSCrossRefGoogle Scholar
  63. E.G. Rivera-Valentin, D.G. Blackburn, R. Ulrich, Icarus 216, 347–358 (2011) ADSCrossRefGoogle Scholar
  64. R.G. Ross, J.S. Kargel, in Solar System Ices. ASSL, vol. 227 (Kluwer Academic, Norwell, 1998), pp. 33–62 CrossRefGoogle Scholar
  65. E.E. Russel et al., Space Sci. Rev. 60, 531–563 (1992) ADSGoogle Scholar
  66. M.J. Schaible, R.E. Johnson, L.V. Zhigilei, S. Piqueux, Icarus 0, 1–13 (2016) Google Scholar
  67. P.M. Schenk et al., Icarus 211, 740–757 (2011) ADSCrossRefGoogle Scholar
  68. P.M. Schenk, R.N. Clark, C.J.A. Howett, A.J. Verbiscer, H.J. Waite (eds.),, Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018) Google Scholar
  69. B. Schmitt, B. de Bergh, M. Festou (eds.), Solar System Ices (Springer, Berlin, 1998) Google Scholar
  70. L.M. Shulman, Astron. Astrophys. 416, 187–190 (2004) ADSCrossRefGoogle Scholar
  71. A. Snyder-Hale, B. Hapke, Icarus 156, 318–334 (2002) ADSCrossRefGoogle Scholar
  72. J.R. Spencer Ph.D. Thesis. University of Arizona (1987) Google Scholar
  73. J.R. Spencer, T. Denk, Science 327(5964), 432–435 (2010).  https://doi.org/10.1126/science.1177132 ADSCrossRefGoogle Scholar
  74. J.R. Spencer et al., Icarus 78, 337–354 (1989) ADSCrossRefGoogle Scholar
  75. J.R. Spencer, L.K. Tamppari, T.Z. Martin, L.D. Travis, Science 284, 1514–1516 (1999).  https://doi.org/10.1126/science.284.5419.1514 ADSCrossRefGoogle Scholar
  76. J.R. Spencer et al., Science 311, 1401–1405 (2006) ADSCrossRefGoogle Scholar
  77. L. Spilker, C. Ferrari, N. Altobelli, S. Pilorz, R. Morishima, in Planetary Ring Systems: Properties, Structure, and Evolution, ed. by M. Tiscareno, C. Murray. Planetary Science Series (Cambridge University Press, Cambridge, 2018) Google Scholar
  78. S.A. Stansberry et al., in The Solar System Beyond Neptune, ed. by M.A. Barucci et al.(University of Arizona Press, Tucson, 2007) Google Scholar
  79. P.J. Stooke, in 33rd Annual LPS Conferences (2002), abstract no. 1553 Google Scholar
  80. L.K. Tamparri, J.R. Spencer, T.Z. Martin, J. Geophys. Res. 100(E9), 18,973–18,983 (1995) ADSCrossRefGoogle Scholar
  81. G.L. Tyler, Space Sci. Rev. 140, 217–259 (2008) ADSCrossRefGoogle Scholar
  82. W. Van Antwerpen, C.G. du Toit, P.G. Rousseau, Nucl. Eng. Des. 240, 1803–1818 (2010) CrossRefGoogle Scholar
  83. A.J. Verbiscer, M.F. Skrutskie, D.P. Hamilton, Nature 461, 1098–1100 (2009) ADSCrossRefGoogle Scholar
  84. S.G. Warren, Appl. Opt. 23, 11,906–11,926 (1984) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institut de Physique du Globe de Paris—Sorbonne Paris Cité, Université Paris DiderotUMR CNRS 7154Paris cedex 13France

Personalised recommendations