Advertisement

Space Science Reviews

, 214:113 | Cite as

Old-Aged Primary Distance Indicators

  • Rachael L. BeatonEmail author
  • Giuseppe Bono
  • Vittorio Francesco Braga
  • Massimo Dall’Ora
  • Giuliana Fiorentino
  • In Sung Jang
  • Clara E. Martínez-Vázquez
  • Noriyuki Matsunaga
  • Matteo Monelli
  • Jillian R. Neeley
  • Maurizio Salaris
Article
  • 164 Downloads
Part of the following topical collections:
  1. Astronomical Distance Determination in the Space Age

Abstract

Old-aged stellar distance indicators are present in all Galactic structures (halo, bulge, disk) and in galaxies of all Hubble types and, thus, are immensely powerful tools for understanding our Universe. Here we present a comprehensive review for three primary standard candles from Population II: (i) RR Lyrae type variables (RRL), (ii) type II Cepheid variables (T2C), and (iii) the tip of the red giant branch (TRGB). The discovery and use of these distance indicators is placed in historical context before describing their theoretical foundations and demonstrating their observational applications across multiple wavelengths. The methods used to establish the absolute scale for each standard candle is described with a discussion of the observational systematics. We conclude by looking forward to the suite of new observational facilities anticipated over the next decade; these have both a broader wavelength coverage and larger apertures than current facilities. We anticipate future advancements in our theoretical understanding and observational application of these stellar populations as they apply to the Galactic and extragalactic distance scale.

Keywords

Distance scale Population II stars RR Lyrae Type II Cepheids Tip of the red giant branch Old stars Standard candles Variable stars 

Notes

Acknowledgements

The authors warmly acknowledge the hospitality of ISSI-BJ for an engaging conference and the conference organizer Richard De Grijs for his leadership in completing these chapters. We further thank the anonymous referees for useful comments and perspectives that have improved and broadened this review. RLB acknowledges many insightful discussions with Barry Madore, Wendy Freedman, and the Carnegie–Chicago program team, as well as helpful conversations and data for figures from Mark Seibert, Erika Carlson, Andrew Monson, Victoria Scowcroft, Julianne Dalcanton, and Ben Williams. Support for this work was provided by NASA through Hubble Fellowship grant #51386.01 awarded to RLB by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. GB thanks A Severo Ochoa research grant at the Instituto de Astrofisica de Canarias, where part of this manuscript was written. VFB warmly thank Prof. R.P. Kudritzski for many useful discussions concerning stellar atmospheres and non-LTE effects in giant stars and Dr. P.B. Stetson for his superb-quality photometric reduction work, which has been a key component of the work presented here. VFB acknowledges PRIN–INAF 2011 “Tracing the formation and evolution of the Galactic halo with VST” (P.I.: M. Marconi), PRIN–MIUR (2010LY5N2T) “Chemical and dynamical evolution of the Milky Way and Local Group galaxies” (P.I.: F. Matteucci). VFB thank the Japan Society for the Promotion of Science for a research grant (L15518) and the support from FIRB 2013 (grant: RBFR13J716). We also thank the Education and Science Ministry of Spain (grants AYA201016717). VFB finally acknowledge the financial support from the PO FSE Abruzzo 2007–2013 through the grant “Spectrophotometric characterization of stellar populations in Local Group dwarf galaxies”, prot. 89/2014/OACTe/D (PI: S. Cassisi). GF has been supported by the Futuro in Ricerca 2013 (grant RBFR13J716). CEMV and MM acknowledges support from the Spanish Ministry of Economy and Competitiveness (MINECO) under the grant (project reference AYA2014-56795-P) NM is grateful to Grant-in-Aid (KAKENHI No. 26287028) from the Japan Society for the Promotion of Science.

References

  1. W.S. Adams, Investigations in stellar spectroscopy. III. Application of a spectroscopic method of determining stellar distances to stars of measured parallax. Proc. Natl. Acad. Sci. 2, 152–157 (1916).  https://doi.org/10.1073/pnas.2.3.152 ADSCrossRefGoogle Scholar
  2. W.S. Adams, A. Kohlschütter, Some spectral criteria for the determination of absolute stellar magnitudes. Astrophys. J. 40, 385–398 (1914).  https://doi.org/10.1086/142132 ADSCrossRefGoogle Scholar
  3. C. Alcock, R.A. Allsman, D.R. Alves, T.S. Axelrod, A. Becker, D.P. Bennett, K.H. Cook, K.C. Freeman, K. Griest, W.A. Lawson, M.J. Lehner, S.L. Marshall, D. Minniti, B.A. Peterson, K.R. Pollard, M.R. Pratt, P.J. Quinn, A.W. Rodgers, W. Sutherland, A. Tomaney, D.L. Welch, The MACHO project LMC variable star inventory. VII. The discovery of RV Tauri stars and new type II Cepheids in the Large Magellanic Cloud. Astron. J. 115, 1921–1933 (1998).  https://doi.org/10.1086/300317. arXiv:astro-ph/9708039 ADSCrossRefGoogle Scholar
  4. S. Andrievsky, G. Wallerstein, S. Korotin, D. Lyashko, V. Kovtyukh, V. Tsymbal, C.E. Davis, T. Gomez, W. Huang, E.M. Farrell, The relationship of sodium and oxygen in Galactic field RR Lyrae stars. Publ. Astron. Soc. Pac. 130(2), 024 (2018).  https://doi.org/10.1088/1538-3873/aa9783 CrossRefGoogle Scholar
  5. E. Antonello, L. Fossati, D. Fugazza, L. Mantegazza, W. Gieren, Variable stars in nearby galaxies. VII. P–L relation in the BVRI bands of Cepheids in IC 1613. Astron. Astrophys. 445, 901–906 (2006).  https://doi.org/10.1051/0004-6361:20053822 ADSCrossRefGoogle Scholar
  6. H.C. Arp, Color–magnitude diagrams for seven globular clusters. Astron. J. 60, 317 (1955).  https://doi.org/10.1086/107232 ADSCrossRefGoogle Scholar
  7. W. Baade, Über eine Möglichkeit, die Pulsationstheorie der \(\delta\) Cephei-Veränderlichen zu prüten. Astron. Nachr. 228, 359 (1926).  https://doi.org/10.1002/asna.19262282003 ADSCrossRefGoogle Scholar
  8. W. Baade, The resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula. Astrophys. J. 100, 137 (1944).  https://doi.org/10.1086/144650 ADSCrossRefGoogle Scholar
  9. W. Baade, The period-luminosity relation of the Cepheids. Publ. Astron. Soc. Pac. 68, 5 (1956).  https://doi.org/10.1086/126870 ADSCrossRefGoogle Scholar
  10. W. Baade, Galaxies and their stellar populations. (A review of the present state of affairs). Ric. Astron. 5, 3 (1958a) ADSGoogle Scholar
  11. W. Baade, Physical variable stars and stellar populations. Ric. Astron. 5, 165 (1958b) Google Scholar
  12. W. Baade, The population of the galactic nucleus and the evidence for the presence of an old population pervading the whole disk of our galaxy. Ric. Astron. 5, 303 (1958c) Google Scholar
  13. W. Baade, H.H. Swope, The Palomar survey of variables in M 31 (first results). Astron. J. 60, 151–152 (1955).  https://doi.org/10.1086/107146 ADSCrossRefGoogle Scholar
  14. W. Baade, H.H. Swope, The Draco system, a dwarf galaxy. Astron. J. 66, 300–347 (1961).  https://doi.org/10.1086/108431 ADSCrossRefGoogle Scholar
  15. C.A.L. Bailer-Jones, Estimating distances from parallaxes. Publ. Astron. Soc. Pac. 127, 994 (2015).  https://doi.org/10.1086/683116. arXiv:1507.02105 ADSCrossRefGoogle Scholar
  16. S.I. Bailey, A Discussion of Variable Stars in the Cluster \(\omega\) Centauri. Annals of Harvard College Observatory, vol. 38 (1902) Google Scholar
  17. S.I. Bailey, E.F. Leland, I.E. Woods, E.C. Pickering, Variable stars in the cluster Messier 15. Ann. Harv. Coll. Obs. 78, 195–250 (1919) ADSGoogle Scholar
  18. N. Baker, R. Kippenhahn, The pulsations of models of Delta Cephei stars. II. Astrophys. J. 142, 868 (1965).  https://doi.org/10.1086/148359 ADSCrossRefGoogle Scholar
  19. M.K. Barker, A. Sarajedini, J. Harris, Variations in star formation history and the red giant branch tip. Astrophys. J. 606, 869–893 (2004).  https://doi.org/10.1086/383026. arXiv:astro-ph/0401387 ADSCrossRefGoogle Scholar
  20. G. Battaglia, M. Irwin, E. Tolstoy, V. Hill, A. Helmi, B. Letarte, P. Jablonka, Analysis and calibration of CaII triplet spectroscopy of red giant branch stars from VLT/FLAMES observations. Mon. Not. R. Astron. Soc. 383, 183–199 (2008).  https://doi.org/10.1111/j.1365-2966.2007.12532.x. arXiv:0710.0798 ADSCrossRefGoogle Scholar
  21. R.L. Beaton, W.L. Freedman, B.F. Madore, G. Bono, E.K. Carlson, G. Clementini, M.J. Durbin, A. Garofalo, D. Hatt, I.S. Jang, J.A. Kollmeier, M.G. Lee, A.J. Monson, J.A. Rich, V. Scowcroft, M. Seibert, L. Sturch, S.C. Yang, The Carnegie–Chicago Hubble program. I. An independent approach to the extragalactic distance scale using only population II distance indicators. Astrophys. J. 832, 210 (2016).  https://doi.org/10.3847/0004-637X/832/2/210. arXiv:1604.01788 ADSCrossRefGoogle Scholar
  22. M. Bellazzini, The tip of the red giant branch. Mem. Soc. Astron. Ital. 79, 440 (2008). arXiv:0711.2016 ADSGoogle Scholar
  23. M. Bellazzini, F.R. Ferraro, E. Pancino, A step toward the calibration of the red giant branch tip as a standard candle. Astrophys. J. 556, 635–640 (2001).  https://doi.org/10.1086/321613. arXiv:astro-ph/0104114 ADSCrossRefGoogle Scholar
  24. M. Bellazzini, F.R. Ferraro, A. Sollima, E. Pancino, L. Origlia, The calibration of the RGB tip as a standard candle. Extension to near infrared colors and higher metallicity. Astron. Astrophys. 424, 199–211 (2004).  https://doi.org/10.1051/0004-6361:20035910. arXiv:astro-ph/0404572 ADSCrossRefGoogle Scholar
  25. G.F. Benedict, B.E. McArthur, M.W. Feast, T.G. Barnes, T.E. Harrison, J.L. Bean, J.W. Menzies, B. Chaboyer, L. Fossati, N. Nesvacil, H.A. Smith, K. Kolenberg, C.D. Laney, O. Kochukhov, E.P. Nelan, D.V. Shulyak, D. Taylor, W.L. Freedman, Distance scale zero points from Galactic RR Lyrae star parallaxes. Astron. J. 142, 187 (2011).  https://doi.org/10.1088/0004-6256/142/6/187. arXiv:1109.5631 ADSCrossRefGoogle Scholar
  26. G.F. Benedict, B.E. McArthur, E.P. Nelan, T.E. Harrison, Astrometry with Hubble Space Telescope Fine Guidance Sensors–a review. Publ. Astron. Soc. Pac. 129(1), 012001 (2017).  https://doi.org/10.1088/1538-3873/129/971/012001. arXiv:1610.05176 ADSCrossRefGoogle Scholar
  27. G.F. Benedict, B.E. McArthur, T.E. Harrison, An assessment of Gaia DR2 parallaxes. Res. Notes Am. Astron. Soc. 2(2), 22 (2018). http://stacks.iop.org/2515-5172/2/i=2/a=22 CrossRefGoogle Scholar
  28. E.J. Bernard, M. Monelli, C. Gallart, A. Aparicio, S. Cassisi, I. Drozdovsky, S.L. Hidalgo, E.D. Skillman, P.B. Stetson, The ACS LCID project. II. Faint variable stars in the isolated dwarf irregular galaxy IC 1613. Astrophys. J. 712, 1259–1276 (2010a).  https://doi.org/10.1088/0004-637X/712/2/1259. arXiv:1002.4178 ADSCrossRefGoogle Scholar
  29. E.J. Bernard, M. Monelli, C. Gallart, A. Aparicio, S. Cassisi, I. Drozdovsky, S.L. Hidalgo, E.D. Skillman, P.B. Stetson, The ACS LCID project. II. Faint variable stars in the isolated dwarf irregular galaxy IC 1613. Astrophys. J. 712, 1259–1276 (2010b).  https://doi.org/10.1088/0004-637X/712/2/1259. arXiv:1002.4178 ADSCrossRefGoogle Scholar
  30. D. Bersier, P.R. Wood, Variable stars in the Fornax dwarf galaxy. Astron. J. 123, 840–847 (2002).  https://doi.org/10.1086/338315. arXiv:astro-ph/0110555 ADSCrossRefGoogle Scholar
  31. F.W. Bessel, On the parallax of 61 Cygni. Mon. Not. R. Astron. Soc. 4, 152–161 (1838).  https://doi.org/10.1093/mnras/4.17.152 ADSCrossRefGoogle Scholar
  32. F. Bessell, Die Beweise fur die Bewegung der Erde (1871) Google Scholar
  33. A. Bhardwaj, L.M. Macri, M. Rejkuba, S.M. Kanbur, C.C. Ngeow, H.P. Singh, Large Magellanic Cloud near-infrared synoptic survey. IV. Leavitt laws for type II Cepheid variables. Astron. J. 153, 154 (2017a).  https://doi.org/10.3847/1538-3881/aa5e4f. arXiv:1702.00967 ADSCrossRefGoogle Scholar
  34. A. Bhardwaj, M. Rejkuba, D. Minniti, F. Surot, E. Valenti, M. Zoccali, O.A. Gonzalez, M. Romaniello, S.M. Kanbur, H.P. Singh, Galactic bulge population II Cepheids in the VVV survey: period-luminosity relations and a distance to the Galactic centre. Astron. Astrophys. 605, A100 (2017b).  https://doi.org/10.1051/0004-6361/201730841. arXiv:1707.03755 ADSCrossRefGoogle Scholar
  35. S. Blažko, Mitteilung über veränderliche Sterne. Astron. Nachr. 175, 325 (1907).  https://doi.org/10.1002/asna.19071752002 ADSCrossRefGoogle Scholar
  36. A.Z. Bonanos, Eclipsing binary distances to the edge of the local group, in Advancing the Physics of Cosmic Distances, IAU Symposium, vol. 289, ed. by R. de Grijs (2013), pp. 173–178.  https://doi.org/10.1017/S1743921312021321 CrossRefGoogle Scholar
  37. A.Z. Bonanos, K.Z. Stanek, R.P. Kudritzki, L.M. Macri, D.D. Sasselov, J. Kaluzny, P.B. Stetson, D. Bersier, F. Bresolin, T. Matheson, B.J. Mochejska, N. Przybilla, A.H. Szentgyorgyi, J. Tonry, G. Torres, The first DIRECT distance determination to a detached eclipsing binary in M33. Astrophys. J. 652, 313–322 (2006).  https://doi.org/10.1086/508140. arXiv:astro-ph/0606279 ADSCrossRefGoogle Scholar
  38. G. Bono, RR Lyrae distance scale: theory and observations, in Stellar Candles for the Extragalactic Distance Scale, ed. by D. Alloin, W. Gieren. Lecture Notes in Physics, vol. 635 (Springer, Berlin, 2003), pp. 85–104.  https://doi.org/10.1007/978-3-540-39882-0_5. arXiv:astro-ph/0305102 CrossRefGoogle Scholar
  39. G. Bono, M. Marconi, On the period-luminosity-color relation of Classical Cepheids, in New Views of the Magellanic Clouds, IAU Symposium, vol. 190, ed. by Y.H. Chu, N. Suntzeff, J. Hesser, D. Bohlender (1999), p. 527. arXiv:astro-ph/9810460 Google Scholar
  40. G. Bono, R.F. Stellingwerf, Pulsation and stability of RR Lyrae stars. 1: Instability strip. Astrophys. J. Suppl. Ser. 93, 233–269 (1994).  https://doi.org/10.1086/192054 ADSCrossRefGoogle Scholar
  41. G. Bono, F. Caputo, R.F. Stellingwerf, Oosterhoff dichotomy in the Galaxy and globular clusters in the Large Magellanic Cloud. Astrophys. J. 423, 294–304 (1994).  https://doi.org/10.1086/173806 ADSCrossRefGoogle Scholar
  42. G. Bono, V. Castellani, S. degl’Innocenti, L. Pulone, Advanced evolutionary phases of low-mass stars: the role of the original helium. Astron. Astrophys. 297, 115–126 (1995) ADSGoogle Scholar
  43. G. Bono, R. Incerpi, M. Marconi, Metallicity effects on RR Lyrae variables. Astrophys. J. Lett. 467, L97 (1996).  https://doi.org/10.1086/310207. arXiv:astro-ph/9605143 ADSCrossRefGoogle Scholar
  44. G. Bono, F. Caputo, S. Cassisi, V. Castellani, M. Marconi, Metal-rich RR Lyrae variables. I. The evolutionary scenario. Astrophys. J. 479, 279–289 (1997a).  https://doi.org/10.1086/303872. arXiv:astro-ph/9609153 ADSCrossRefGoogle Scholar
  45. G. Bono, F. Caputo, V. Castellani, M. Marconi, Nonlinear investigation of the pulsational properties of RR Lyrae variables. Astron. Astrophys. Suppl. Ser. 121, 327–342 (1997b).  https://doi.org/10.1051/aas:1997289. arXiv:astro-ph/9606030 ADSCrossRefGoogle Scholar
  46. G. Bono, F. Caputo, P. Santolamazza, Evolutionary scenario for metal-poor pulsating stars. I. Type II Cepheids. Astron. Astrophys. 317, 171–177 (1997c) ADSGoogle Scholar
  47. G. Bono, M. Marconi, R.F. Stellingwerf, Classical Cepheid pulsation models. I. Physical structure. Astrophys. J. Suppl. Ser. 122, 167–205 (1999).  https://doi.org/10.1086/313207 ADSCrossRefGoogle Scholar
  48. G. Bono, F. Caputo, V. Castellani, M. Marconi, J. Storm, Theoretical insights into the RR Lyrae K-band period-luminosity relation. Mon. Not. R. Astron. Soc. 326, 1183–1190 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04655.x. arXiv:astro-ph/0105481 ADSCrossRefGoogle Scholar
  49. G. Bono, F. Caputo, V. Castellani, M. Marconi, J. Storm, S. Degl’Innocenti, A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars. Mon. Not. R. Astron. Soc. 344, 1097–1106 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06878.x. arXiv:astro-ph/0306142 ADSCrossRefGoogle Scholar
  50. G. Bono, F. Caputo, M. Di Criscienzo, RR Lyrae stars in Galactic globular clusters. VI. The period-amplitude relation. Astron. Astrophys. 476, 779–790 (2007).  https://doi.org/10.1051/0004-6361:20078206. arXiv:0709.3177 ADSCrossRefGoogle Scholar
  51. G. Bono, M. Dall’Ora, F. Caputo, G. Coppola, K. Genovali, M. Marconi, A.M. Piersimoni, R.F. Stellingwerf, RR Lyrae the stellar beacons of the Galactic structure, in RR Lyrae Stars, Metal-Poor Stars, and the Galaxy, vol. 5, ed. by A. McWilliam (2011), p. 1. arXiv:1108.5372 Google Scholar
  52. G. Bono, A. Pietrinferni, M. Marconi, V.F. Braga, G. Fiorentino, P.B. Stetson, R. Buonanno, M. Castellani, M. Dall’Ora, M. Fabrizio, I. Ferraro, G. Giuffrida, G. Iannicola, M. Marengo, D. Magurno, C.E. Martinez-Vazquez, N. Matsunaga, M. Monelli, J. Neeley, S. Rastello, M. Salaris, L. Short, R.F. Stellingwerf, On the pulsation and evolutionary properties of helium burning radially pulsating variables. Commun. Konkoly Obs. Hung. Acad. Sci. 105, 149–159 (2016) ADSGoogle Scholar
  53. G. Bono, V.F. Braga, I. Ferraro, G. Fiorentino, R. Gilmozzi, G. Iannicola, D. Magurno, N. Matsunaga, M. Monelli, S. Rastello, Massive stellar systems: observational challenges and perspectives in the E-ELT era, in Formation, Evolution, and Survival of Massive Star Clusters, IAU Symposium, vol. 316, ed. by C. Charbonnel, A. Nota (2017), pp. 36–43.  https://doi.org/10.1017/S1743921315010856 CrossRefGoogle Scholar
  54. W.J. Borucki, D. Koch, G. Basri, N. Batalha, T. Brown, D. Caldwell, J. Caldwell, J. Christensen-Dalsgaard, W.D. Cochran, E. DeVore, E.W. Dunham, A.K. Dupree, T.N. Gautier, J.C. Geary, R. Gilliland, A. Gould, S.B. Howell, J.M. Jenkins, Y. Kondo, D.W. Latham, G.W. Marcy, S. Meibom, H. Kjeldsen, J.J. Lissauer, D.G. Monet, D. Morrison, D. Sasselov, J. Tarter, A. Boss, D. Brownlee, T. Owen, D. Buzasi, D. Charbonneau, L. Doyle, J. Fortney, E.B. Ford, M.J. Holman, S. Seager, J.H. Steffen, W.F. Welsh, J. Rowe, H. Anderson, L. Buchhave, D. Ciardi, L. Walkowicz, W. Sherry, E. Horch, H. Isaacson, M.E. Everett, D. Fischer, G. Torres, J.A. Johnson, M. Endl, P. MacQueen, S.T. Bryson, J. Dotson, M. Haas, J. Kolodziejczak, J. Van Cleve, H. Chandrasekaran, J.D. Twicken, E.V. Quintana, B.D. Clarke, C. Allen, J. Li, H. Wu, P. Tenenbaum, E. Verner, F. Bruhweiler, J. Barnes, A. Prsa, Kepler planet-detection mission: introduction and first results. Science 327, 977 (2010).  https://doi.org/10.1126/science.1185402 ADSCrossRefGoogle Scholar
  55. M.L. Boyer, K.B.W. McQuinn, P. Barmby, A.Z. Bonanos, R.D. Gehrz, K.D. Gordon, M.A.T. Groenewegen, E. Lagadec, D. Lennon, M. Marengo, I. McDonald, M. Meixner, E. Skillman, G.C. Sloan, G. Sonneborn, J.T. van Loon, A. Zijlstra, An infrared census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). II. Discovery of metal-poor dusty AGB stars. Astrophys. J. 800, 51 (2015a).  https://doi.org/10.1088/0004-637X/800/1/51. arXiv:1412.0695 ADSCrossRefGoogle Scholar
  56. M.L. Boyer, K.B.W. McQuinn, P. Barmby, A.Z. Bonanos, R.D. Gehrz, K.D. Gordon, M.A.T. Groenewegen, E. Lagadec, D. Lennon, M. Marengo, M. Meixner, E. Skillman, G.C. Sloan, G. Sonneborn, J.T. van Loon, A. Zijlstra, An infrared census of Dust in Nearby Galaxies with Spitzer (DUSTiNGS). I. Overview. Astrophys. J. Suppl. Ser. 216, 10 (2015b).  https://doi.org/10.1088/0067-0049/216/1/10. arXiv:1411.4053 ADSCrossRefGoogle Scholar
  57. V.F. Braga, M. Dall’Ora, G. Bono, P.B. Stetson, I. Ferraro, G. Iannicola, M. Marengo, J. Neeley, S.E. Persson, R. Buonanno, G. Coppola, W. Freedman, B.F. Madore, M. Marconi, et al., On the distance of the globular cluster M4 (NGC 6121) using RR Lyrae stars. I. Optical and near-infrared period-luminosity and period-Wesenheit relations. Astrophys. J. 799, 165 (2015).  https://doi.org/10.1088/0004-637X/799/2/165. arXiv:1411.6826 ADSCrossRefGoogle Scholar
  58. V.F. Braga, P.B. Stetson, G. Bono, M. DallOra, I. Ferraro, G. Fiorentino, L.M. Freyhammer, G. Iannicola, M. Marengo, J. Neeley, E. Valenti, R. Buonanno, A. Calamida, M. Castellani, R. da Silva, S. Degl’Innocenti, A. Di Cecco, M. Fabrizio, W.L. Freedman, G. Giuffrida, J. Lub, B.F. Madore, M. Marconi, S. Marinoni, N. Matsunaga, M. Monelli, S.E. Persson, A.M. Piersimoni, A. Pietrinferni, P. Prada-Moroni, L. Pulone, R. Stellingwerf, E. Tognelli, A.R. Walker, On the RR Lyrae stars in globulars. IV. Omega Centauri optical UBVRI photometry. Astron. J. 152, 170 (2016).  https://doi.org/10.3847/0004-6256/152/6/170. arXiv:1609.04916 ADSCrossRefGoogle Scholar
  59. V.F. Braga, P.B. Stetson, G. Bono, M. DallOra, I. Ferraro, G. Fiorentino, G. Iannicola, M. Marconi, M. Marengo, A.J. Monson, J. Neeley, S.E. Persson, R.L. Beaton, R. Buonanno, A. Calamida, M. Castellani, E. Di Carlo, M. Fabrizio, W.L. Freedman, L. Inno, B.F. Madore, D. Magurno, E. Marchetti, S. Marinoni, P. Marrese, N. Matsunaga, D. Minniti, M. Monelli, M. Nonino, A.M. Piersimoni, A. Pietrinferni, P. Prada-Moroni, L. Pulone, R. Stellingwerf, E. Tognelli, A.R. Walker, E. Valenti, M. Zoccali, On the RR Lyrae stars in globulars. V. The complete near-infrared (JHKs) census of omega Centauri RR Lyrae variables. Astron. J. 155, 137 (2018).  https://doi.org/10.3847/1538-3881/aaadab. arXiv:1802.03578 ADSCrossRefGoogle Scholar
  60. J. Breitfelder, P. Kervella, A. Mérand, A. Gallenne, L. Szabados, R.I. Anderson, M. Willson, J.B. Le Bouquin, Observational calibration of the projection factor of Cepheids. I. The type II Cepheid \(\kappa\) Pavonis. Astron. Astrophys. 576, A64 (2015).  https://doi.org/10.1051/0004-6361/201425171. arXiv:1503.05176 ADSCrossRefGoogle Scholar
  61. J. Breitfelder, A. Mérand, P. Kervella, A. Gallenne, L. Szabados, R.I. Anderson, J.B. Le Bouquin, Observational calibration of the projection factor of Cepheids. II. Application to nine Cepheids with HST/FGS parallax measurements. Astron. Astrophys. 587, A117 (2016).  https://doi.org/10.1051/0004-6361/201527030. arXiv:1601.04727 ADSCrossRefGoogle Scholar
  62. T.M. Brown, S. Casertano, J. Strader, A. Riess, D.A. VandenBerg, D.R. Soderblom, J. Kalirai, R. Salinas, A high-precision trigonometric parallax to an ancient metal-poor globular cluster. Astrophys. J. Lett. 856, L6 (2018a).  https://doi.org/10.3847/2041-8213/aab55a. arXiv:1803.02927 ADSCrossRefGoogle Scholar
  63. A.G.A. Brown, A. Vallenari, T. Prusti, J.H.J. de Bruijne, C. Babusiaux, C.A.L. Bailer-Jones, M. Biermann, D.W. Evans et al. (Gaia Collaboration), Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018b).  https://doi.org/10.1051/0004-6361/201833051 CrossRefGoogle Scholar
  64. G. Burki, G. Meylan, Rr-Lyrae Delta-Scuti Sx-Phoenicis stars and Baade–Wesselink method—part four—physical parameters and distances of Bs-Aquarii and Dy-Pegasi and the period/radius relations for pulsating stars. Astron. Astrophys. 159, 261 (1986) ADSGoogle Scholar
  65. C. Cacciari, G. Clementini, J.A. Fernley, On the absolute magnitude of RR Lyrae stars—UU Ceti, RV Phoenicis, and W Tucanae. Astrophys. J. 396, 219–237 (1992).  https://doi.org/10.1086/171711 ADSCrossRefGoogle Scholar
  66. F. Caputo, The period-magnitude diagram of RR Lyrae stars—I. The controversy about the distance scale. Mon. Not. R. Astron. Soc. 284, 994–1000 (1997).  https://doi.org/10.1093/mnras/284.4.994 ADSCrossRefGoogle Scholar
  67. F. Caputo, V. Castellani, M. Marconi, V. Ripepi, Pulsational MV versus [Fe/H] relation(s) for globular cluster RR Lyrae variables. Mon. Not. R. Astron. Soc. 316, 819–826 (2000).  https://doi.org/10.1046/j.1365-8711.2000.03591.x. arXiv:astro-ph/0003473 ADSCrossRefGoogle Scholar
  68. J.A. Cardelli, G.C. Clayton, J.S. Mathis, The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989).  https://doi.org/10.1086/167900 ADSCrossRefGoogle Scholar
  69. B.W. Carney, J. Storm, R.V. Jones, The Baade–Wesselink method and the distances to RR Lyrae stars. VIII—comparisons with other techniques and implications for globular cluster distances and ages. Astrophys. J. 386, 663–684 (1992).  https://doi.org/10.1086/171047 ADSCrossRefGoogle Scholar
  70. E. Carretta, R.G. Gratton, Abundances for globular cluster giants. I. Homogeneous metallicities for 24 clusters. Astron. Astrophys. Suppl. Ser. 121, 95–112 (1997).  https://doi.org/10.1051/aas:1997116. arXiv:astro-ph/9607078 ADSCrossRefGoogle Scholar
  71. S. Cassisi, M. Salaris, Old Stellar Populations: How to Study the Fossil Record of Galaxy Formation (2013) CrossRefGoogle Scholar
  72. S. Cassisi, M. Castellani, F. Caputo, V. Castellani, RR Lyrae variables in Galactic globular clusters. IV. Synthetic HB and RR Lyrae predictions. Astron. Astrophys. 426, 641–650 (2004).  https://doi.org/10.1051/0004-6361:20041048. arXiv:astro-ph/0407256 ADSCrossRefGoogle Scholar
  73. S. Cassisi, A.Y. Potekhin, A. Pietrinferni, M. Catelan, M. Salaris, Updated electron-conduction opacities: the impact on low-mass stellar models. Astrophys. J. 661, 1094–1104 (2007).  https://doi.org/10.1086/516819. arXiv:astro-ph/0703011 ADSCrossRefGoogle Scholar
  74. M. Catelan, Horizontal branch stars: the interplay between observations and theory, and insights into the formation of the Galaxy. Astrophys. Space Sci. 320, 261–309 (2009).  https://doi.org/10.1007/s10509-009-9987-8. arXiv:astro-ph/0507464 ADSCrossRefzbMATHGoogle Scholar
  75. M. Catelan, H.A. Smith, Pulsating Stars (2015) CrossRefGoogle Scholar
  76. M. Catelan, B.J. Pritzl, H.A. Smith, The RR Lyrae period-luminosity relation. I. Theoretical calibration. Astrophys. J. Suppl. Ser. 154, 633–649 (2004).  https://doi.org/10.1086/422916. arXiv:astro-ph/0406067 ADSCrossRefGoogle Scholar
  77. M. Chadid, J. Vernin, G. Preston, C. Zalian, C. Pouzenc, L. Abe, A. Agabi, E. Aristidi, L.Y. Liu, D. Mékarnia, H. Trinquet, First detection of multi-shocks in RR Lyrae stars from Antarctica: a possible explanation of the Blazhko effect. Astron. J. 148, 88 (2014).  https://doi.org/10.1088/0004-6256/148/5/88 ADSCrossRefGoogle Scholar
  78. H.Y. Chen, D.E. Holz, J. Miller, M. Evans, S. Vitale, J. Creighton, Distance measures in gravitational-wave astrophysics and cosmology (2017). arXiv:1709.08079
  79. R.F. Christy, A study of pulsation in RR Lyrae models. Astrophys. J. 144, 108 (1966).  https://doi.org/10.1086/148593 ADSCrossRefGoogle Scholar
  80. A. Ciechanowska, G. Pietrzyński, O. Szewczyk, W. Gieren, I. Soszyński, The Araucaria project: the distance to the Small Magellanic Cloud from near infrared photometry of type II Cepheids. Acta Astron. 60, 233–243 (2010). arXiv:1007.4217 ADSGoogle Scholar
  81. M.R.L. Cioni, R.P. van der Marel, C. Loup, H.J. Habing, The tip of the red giant branch and distance of the Magellanic Clouds: results from the DENIS survey. Astron. Astrophys. 359, 601–614 (2000). arXiv:astro-ph/0003223 ADSGoogle Scholar
  82. C.M. Clement, A. Muzzin, Q. Dufton, T. Ponnampalam, J. Wang, J. Burford, A. Richardson, T. Rosebery, J. Rowe, H.S. Hogg, Variable stars in Galactic globular clusters. Astron. J. 122, 2587–2599 (2001a).  https://doi.org/10.1086/323719. arXiv:astro-ph/0108024 ADSCrossRefGoogle Scholar
  83. C.M. Clement, A. Muzzin, Q. Dufton, T. Ponnampalam, J. Wang, J. Burford, A. Richardson, T. Rosebery, J. Rowe, H.S. Hogg, Variable stars in Galactic globular clusters. Astron. J. 122, 2587–2599 (2001b).  https://doi.org/10.1086/323719. arXiv:astro-ph/0108024 ADSCrossRefGoogle Scholar
  84. G. Clementini, E. Carretta, R. Gratton, R. Merighi, J.R. Mould, J.K. McCarthy, The composition of HB stars: RR Lyrae variables. Astron. J. 110, 2319 (1995).  https://doi.org/10.1086/117692. arXiv:astro-ph/9507056 ADSCrossRefGoogle Scholar
  85. G. Clementini, R. Gratton, A. Bragaglia, E. Carretta, L. Di Fabrizio, M. Maio, Distance to the Large Magellanic Cloud: the RR Lyrae stars. Astron. J. 125, 1309–1329 (2003).  https://doi.org/10.1086/367773 ADSCrossRefGoogle Scholar
  86. G. Clementini, V. Ripepi, A. Bragaglia, A.F. Martinez Fiorenzano, E.V. Held, R.G. Gratton, The metal abundance distribution of the oldest stellar component in the Sculptor Dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 363, 734–748 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09478.x. arXiv:astro-ph/0506206 ADSCrossRefGoogle Scholar
  87. A.R. Conn, G.F. Lewis, R.A. Ibata, Q.A. Parker, D.B. Zucker, A.W. McConnachie, N.F. Martin, M.J. Irwin, N. Tanvir, M.A. Fardal, A.M.N. Ferguson, A Bayesian approach to locating the red giant branch tip magnitude. I. Astrophys. J. 740, 69 (2011).  https://doi.org/10.1088/0004-637X/740/2/69. arXiv:1107.3206 ADSCrossRefGoogle Scholar
  88. G. Coppola, M. Dall’Ora, V. Ripepi, M. Marconi, I. Musella, G. Bono, A.M. Piersimoni, P.B. Stetson, J. Storm, Distance to Galactic globulars using the near-infrared magnitudes of RR Lyrae stars—IV. The case of M5 (NGC 5904). Mon. Not. R. Astron. Soc. 416, 1056–1066 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19102.x. arXiv:1105.4031 ADSCrossRefGoogle Scholar
  89. G. Coppola, M. Marconi, P.B. Stetson, G. Bono, V.F. Braga, V. Ripepi, M. Dall’Ora, I. Musella, R. Buonanno, M. Fabrizio, I. Ferraro, G. Fiorentino, G. Iannicola, M. Monelli, M. Nonino, F. Thévenin, A.R. Walker, The Carina project IX: on hydrogen and helium burning variables. Astrophys. J. 814, 71 (2015).  https://doi.org/10.1088/0004-637X/814/1/71. arXiv:1509.02687 ADSCrossRefGoogle Scholar
  90. J.P. Cox, Non-adiabatic stellar pulsation. I. Astrophys. J. 127, 194 (1958).  https://doi.org/10.1086/146451 ADSCrossRefGoogle Scholar
  91. J.P. Cox, On second helium ionization as a cause of pulsational instability in stars. Astrophys. J. 138, 487 (1963).  https://doi.org/10.1086/147661 ADSCrossRefzbMATHGoogle Scholar
  92. B. Czerny, R. Beaton, M. Bejger, E. Cackett, M. Dall’Ora, R.F.L. Holanda, J.B. Jensen, S.W. Jha, E. Lusso, T. Minezaki, G. Risaliti, M. Salaris, S. Toonen, Y. Yoshii, Astronomical distance determination in the space age. Secondary distance indicators. Space Sci. Rev. 214, 32 (2018).  https://doi.org/10.1007/s11214-018-0466-9. arXiv:1801.00598 ADSCrossRefGoogle Scholar
  93. G.S. Da Costa, The age(s?) of the Sculptor Dwarf Galaxy. Astrophys. J. 285, 483–494 (1984).  https://doi.org/10.1086/162523 ADSCrossRefGoogle Scholar
  94. G.S. Da Costa, T.E. Armandroff, Standard globular cluster giant branches in the (\(M_{I},(V-I)_{0}\)) plane. Astron. J. 100, 162–181 (1990).  https://doi.org/10.1086/115500 ADSCrossRefGoogle Scholar
  95. J.J. Dalcanton, B.F. Williams, J.L. Melbourne, L. Girardi, A. Dolphin, P.A. Rosenfield, M.L. de Boyer, R.S. Jong, K. Gilbert, P. Marigo, K. Olsen, A.C. Seth, E. Skillman, Resolved near-infrared stellar populations in nearby galaxies. Astrophys. J. Suppl. Ser. 198, 6 (2012).  https://doi.org/10.1088/0067-0049/198/1/6. arXiv:1109.6893 ADSCrossRefGoogle Scholar
  96. M. Dall’Ora, J. Storm, G. Bono, V. Ripepi, M. Monelli, V. Testa, G. Andreuzzi, R. Buonanno, F. Caputo, V. Castellani, C.E. Corsi, G. Marconi, M. Marconi, L. Pulone, P.B. Stetson, The distance to the Large Magellanic Cloud cluster Reticulum from the K-band period-luminosity–metallicity relation of RR Lyrae stars. Astrophys. J. 610, 269–274 (2004).  https://doi.org/10.1086/421513. arXiv:astro-ph/0404098 ADSCrossRefGoogle Scholar
  97. A.K. Dambis, L.N. Berdnikov, A.Y. Kniazev, V.V. Kravtsov, A.S. Rastorguev, R. Sefako, O.V. Vozyakova, RR Lyrae variables: visual and infrared luminosities, intrinsic colours and kinematics. Mon. Not. R. Astron. Soc. 435, 3206–3220 (2013).  https://doi.org/10.1093/mnras/stt1514. arXiv:1308.4727 ADSCrossRefGoogle Scholar
  98. A.K. Dambis, A.S. Rastorguev, M.V. Zabolotskikh, Mid-infrared period-luminosity relations for globular cluster RR Lyrae. Mon. Not. R. Astron. Soc. 439, 3765–3774 (2014).  https://doi.org/10.1093/mnras/stu226. arXiv:1401.5523 ADSCrossRefGoogle Scholar
  99. T.J.L. de Boer, E. Tolstoy, V. Hill, A. Saha, K. Olsen, E. Starkenburg, B. Lemasle, M.J. Irwin, G. Battaglia, The star formation and chemical evolution history of the sculptor dwarf spheroidal galaxy. Astron. Astrophys. 539, A103 (2012).  https://doi.org/10.1051/0004-6361/201118378. arXiv:1201.2408 CrossRefGoogle Scholar
  100. J.H.J. de Bruijne, K.L.J. Rygl, T. Antoja, Gaia astrometric science performance—post-launch predictions, in EAS Publications Series. EAS Publications Series, vol. 67 (2014), pp. 23–29.  https://doi.org/10.1051/eas/1567004. arXiv:1502.00791 CrossRefGoogle Scholar
  101. R. de Grijs, G. Bono, Clustering of local group distances: publication bias or correlated measurements? II. M31 and beyond. Astron. J. 148, 17 (2014).  https://doi.org/10.1088/0004-6256/148/1/17. arXiv:1405.2124 ADSCrossRefGoogle Scholar
  102. R. de Grijs, G. Bono, Clustering of local group distances: publication bias or correlated measurements? III. The Small Magellanic Cloud. Astron. J. 149, 179 (2015).  https://doi.org/10.1088/0004-6256/149/6/179. arXiv:1504.00417 ADSCrossRefGoogle Scholar
  103. R. de Grijs, J.E. Wicker, G. Bono, Clustering of local group distances: publication bias or correlated measurements? I. The Large Magellanic Cloud. Astron. J. 147, 122 (2014).  https://doi.org/10.1088/0004-6256/147/5/122. arXiv:1403.3141 ADSCrossRefGoogle Scholar
  104. R. de Grijs, F. Courbin, C.E. Martínez-Vázquez, M. Monelli, M. Oguri, S.H. Suyu, Toward an internally consistent astronomical distance scale. Space Sci. Rev. 212, 1743–1785 (2017).  https://doi.org/10.1007/s11214-017-0395-z. arXiv:1706.07933 ADSCrossRefGoogle Scholar
  105. A. Deep, G. Fiorentino, E. Tolstoy, E. Diolaiti, M. Bellazzini, P. Ciliegi, R.I. Davies, J.M. Conan, An E-ELT case study: colour-magnitude diagrams of an old galaxy in the Virgo cluster. Astron. Astrophys. 531, A151 (2011).  https://doi.org/10.1051/0004-6361/201116603. arXiv:1105.3455 ADSCrossRefGoogle Scholar
  106. M. Del Principe, A.M. Piersimoni, G. Bono, A. Di Paola, M. Dolci, M. Marconi, Near-infrared observations of RR Lyrae variables in Galactic globular clusters. I. The case of M92. Astron. J. 129, 2714–2724 (2005).  https://doi.org/10.1086/430148. arXiv:astro-ph/0503140 ADSCrossRefGoogle Scholar
  107. M. Del Principe, A.M. Piersimoni, J. Storm, F. Caputo, G. Bono, P.B. Stetson, M. Castellani, R. Buonanno, A. Calamida, C.E. Corsi, M. Dall’Ora, I. Ferraro, L.M. Freyhammer, G. Iannicola, M. Monelli, M. Nonino, L. Pulone, V. Ripepi, A pulsational distance to \(\omega\) Centauri based on near-infrared period-luminosity relations of RR Lyrae stars. Astrophys. J. 652, 362–369 (2006).  https://doi.org/10.1086/508136. arXiv:astro-ph/0608052 ADSCrossRefGoogle Scholar
  108. R.G. Deupree, The theoretical red edge of the RR Lyrae gap. I—dependence of convection on pulsation phase. Astrophys. J. 211, 509–526 (1977a).  https://doi.org/10.1086/154958 ADSCrossRefGoogle Scholar
  109. R.G. Deupree, The theoretical red edge of the RR Lyrae gap. IV—convective steady-state models. Astrophys. J. 215, 620–623 (1977b).  https://doi.org/10.1086/155396 ADSCrossRefGoogle Scholar
  110. G.P. di Benedetto, Towards a fundamental calibration of stellar parameters of A, F, G, K dwarfs and giants. Astron. Astrophys. 339, 858–871 (1998) ADSGoogle Scholar
  111. M. Di Criscienzo, M. Marconi, F. Caputo, RR Lyrae stars in galactic globular clusters. III. Pulsational predictions for metal content \(Z=0.0001\) to \(Z=0.006\). Astrophys. J. 612, 1092–1106 (2004).  https://doi.org/10.1086/422742. arXiv:astro-ph/0405415 ADSCrossRefGoogle Scholar
  112. M. Di Criscienzo, F. Caputo, M. Marconi, S. Cassisi, Synthetic properties of bright metal-poor variables. II. BL Hercules stars. Astron. Astrophys. 471, 893–900 (2007).  https://doi.org/10.1051/0004-6361:20066541. arXiv:0705.2679 ADSCrossRefGoogle Scholar
  113. R. Diethelm, Physical parameters of pulsating variables with periods between one and three days. II—fundamental parameters. Astron. Astrophys. 239, 186–192 (1990) ADSGoogle Scholar
  114. R. Diethelm, Period changes of AHB1 variables. Astron. Astrophys. 307, 803–806 (1996) ADSGoogle Scholar
  115. A.E. Dolphin, WFPC2 stellar photometry with HSTPHOT. Publ. Astron. Soc. Pac. 112, 1383–1396 (2000).  https://doi.org/10.1086/316630. arXiv:astro-ph/0006217 ADSCrossRefGoogle Scholar
  116. A.E. Dolphin, A. Saha, E.D. Skillman, E. Tolstoy, A.A. Cole, R.C. Dohm-Palmer, J.S. Gallagher, M. Mateo, J.G. Hoessel, Deep Hubble Space Telescope imaging of IC 1613. I. Variable stars and distance. Astrophys. J. 550, 554–569 (2001).  https://doi.org/10.1086/319809. arXiv:astro-ph/0012150 ADSCrossRefGoogle Scholar
  117. R. Drimmel, A. Cabrera-Lavers, M. López-Corredoira, A three-dimensional Galactic extinction model. Astron. Astrophys. 409, 205–215 (2003).  https://doi.org/10.1051/0004-6361:20031070. arXiv:astro-ph/0307273 ADSCrossRefGoogle Scholar
  118. R.L. Duncombe, W.H. Jefferys, P.J. Shelus, P.D. Hemenway, G.F. Benedict, Astrometry using the Hubble Space Telescope fine guidance sensors. Adv. Space Res. 11, 87–96 (1991).  https://doi.org/10.1016/0273-1177(91)90475-Y ADSCrossRefGoogle Scholar
  119. A.S. Eddington, Stars, gaseous, on the pulsations of a gaseous star. Mon. Not. R. Astron. Soc. 79, 2–22 (1918) ADSCrossRefGoogle Scholar
  120. A.S. Eddington, Theories of Cepheid variation. Observatory 49, 88 (1926) ADSGoogle Scholar
  121. ESA (ed.), The HIPPARCOS and TYCHO catalogues. Astrometric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry Mission. ESA SP 1200 (1997) Google Scholar
  122. I.A. Fadeev, A.B. Fokin, Hydrodynamic models for population-II Cepheids. Astrophys. Space Sci. 111, 355–374 (1985).  https://doi.org/10.1007/BF00649975 ADSCrossRefGoogle Scholar
  123. M. Feast, RR Lyraes and type II Cepheids in the Magellanic Clouds: distance scales and population gradients, in RR Lyrae Stars, Metal-Poor Stars, and the Galaxy, vol. 5, ed. by A. McWilliam (2011), p. 170. arXiv:1106.1449 Google Scholar
  124. M.W. Feast, Distance scales after HIPPARCOS. Astrophys. Space Sci. 263, 209–214 (1998).  https://doi.org/10.1023/A:1002110327632 ADSCrossRefGoogle Scholar
  125. M.W. Feast, The luminosities of type II Cepheids and RR Lyrae variables, in Variable Stars, the Galactic Halo and Galaxy Formation, ed. by C. Sterken, N. Samus, L. Szabados (2010). arXiv:0912.4159 Google Scholar
  126. M.W. Feast, Galactic Distance Scales (2013), p. 829.  https://doi.org/10.1007/978-94-007-5612-0_16. CrossRefGoogle Scholar
  127. M.W. Feast, C.D. Laney, T.D. Kinman, F. van Leeuwen, P.A. Whitelock, The luminosities and distance scales of type II Cepheid and RR Lyrae variables. Mon. Not. R. Astron. Soc. 386, 2115–2134 (2008).  https://doi.org/10.1111/j.1365-2966.2008.13181.x. arXiv:0803.0466 ADSCrossRefGoogle Scholar
  128. J.D. Fernie, The period-luminosity relation: a historical review. Publ. Astron. Soc. Pac. 81, 707 (1969).  https://doi.org/10.1086/128847 ADSCrossRefGoogle Scholar
  129. J. Fernley, T.G. Barnes, I. Skillen, S.L. Hawley, C.J. Hanley, D.W. Evans, E. Solano, R. Garrido, The absolute magnitudes of RR Lyraes from HIPPARCOS parallaxes and proper motions. Astron. Astrophys. 330, 515–520 (1998) ADSGoogle Scholar
  130. L. Ferrarese, J.R. Mould, R.C. Kennicutt Jr., J. Huchra, H.C. Ford, W.L. Freedman, P.B. Stetson, B.F. Madore, S. Sakai, B.K. Gibson, J.A. Graham, S.M. Hughes, G.D. Illingworth, D.D. Kelson, L. Macri, K. Sebo, N.A. Silbermann, The Hubble Space Telescope key project on the extragalactic distance scale. XXVI. The calibration of population II secondary distance indicators and the value of the Hubble constant. Astrophys. J. 529, 745–767 (2000).  https://doi.org/10.1086/308309. arXiv:astro-ph/9908192 ADSCrossRefGoogle Scholar
  131. M.U. Feuchtinger, E.A. Dorfi, S. Hofner, Radiation hydrodynamics in atmospheres of long-period variables. Astron. Astrophys. 273, 513 (1993) ADSGoogle Scholar
  132. G. Fiorentino, M. Monelli, Anomalous Cepheids in the Large Magellanic Cloud. Insight into their origin and connection with the star formation history. Astron. Astrophys. 540, A102 (2012).  https://doi.org/10.1051/0004-6361/201118621. arXiv:1202.2752 ADSCrossRefGoogle Scholar
  133. G. Fiorentino, M. Marconi, I. Musella, F. Caputo, Classical Cepheid pulsation models. XI. Effects of convection and chemical composition on the period-luminosity and period-Wesenheit relations. Astron. Astrophys. 476, 863–879 (2007).  https://doi.org/10.1051/0004-6361:20077587. arXiv:0707.0959 ADSCrossRefGoogle Scholar
  134. G. Fiorentino, A. Monachesi, S.C. Trager, T.R. Lauer, A. Saha, K.J. Mighell, W. Freedman, A. Dressler, C. Grillmair, E. Tolstoy, RR Lyrae variables in M32 and the disk of M31. Astrophys. J. 708, 817–833 (2010).  https://doi.org/10.1088/0004-637X/708/1/817. arXiv:0911.0355 ADSCrossRefGoogle Scholar
  135. G. Fiorentino, G. Bono, M. Monelli, P.B. Stetson, E. Tolstoy, C. Gallart, M. Salaris, C.E. Martínez-Vázquez, E.J. Bernard, Weak Galactic halo-Dwarf spheroidal connection from RR Lyrae stars. Astrophys. J. Lett. 798, L12 (2015).  https://doi.org/10.1088/2041-8205/798/1/L12. arXiv:1411.7300 ADSCrossRefGoogle Scholar
  136. G. Fiorentino, M. Monelli, P.B. Stetson, G. Bono, C. Gallart, C.E. Martínez-Vázquez, E.J. Bernard, D. Massari, V.F. Braga, M. Dall’Ora, Weak Galactic halo-Fornax dSph connection from RR Lyrae stars. Astron. Astrophys. 599, A125 (2017).  https://doi.org/10.1051/0004-6361/201629501. arXiv:1612.02991 ADSCrossRefGoogle Scholar
  137. B.Q. For, G.W. Preston, C. Sneden, Radial velocities and pulsation ephemerides of 11 field RR Lyrae stars. Astrophys. J. Suppl. Ser. 194, 38 (2011a).  https://doi.org/10.1088/0067-0049/194/2/38. arXiv:1104.2668 ADSCrossRefGoogle Scholar
  138. B.Q. For, C. Sneden, G.W. Preston, The chemical compositions of variable field horizontal-branch stars: RR Lyrae stars. Astrophys. J. Suppl. Ser. 197, 29 (2011b).  https://doi.org/10.1088/0067-0049/197/2/29. arXiv:1110.0548 ADSCrossRefGoogle Scholar
  139. W.L. Freedman, Stellar content of nearby galaxies. I—BVRI CCD photometry for IC 1613. Astron. J. 96, 1248–1306 (1988).  https://doi.org/10.1086/114878 ADSCrossRefGoogle Scholar
  140. W.L. Freedman, B.F. Madore, The Hubble constant. Annu. Rev. Astron. Astrophys. 48, 673–710 (2010).  https://doi.org/10.1146/annurev-astro-082708-101829. arXiv:1004.1856 ADSCrossRefGoogle Scholar
  141. W.L. Freedman, B.F. Madore, B.K. Gibson, L. Ferrarese, D.D. Kelson, S. Sakai, J.R. Mould, R.C. Kennicutt Jr., H.C. Ford, J.A. Graham, J.P. Huchra, S.M.G. Hughes, G.D. Illingworth, L.M. Macri, P.B. Stetson, Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553, 47–72 (2001).  https://doi.org/10.1086/320638. arXiv:astro-ph/0012376 ADSCrossRefGoogle Scholar
  142. W.L. Freedman, J. Rigby, B.F. Madore, S.E. Persson, L. Sturch, V. Mager, The Cepheid period-luminosity relation (the leavitt law) at mid-infrared wavelengths. IV. Cepheids in IC 1613. Astrophys. J. 695, 996–998 (2009).  https://doi.org/10.1088/0004-637X/695/2/996. arXiv:0901.2907 ADSCrossRefGoogle Scholar
  143. M. Geha, D. Weisz, A. Grocholski, A. Dolphin, R.P. van der Marel, P. Guhathakurta, HST/ACS direct ages of the Dwarf Elliptical Galaxies NGC 147 and NGC 185. Astrophys. J. 811, 114 (2015).  https://doi.org/10.1088/0004-637X/811/2/114. arXiv:1503.06526 ADSCrossRefGoogle Scholar
  144. R.A. Gingold, The evolutionary status of population II Cepheids. Astrophys. J. 204, 116–130 (1976).  https://doi.org/10.1086/154156 ADSCrossRefGoogle Scholar
  145. R.A. Gingold, Evolutionary models of metal-rich horizontal branch stars. Mon. Not. R. Astron. Soc. 178, 533–537 (1977).  https://doi.org/10.1093/mnras/178.4.533 ADSCrossRefGoogle Scholar
  146. S. Giridhar, D.L. Lambert, B.E. Reddy, G. Gonzalez, D. Yong, Abundance analyses of field RV Tauri stars. VI. An extended sample. Astrophys. J. 627, 432–445 (2005).  https://doi.org/10.1086/430265. arXiv:astro-ph/0503344 ADSCrossRefGoogle Scholar
  147. M. Górski, G. Pietrzyński, W. Gieren, M. Catelan, B. Pilecki, P. Karczmarek, K. Suchomska, D. Graczyk, P. Konorski, B. Zgirski, P. Wielgórski, The Araucaria project: on the tip of the red giant branch distance determination to the Magellanic Clouds. Astron. J. 151, 167 (2016).  https://doi.org/10.3847/0004-6256/151/6/167. arXiv:1605.06210 ADSCrossRefGoogle Scholar
  148. A. Gould, P. Popowski, Systematics of RR Lyrae statistical parallax. III. Apparent magnitudes and extinctions. Astrophys. J. 508, 844–853 (1998).  https://doi.org/10.1086/306448. arXiv:astro-ph/9805176 ADSCrossRefGoogle Scholar
  149. J. Govea, T. Gomez, G.W. Preston, C. Sneden, The chemical compositions of RR Lyrae type C variable stars. Astrophys. J. 782, 59 (2014).  https://doi.org/10.1088/0004-637X/782/2/59 ADSCrossRefGoogle Scholar
  150. D. Graczyk, P. Konorski, G. Pietrzyński, W. Gieren, J. Storm, N. Nardetto, A. Gallenne, P.F.L. Maxted, P. Kervella, Z. Kołaczkowski, The surface brightness-color relations based on eclipsing binary stars: toward precision better than 1% in angular diameter predictions. Astrophys. J. 837, 7 (2017).  https://doi.org/10.3847/1538-4357/aa5d56. arXiv:1611.09976 ADSCrossRefGoogle Scholar
  151. D. Graczyk, G. Pietrzyński, I.B. Thompson, W. Gieren, B. Pilecki, P. Konorski, S. Villanova, M. Górski, K. Suchomska, P. Karczmarek, K. Stepień, J. Storm, M. Taormina, Z. Kołaczkowski, P. Wielgórski, W. Narloch, B. Zgirski, A. Gallenne, J. Ostrowski, R. Smolec, A. Udalski, I. Soszyński, P. Kervella, N. Nardetto, M.K. Szymański, Ł. Wyrzykowski, K. Ulaczyk, R. Poleski, P. Pietrukowicz, S. Kozłowski, J. Skowron, P. Mróz, The late-type eclipsing binaries in the Large Magellanic Cloud: catalog of fundamental physical parameters. Astrophys. J. 860, 1 (2018).  https://doi.org/10.3847/1538-4357/aac2bf. arXiv:1805.04952 ADSCrossRefGoogle Scholar
  152. E.M. Green, P. Demarque, C.R. King, The Revised Yale Isochrones and Luminosity Functions (1987) Google Scholar
  153. L.J. Greenhill, D.R. Jiang, J.M. Moran, M.J. Reid, K.Y. Lo, M.J. Claussen, Detection of a subparsec diameter disk in the nucleus of NGC 4258. Astrophys. J. 440, 619 (1995).  https://doi.org/10.1086/175301 ADSCrossRefGoogle Scholar
  154. A.J. Grocholski, A.A. Cole, A. Sarajedini, D. Geisler, V.V. Smith, Ca II triplet spectroscopy of Large Magellanic Cloud red giants. I. Abundances and velocities for a sample of populous clusters. Astron. J. 132, 1630–1644 (2006).  https://doi.org/10.1086/507303. arXiv:astro-ph/0607052 ADSCrossRefGoogle Scholar
  155. M.A.T. Groenewegen, M.I. Jurkovic, Luminosities and infrared excess in type II and anomalous Cepheids in the Large and Small Magellanic Clouds. Astron. Astrophys. 603, A70 (2017a).  https://doi.org/10.1051/0004-6361/201730687. arXiv:1705.00886 ADSCrossRefGoogle Scholar
  156. M.A.T. Groenewegen, M.I. Jurkovic, The period-luminosity and period-radius relations of type II and anomalous Cepheids in the Large and Small Magellanic Clouds. Astron. Astrophys. 604, A29 (2017b).  https://doi.org/10.1051/0004-6361/201730946. arXiv:1705.04487 ADSCrossRefGoogle Scholar
  157. M.A.T. Groenewegen, M. Salaris, The absolute magnitudes of RR Lyrae stars from BT HIPPARCOS parallaxes. Astron. Astrophys. 348, L33–L36 (1999). arXiv:astro-ph/9907207 ADSGoogle Scholar
  158. B. Gustafsson, B. Edvardsson, K. Eriksson, U.G. Jørgensen, B. Plez, A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 486, 951–970 (2008).  https://doi.org/10.1051/0004-6361:200809724. arXiv:0805.0554 ADSCrossRefGoogle Scholar
  159. H.J. Habing, H. Olofsson (eds.), Asymptotic Giant Branch Stars (2003) Google Scholar
  160. G. Hajdu, I. Dékány, M. Catelan, E.K. Grebel, J. Jurcsik, A data-driven study of RR Lyrae near-IR light curves: principal component analysis, robust fits, and metallicity estimates. Astrophys. J. 857, 55 (2018).  https://doi.org/10.3847/1538-4357/aab4fd. arXiv:1804.01456 ADSCrossRefGoogle Scholar
  161. H.C. Harris, Population II Cepheids, in IAU Colloq. 82: Cepheids: Theory and Observation, ed. by B.F. Madore (1985), pp. 232–245 Google Scholar
  162. D. Hatt, R.L. Beaton, W.L. Freedman, B.F. Madore, I.S. Jang, T.J. Hoyt, M.G. Lee, A.J. Monson, J.A. Rich, V. Scowcroft, M. Seibert, The Carnegie–Chicago Hubble program. II. The distance to IC 1613: the tip of the red giant branch and RR Lyrae period-luminosity relations. Astrophys. J. 845, 146 (2017).  https://doi.org/10.3847/1538-4357/aa7f73. arXiv:1703.06468 ADSCrossRefGoogle Scholar
  163. D. Hatt, W.L. Freedman, B.F. Madore, R.L. Beaton, T.J. Hoyt, I.S. Jang, M.G. Lee, A.J. Monson, J.A. Rich, V. Scowcroft, M. Seibert, The Carnegie–Chicago Hubble program. IV. The distance to NGC 4424, NGC 4526, and NGC 4356 via the tip of the red giant branch. Astrophys. J. 861, 104 (2018).  https://doi.org/10.3847/1538-4357/aac9cc. arXiv:1806.02900 ADSCrossRefGoogle Scholar
  164. M.R. Hayden, J. Bovy, J.A. Holtzman, D.L. Nidever, J.C. Bird, D.H. Weinberg, B.H. Andrews, S.R. Majewski, C. Allende Prieto, F. Anders, T.C. Beers, D. Bizyaev, C. Chiappini, K. Cunha, P. Frinchaboy, D.A. García-Herńandez, A.E. García Pérez, L. Girardi, P. Harding, F.R. Hearty, J.A. Johnson, S. Mészáros, I. Minchev, R. O’Connell, K. Pan, A.C. Robin, R.P. Schiavon, D.P. Schneider, M. Schultheis, M. Shetrone, M. Skrutskie, M. Steinmetz, V. Smith, J.C. Wilson, O. Zamora, G. Zasowski, Chemical cartography with APOGEE: metallicity distribution functions and the chemical structure of the Milky Way disk. Astrophys. J. 808, 132 (2015).  https://doi.org/10.1088/0004-637X/808/2/132. arXiv:1503.02110 ADSCrossRefGoogle Scholar
  165. D. Hendel, V. Scowcroft, K.V. Johnston, M.A. Fardal, R.P. van der Marel, S.T. Sohn, A.M. Price-Whelan, R.L. Beaton, G. Besla, G. Bono, M.R.L. Cioni, G. Clementini, J.G. Cohen, M. Fabrizio, W.L. Freedman, A. Garofalo, C.J. Grillmair, N. Kallivayalil, J.A. Kollmeier, D.R. Law, B.F. Madore, S.R. Majewski, M. Marengo, A.J. Monson, J.R. Neeley, D.L. Nidever, G. Pietrzyński, M. Seibert, B. Sesar, H.A. Smith, I. Soszyński, A. Udalski, SMHASH: anatomy of the Orphan stream using RR Lyrae stars. Mon. Not. R. Astron. Soc. 479, 570–587 (2018).  https://doi.org/10.1093/mnras/sty1455. arXiv:1711.04663 ADSCrossRefGoogle Scholar
  166. B. Hendricks, P.B. Stetson, D.A. VandenBerg, M. Dall’Ora, A new reddening law for M4. Astron. J. 144, 25 (2012).  https://doi.org/10.1088/0004-6256/144/1/25. arXiv:1204.5719 ADSCrossRefGoogle Scholar
  167. J.R. Herrnstein, J.M. Moran, L.J. Greenhill, P.J. Diamond, M. Inoue, N. Nakai, M. Miyoshi, C. Henkel, A. Riess, A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk. Nature 400, 539–541 (1999).  https://doi.org/10.1038/22972. arXiv:astro-ph/9907013 ADSCrossRefGoogle Scholar
  168. N. Ho, M. Geha, E.J. Tollerud, R. Zinn, P. Guhathakurta, L.C. Vargas, Metallicity evolution of the six most luminous M31 dwarf satellites. Astrophys. J. 798, 77 (2015).  https://doi.org/10.1088/0004-637X/798/2/77. arXiv:1405.4424 ADSCrossRefGoogle Scholar
  169. M.L. Houdashelt, R.A. Bell, A.V. Sweigart, Improved color–temperature relations and bolometric corrections for Cool stars. Astron. J. 119, 1448–1469 (2000).  https://doi.org/10.1086/301243. arXiv:astro-ph/9911367 ADSCrossRefGoogle Scholar
  170. S.B. Howell, C. Sobeck, M. Haas, M. Still, T. Barclay, F. Mullally, J. Troeltzsch, S. Aigrain, S.T. Bryson, D. Caldwell, W.J. Chaplin, W.D. Cochran, D. Huber, G.W. Marcy, A. Miglio, J.R. Najita, M. Smith, J.D. Twicken, J.J. Fortney, The K2 mission: characterization and early results. Publ. Astron. Soc. Pac. 126, 398 (2014).  https://doi.org/10.1086/676406. arXiv:1402.5163 ADSCrossRefGoogle Scholar
  171. T.J. Hoyt, W.L. Freedman, B.F. Madore, M. Seibert, R.L. Beaton, D. Hatt, I.S. Jang, M.G. Lee, A.J. Monson, J.A. Rich, The near-infrared tip of the red giant branch. II. An absolute calibration in the Large Magellanic Cloud. Astrophys. J. 858, 12 (2018).  https://doi.org/10.3847/1538-4357/aab7ed. arXiv:1803.01277 ADSCrossRefGoogle Scholar
  172. E.M.L. Humphreys, A.L. Argon, L.J. Greenhill, J.M. Moran, M.J. Reid, Recent progress on a new distance to NGC 4258, in Future Directions in High Resolution Astronomy, ed. by J. Romney, M. Reid. Astronomical Society of the Pacific Conference Series, vol. 340 (2005), p. 466 Google Scholar
  173. E.M.L. Humphreys, M.J. Reid, L.J. Greenhill, J.M. Moran, A.L. Argon, Toward a new geometric distance to the active galaxy NGC 4258. II. Centripetal accelerations and investigation of spiral structure. Astrophys. J. 672, 800–816 (2008).  https://doi.org/10.1086/523637. arXiv:0709.0925 ADSCrossRefGoogle Scholar
  174. E.M.L. Humphreys, M.J. Reid, J.M. Moran, L.J. Greenhill, A.L. Argon, Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant. Astrophys. J. 775, 13 (2013).  https://doi.org/10.1088/0004-637X/775/1/13. arXiv:1307.6031 ADSCrossRefGoogle Scholar
  175. D. Hurley-Keller, M. Mateo, E.K. Grebel, A new culprit in the second-parameter problem in the Sculptor dwarf spheroidal galaxy? Astrophys. J. Lett. 523, L25–L28 (1999).  https://doi.org/10.1086/312248. arXiv:astro-ph/9907156 ADSCrossRefGoogle Scholar
  176. I. Iben Jr., On the specification of the blue edge of the RR Lyrae instability strip. Astrophys. J. 166, 131 (1971).  https://doi.org/10.1086/150946 ADSCrossRefGoogle Scholar
  177. L. Inno, N. Matsunaga, G. Bono, F. Caputo, R. Buonanno, K. Genovali, C.D. Laney, M. Marconi, A.M. Piersimoni, F. Primas, M. Romaniello, On the distance of the Magellanic Clouds using Cepheid NIR and optical-NIR period-Wesenheit relations. Astrophys. J. 764, 84 (2013).  https://doi.org/10.1088/0004-637X/764/1/84. arXiv:1212.4376 ADSCrossRefGoogle Scholar
  178. L. Inno, G. Bono, N. Matsunaga, G. Fiorentino, M. Marconi, B. Lemasle, R. da Silva, I. Soszyński, A. Udalski, M. Romaniello, H.W. Rix, The panchromatic view of the Magellanic Clouds from Classical Cepheids. I. Distance, reddening, and geometry of the Large Magellanic Cloud disk. Astrophys. J. 832, 176 (2016).  https://doi.org/10.3847/0004-637X/832/2/176. arXiv:1609.03554 ADSCrossRefGoogle Scholar
  179. K.A. Janes, T. Liu, K-band photometry of globular cluster RR Lyraes and other horizontal branch studies. Mem. Soc. Astron. Ital. 63, 445–450 (1992) ADSGoogle Scholar
  180. I.S. Jang, M.G. Lee, The tip of the red giant branch distances to type Ia supernova host galaxies. III. NGC 4038/39 and NGC 5584. Astrophys. J. 807, 133 (2015).  https://doi.org/10.1088/0004-637X/807/2/133. arXiv:1506.03089 ADSCrossRefGoogle Scholar
  181. I.S. Jang, M.G. Lee, The tip of the red giant branch distances to typa Ia supernova host galaxies. V. NGC 3021, NGC 3370, and NGC 1309 and the value of the Hubble constant. Astrophys. J. 836, 74 (2017a).  https://doi.org/10.3847/1538-4357/836/1/74 ADSCrossRefGoogle Scholar
  182. I.S. Jang, M.G. Lee, The tip of the red giant branch distances to type Ia supernova host galaxies. IV. Color dependence and zero-point calibration. Astrophys. J. 835, 28 (2017b).  https://doi.org/10.3847/1538-4357/835/1/28. arXiv:1611.05040 ADSCrossRefGoogle Scholar
  183. I.S. Jang, D. Hatt, R.L. Beaton, M.G. Lee, W.L. Freedman, B.F. Madore, T.J. Hoyt, A.J. Monson, J.A. Rich, V. Scowcroft, M. Seibert, The Carnegie–Chicago Hubble program. III. The distance to NGC 1365 via the tip of the red giant branch. Astrophys. J. 852, 60 (2018).  https://doi.org/10.3847/1538-4357/aa9d92. arXiv:1703.10616 ADSCrossRefGoogle Scholar
  184. R.V. Jones, B.W. Carney, J.P. Fulbright, Template K light curves for RR Lyrae stars. Publ. Astron. Soc. Pac. 108, 877 (1996).  https://doi.org/10.1086/133809 ADSCrossRefGoogle Scholar
  185. A.H. Joy, Spectra of the brighter variables in globular clusters. Astrophys. J. 110, 105 (1949).  https://doi.org/10.1086/145190 ADSCrossRefGoogle Scholar
  186. J. Jurcsik, G. Kovacs, Determination of [Fe/H] from the light curves of RR Lyrae stars. Astron. Astrophys. 312, 111–120 (1996) ADSGoogle Scholar
  187. J. Jurcsik, G. Hajdu, I. Dékány, J. Nuspl, M. Catelan, E.K. Grebel, Blazhko modulation in the infrared (2018). arXiv:1801.03436
  188. M.I. Jurkovic, M. Stojanovic, S. Ninkovic, Galactic membership of BL Her type variable stars. Commun. Konkoly Obs. Hung. Acad. Sci. 105, 175–178 (2016). arXiv:1604.06871 ADSGoogle Scholar
  189. J. Kalirai, Scientific discovery with the James Webb Space Telescope. Contemp. Phys. 59(3), 251–290 (2018).  https://doi.org/10.1080/00107514.2018.1467648 ADSCrossRefGoogle Scholar
  190. J. Kaluzny, I.B. Thompson, W. Krzeminski, G.W. Preston, W. Pych, S.M. Rucinski, A. Schwarzenberg-Czerny, S.A. Shectman, G. Stachowski, Eclipsing binaries in globular clusters as age and distance indicators, in Stellar Astrophysics with the World’s Largest Telescopes, ed. by J. Mikolajewska, A. Olech. American Institute of Physics Conference Series, vol. 752 (2005), pp. 70–83.  https://doi.org/10.1063/1.1893337 CrossRefGoogle Scholar
  191. J. Kaluzny, I.B. Thompson, M. Rozyczka, A. Dotter, W. Krzeminski, W. Pych, S.M. Rucinski, G.S. Burley, S.A. Shectman, The Cluster AgeS Experiment (CASE). V. Analysis of three eclipsing binaries in the globular cluster M4. Astron. J. 145, 43 (2013).  https://doi.org/10.1088/0004-6256/145/2/43. arXiv:1301.2946 ADSCrossRefGoogle Scholar
  192. J. Kaluzny, I.B. Thompson, A. Dotter, M. Rozyczka, W. Pych, S.M. Rucinski, G.S. Burley, The Clusters AgeS Experiment (CASE). VI. Analysis of two detached eclipsing binaries in the globular cluster M55. Acta Astron. 64, 11–26 (2014). arXiv:1403.6325 ADSGoogle Scholar
  193. J. Kaluzny, I.B. Thompson, A. Dotter, M. Rozyczka, A. Schwarzenberg-Czerny, G.S. Burley, B. Mazur, S.M. Rucinski, The Cluster AgeS Experiment (CASE). VII. Analysis of two eclipsing binaries in the globular cluster NGC 6362. Astron. J. 150, 155 (2015).  https://doi.org/10.1088/0004-6256/150/5/155. arXiv:1508.04894 ADSCrossRefGoogle Scholar
  194. P. Karczmarek, G. Pietrzyński, W. Gieren, K. Suchomska, P. Konorski, M. Górski, B. Pilecki, D. Graczyk, P. Wielgórski, The Araucaria project: the distance to the Carina Dwarf Galaxy from infrared photometry of RR Lyrae stars. Astron. J. 150, 90 (2015).  https://doi.org/10.1088/0004-6256/150/3/90. arXiv:1507.07713 ADSCrossRefGoogle Scholar
  195. P. Karczmarek, G. Pietrzyński, K. Belczyński, K. Stȩpień, G. Wiktorowicz, K. Iłkiewicz, Contamination of RR Lyrae stars from binary evolution pulsators, in 37th Meeting of the Polish Astronomical Society, vol. 3, ed. by A. Rozanska, M. Bejger (2016), pp. 45–48 Google Scholar
  196. P. Karczmarek, G. Pietrzyński, M. Górski, W. Gieren, D. Bersier, The Araucaria project: the distance to the Fornax Dwarf Galaxy from near-infrared photometry of RR Lyrae stars. Astron. J. 154, 263 (2017a).  https://doi.org/10.3847/1538-3881/aa9574. arXiv:1710.10934 ADSCrossRefGoogle Scholar
  197. P. Karczmarek, G. Wiktorowicz, K. Iłkiewicz, R. Smolec, K. Stȩpień, G. Pietrzyński, W. Gieren, K. Belczynski, The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables. Mon. Not. R. Astron. Soc. 466, 2842–2854 (2017b).  https://doi.org/10.1093/mnras/stw3286. arXiv:1612.00465 ADSCrossRefGoogle Scholar
  198. P. Kervella, B. Trahin, H.E. Bond, A. Gallenne, L. Szabados, A. Mérand, J. Breitfelder, J. Dailloux, R.I. Anderson, P. Fouqué, W. Gieren, N. Nardetto, G. Pietrzyński, Observational calibration of the projection factor of Cepheids. III. The long-period Galactic Cepheid RS Puppis. Astron. Astrophys. 600, A127 (2017).  https://doi.org/10.1051/0004-6361/201630202. arXiv:1701.05192 ADSCrossRefGoogle Scholar
  199. E.N. Kirby, P. Guhathakurta, M. Bolte, C. Sneden, M.C. Geha, Multi-element abundance measurements from medium-resolution spectra. I. The Sculptor dwarf spheroidal galaxy. Astrophys. J. 705, 328–346 (2009).  https://doi.org/10.1088/0004-637X/705/1/328. arXiv:0909.3092 ADSCrossRefGoogle Scholar
  200. C.R. Klein, J.W. Richards, N.R. Butler, J.S. Bloom, Mid-infrared period-luminosity relations of RR Lyrae stars derived from the WISE preliminary data release. Astrophys. J. 738, 185 (2011).  https://doi.org/10.1088/0004-637X/738/2/185. arXiv:1105.0055 ADSCrossRefGoogle Scholar
  201. C.R. Klein, J.W. Richards, N.R. Butler, J.S. Bloom, A Bayesian approach to calibrating period-luminosity relations of RR Lyrae stars in the mid-infrared. Astrophys. Space Sci. 341, 83–87 (2012).  https://doi.org/10.1007/s10509-012-1035-4. arXiv:1202.3990 ADSCrossRefGoogle Scholar
  202. C.R. Klein, J.W. Richards, N.R. Butler, J.S. Bloom, Mid-infrared period-luminosity relations of RR Lyrae stars derived from the AllWISE data release. Mon. Not. R. Astron. Soc. 440, L96–L100 (2014).  https://doi.org/10.1093/mnrasl/slu031. arXiv:1402.4449 ADSCrossRefGoogle Scholar
  203. C. Koen, D. Laney, On the determination of absolute magnitude zero-points from HIPPARCOS parallaxes. Mon. Not. R. Astron. Soc. 301, 582–584 (1998).  https://doi.org/10.1046/j.1365-8711.1998.02066.x ADSCrossRefGoogle Scholar
  204. J.A. Kollmeier, D.M. Szczygieł, C.R. Burns, A. Gould, I.B. Thompson, G.W. Preston, C. Sneden, J.D. Crane, S. Dong, B.F. Madore, N. Morrell, J.L. Prieto, S. Shectman, J.D. Simon, E. Villanueva, The absolute magnitude of RRc variables from statistical parallax. Astrophys. J. 775, 57 (2013).  https://doi.org/10.1088/0004-637X/775/1/57. arXiv:1208.2689 ADSCrossRefGoogle Scholar
  205. G. Kovacs, J.R. Buchler, Regular and irregular nonlinear pulsation in population II Cepheid models. Astrophys. J. 334, 971–994 (1988).  https://doi.org/10.1086/166890 ADSCrossRefGoogle Scholar
  206. G. Kovacs, E. Zsoldos, A new method for the determination of [Fe/H] in RR Lyrae stars. Astron. Astrophys. 293, L57–L60 (1995) ADSGoogle Scholar
  207. V. Kovtyukh, G. Wallerstein, I. Yegorova, S. Andrievsky, S. Korotin, I. Saviane, S. Belik, C.E. Davis, E.M. Farrell, Metal-poor type II Cepheids with periods less than three days. Publ. Astron. Soc. Pac. 054, 201 (2018a).  https://doi.org/10.1088/1538-3873/aaacf7. arXiv:1803.05041 CrossRefGoogle Scholar
  208. V. Kovtyukh, I. Yegorova, S. Andrievsky, S. Korotin, I. Saviane, B. Lemasle, F. Chekhonadskikh, S. Belik, Type II Cepheids: evidence for Na–O anticorrelation for BL Her type stars? Mon. Not. R. Astron. Soc. 477, 2276–2285 (2018b).  https://doi.org/10.1093/mnras/sty671 ADSCrossRefGoogle Scholar
  209. R.P. Kudritzki, M.A. Urbaneja, Distances to galaxies from the brightest stars in the Universe. Astrophys. Space Sci. 341, 131–142 (2012).  https://doi.org/10.1007/s10509-012-1016-7. arXiv:1112.3935 ADSCrossRefGoogle Scholar
  210. C.A. Kuehn, K. Dame, H.A. Smith, M. Catelan, Y.B. Jeon, J.M. Nemec, A.R. Walker, A. Kunder, B.J. Pritzl, N. De Lee, J. Borissova, Variable stars in Large Magellanic Cloud globular clusters. III. Reticulum. Astron. J. 145, 160 (2013).  https://doi.org/10.1088/0004-6256/145/6/160. arXiv:1307.6644 ADSCrossRefGoogle Scholar
  211. A. Kunder, B. Chaboyer, Distance to the Sagittarius Dwarf Galaxy using Macho project RR Lyrae stars. Astron. J. 137, 4478–4486 (2009).  https://doi.org/10.1088/0004-6256/137/5/4478. arXiv:0903.3040 ADSCrossRefGoogle Scholar
  212. A. Kunder, E. Valenti, M. Dall’Ora, P. Pietrukowicz, C. Sneden, G. Bono, V.F. Braga, I. Ferraro, G. Fiorentino, G. Iannicola, M. Marconi, C.E. Martínez-Vázquez, M. Monelli, I. Musella, V. Ripepi, M. Salaris, P.B. Stetson, Impact of distance determinations on Galactic structure. II. Old tracers. Space Sci. Rev. 214, 90 (2018).  https://doi.org/10.1007/s11214-018-0519-0. arXiv:1806.07487 ADSCrossRefGoogle Scholar
  213. A.C. Layden, R.B. Hanson, S.L. Hawley, A.R. Klemola, C.J. Hanley, The absolute magnitude and kinematics of RR Lyrae stars via statistical parallax. Astron. J. 112, 2110 (1996).  https://doi.org/10.1086/118167. arXiv:astro-ph/9608108 ADSCrossRefGoogle Scholar
  214. R. Leaman, K.A. Venn, A.M. Brooks, G. Battaglia, A.A. Cole, R.A. Ibata, M.J. Irwin, A.W. McConnachie, J.T. Mendel, E. Starkenburg, E. Tolstoy, The comparative chemical evolution of an isolated dwarf galaxy: a VLT and Keck spectroscopic survey of WLM. Astrophys. J. 767, 131 (2013).  https://doi.org/10.1088/0004-637X/767/2/131. arXiv:1302.1879 ADSCrossRefGoogle Scholar
  215. H.S. Leavitt, 1777 variables in the Magellanic Clouds. Ann. Harv. Coll. Obs. 60, 87–108 (1908) ADSGoogle Scholar
  216. H.S. Leavitt, E.C. Pickering, Periods of 25 variable stars in the Small Magellanic Cloud. Harv. Coll. Obs. Circ. 173, 1–3 (1912) ADSGoogle Scholar
  217. C.H. Lee, J. Koppenhoefer, S. Seitz, R. Bender, A. Riffeser, M. Kodric, U. Hopp, J. Snigula, C. Gössl, R.P. Kudritzki, W. Burgett, K. Chambers, K. Hodapp, N. Kaiser, C. Waters, Properties of M31. V. 298 eclipsing binaries from PAndromeda. Astrophys. J. 797, 22 (2014).  https://doi.org/10.1088/0004-637X/797/1/22. arXiv:1411.1115 ADSCrossRefGoogle Scholar
  218. M.G. Lee, I.S. Jang, The distance to M101 hosting type Ia supernova 2011fe based on the tip of the red giant branch. Astrophys. J. Lett. 760, L14 (2012).  https://doi.org/10.1088/2041-8205/760/1/L14. arXiv:1210.6040 ADSCrossRefGoogle Scholar
  219. M.G. Lee, W.L. Freedman, B.F. Madore, The tip of the red giant branch as a distance indicator for resolved galaxies. Astrophys. J. 417, 553 (1993).  https://doi.org/10.1086/173334 ADSCrossRefGoogle Scholar
  220. B. Lemasle, V. Kovtyukh, G. Bono, P. François, I. Saviane, I. Yegorova, K. Genovali, L. Inno, G. Galazutdinov, R. da Silva, Type II Cepheids in the Milky Way disc. Chemical composition of two new W Virginis stars: DD Vel and HQ Car. Astron. Astrophys. 579, A47 (2015a).  https://doi.org/10.1051/0004-6361/201425541. arXiv:1505.02789 ADSCrossRefGoogle Scholar
  221. B. Lemasle, V. Kovtyukh, G. Bono, P. François, I. Saviane, I. Yegorova, K. Genovali, L. Inno, G. Galazutdinov, R. da Silva, Type II Cepheids in the Milky Way disc. chemical composition of two new W Virginis stars: DD Vel and HQ Car. Astron. Astrophys. 579, A47 (2015b).  https://doi.org/10.1051/0004-6361/201425541. arXiv:1505.02789 ADSCrossRefGoogle Scholar
  222. L. Lindegren, E. Hog, F. van Leeuwen, C.A. Murray, D.W. Evans, M.J. Penston, M.A.C. Perryman, C. Petersen, N. Ramamani, M.A.J. Snijders, The NDAC HIPPARCOS data analysis consortium—overview of the reduction methods. Astron. Astrophys. 258, 18–30 (1992) ADSGoogle Scholar
  223. L. Lindegren, U. Lammers, U. Bastian, J. Hernández, S. Klioner, D. Hobbs, A. Bombrun, D. Michalik, M. Ramos-Lerate, A. Butkevich, G. Comoretto, E. Joliet, B. Holl, A. Hutton, P. Parsons, H. Steidelmüller, U. Abbas, M. Altmann, A. Andrei, S. Anton, N. Bach, C. Barache, U. Becciani, J. Berthier, L. Bianchi, M. Biermann, S. Bouquillon, G. Bourda, T. Brüsemeister, B. Bucciarelli, D. Busonero, T. Carlucci, J. Castañeda, P. Charlot, M. Clotet, M. Crosta, M. Davidson, F. de Felice, R. Drimmel, C. Fabricius, A. Fienga, F. Figueras, E. Fraile, M. Gai, N. Garralda, R. Geyer, J.J. González-Vidal, R. Guerra, N.C. Hambly, M. Hauser, S. Jordan, M.G. Lattanzi, H. Lenhardt, S. Liao, W. Löffler, P.J. McMillan, F. Mignard, A. Mora, R. Morbidelli, J. Portell, A. Riva, M. Sarasso, I. Serraller, H. Siddiqui, R. Smart, A. Spagna, U. Stampa, I. Steele, F. Taris, J. Torra, W. van Reeven, A. Vecchiato, S. Zschocke, J. de Bruijne, G. Gracia, F. Raison, T. Lister, J. Marchant, R. Messineo, M. Soffel, J. Osorio, A. de Torres, W. O’Mullane, Gaia data release 1. Astrometry: one billion positions, two million proper motions and parallaxes. Astron. Astrophys. 595, A4 (2016).  https://doi.org/10.1051/0004-6361/201628714. arXiv:1609.04303 CrossRefGoogle Scholar
  224. T. Liu, K.A. Janes, The luminosity scale of RR Lyrae stars with the Baade–Wesselink method. III—the absolute magnitudes of four RR Lyrae stars in the globular cluster M4. Astrophys. J. 360, 561–576 (1990).  https://doi.org/10.1086/169145 ADSCrossRefGoogle Scholar
  225. A.J. Longmore, J.A. Fernley, R.F. Jameson, M.R. Sherrington, J. Frank, VJHK observations of the RR Lyrae star VY Serpentis. Mon. Not. R. Astron. Soc. 216, 873–882 (1985).  https://doi.org/10.1093/mnras/216.4.873 ADSCrossRefGoogle Scholar
  226. A.J. Longmore, J.A. Fernley, R.F. Jameson, RR Lyrae stars in globular clusters—better distances from infrared measurements? Mon. Not. R. Astron. Soc. 220, 279–287 (1986).  https://doi.org/10.1093/mnras/220.2.279 ADSCrossRefGoogle Scholar
  227. X. Luri, A.E. Gomez, J. Torra, F. Figueras, M.O. Mennessier, The LMC distance modulus from HIPPARCOS RR Lyrae and classical Cepheid data. Astron. Astrophys. 335, L81–L84 (1998). arXiv:astro-ph/9805215 ADSGoogle Scholar
  228. T. Maas, H. Van Winckel, C. Waelkens, RU Cen and SX Cen: two strongly depleted RV Tauri stars in binary systems. The RV Tauri photometric b phenomenon and binarity. Astron. Astrophys. 386, 504–516 (2002).  https://doi.org/10.1051/0004-6361:20020209 ADSCrossRefGoogle Scholar
  229. T. Maas, S. Giridhar, D.L. Lambert, The chemical compositions of the type II Cepheids—the BL Herculis and W Virginis variables. Astrophys. J. 666, 378–392 (2007).  https://doi.org/10.1086/520081. arXiv:0706.2029 ADSCrossRefGoogle Scholar
  230. A.D. Mackey, G.F. Gilmore, Photometry of Magellanic Cloud clusters with the advanced camera for surveys—I. The old Large Magellanic Cloud clusters NGC 1928, 1939 and reticulum. Mon. Not. R. Astron. Soc. 352, 153–167 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07908.x. arXiv:astro-ph/0404247 ADSCrossRefGoogle Scholar
  231. L.M. Macri, D. Calzetti, W.L. Freedman, B.K. Gibson, J.A. Graham, J.P. Huchra, S.M.G. Hughes, B.F. Madore, J.R. Mould, S.E. Persson, P.B. Stetson, NICMOS observations of extragalactic Cepheids. I. Photometry database and a test of the standard extinction law. Astrophys. J. 549, 721–744 (2001).  https://doi.org/10.1086/319465. arXiv:astro-ph/0102125 ADSCrossRefGoogle Scholar
  232. B.F. Madore, The period-luminosity relation. IV—intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. Astrophys. J. 253, 575–579 (1982).  https://doi.org/10.1086/159659 ADSCrossRefGoogle Scholar
  233. B.F. Madore, W.L. Freedman, The tip of the red giant branch as a distance indicator for resolved galaxies. 2: computer simulations. Astron. J. 109, 1645–1652 (1995).  https://doi.org/10.1086/117391 ADSCrossRefGoogle Scholar
  234. B.F. Madore, V. Mager, W.L. Freedman, Sharpening the tip of the red giant branch. Astrophys. J. 690, 389–393 (2009).  https://doi.org/10.1088/0004-637X/690/1/389. arXiv:0809.2598 ADSCrossRefGoogle Scholar
  235. B.F. Madore, D. Hoffman, W.L. Freedman, J.A. Kollmeier, A. Monson, S.E. Persson, J.A. Rich Jr., V. Scowcroft, M. Seibert, A preliminary calibration of the RR Lyrae period-luminosity relation at mid-infrared wavelengths: WISE data. Astrophys. J. 776, 135 (2013).  https://doi.org/10.1088/0004-637X/776/2/135. arXiv:1308.3160 ADSCrossRefGoogle Scholar
  236. B.F. Madore, W.L. Freedman, D. Hatt, T.J. Hoyt, A.J. Monson, R.L. Beaton, J.A. Rich, I.S. Jang, M.G. Lee, V. Scowcroft, M. Seibert, The near-infrared tip of the red giant branch. I. A calibration in the isolated dwarf galaxy IC 1613. Astrophys. J. 858, 11 (2018).  https://doi.org/10.3847/1538-4357/aab7f4. arXiv:1803.01278 ADSCrossRefGoogle Scholar
  237. V.A. Mager, B.F. Madore, W.L. Freedman, Metallicity-corrected tip of the red giant branch distance to NGC 4258. Astrophys. J. 689, 721–731 (2008).  https://doi.org/10.1086/592563. arXiv:0808.2180 ADSCrossRefGoogle Scholar
  238. D. Majaess, D. Turner, D. Lane, Type II Cepheids as extragalactic distance candles. Acta Astron. 59, 403–418 (2009). arXiv:0909.0181 ADSGoogle Scholar
  239. S.R. Majewski, M.H. Siegel, R.J. Patterson, R.T. Rood, An internal second-parameter problem in the Sculptor dwarf spheroidal galaxy. Astrophys. J. Lett. 520, L33–L36 (1999).  https://doi.org/10.1086/312133. arXiv:astro-ph/9905238 ADSCrossRefGoogle Scholar
  240. S.R. Majewski, G. Zasowski, D.L. Nidever, Lifting the dusty veil with near- and mid-infrared photometry. I. Description and applications of the Rayleigh-jeans color excess method. Astrophys. J. 739, 25 (2011).  https://doi.org/10.1088/0004-637X/739/1/25. arXiv:1106.2542 ADSCrossRefGoogle Scholar
  241. S.R. Majewski, R.P. Schiavon, P.M. Frinchaboy, C. Allende Prieto, R. Barkhouser, D. Bizyaev, B. Blank, S. Brunner, A. Burton, R. Carrera, S.D. Chojnowski, K. Cunha, C. Epstein, G. Fitzgerald, A.E. García Pérez, F.R. Hearty, C. Henderson, J.A. Holtzman, J.A. Johnson, C.R. Lam, J.E. Lawler, P. Maseman, S. Mészáros, M. Nelson, D.C. Nguyen, D.L. Nidever, M. Pinsonneault, M. Shetrone, S. Smee, V.V. Smith, T. Stolberg, M.F. Skrutskie, E. Walker, J.C. Wilson, G. Zasowski, F. Anders, S. Basu, S. Beland, M.R. Blanton, J. Bovy, J.R. Brownstein, J. Carlberg, W. Chaplin, C. Chiappini, D.J. Eisenstein, Y. Elsworth, D. Feuillet, S.W. Fleming, J. Galbraith-Frew, R.A. García, D.A. García-Hernández, B.A. Gillespie, L. Girardi, J.E. Gunn, S. Hasselquist, M.R. Hayden, S. Hekker, I. Ivans, K. Kinemuchi, M. Klaene, S. Mahadevan, S. Mathur, B. Mosser, D. Muna, J.A. Munn, R.C. Nichol, R.W. O’Connell, J.K. Parejko, A.C. Robin, H. Rocha-Pinto, M. Schultheis, A.M. Serenelli, N. Shane, V. Silva Aguirre, J.S. Sobeck, B. Thompson, N.W. Troup, D.H. Weinberg, The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).  https://doi.org/10.3847/1538-3881/aa784d. arXiv:1509.05420 ADSCrossRefGoogle Scholar
  242. D. Makarov, L. Makarova, L. Rizzi, R.B. Tully, A.E. Dolphin, S. Sakai, E.J. Shaya, Tip of the red giant branch distances. I. Optimization of a maximum likelihood algorithm. Astron. J. 132, 2729–2742 (2006).  https://doi.org/10.1086/508925. arXiv:astro-ph/0603073 ADSCrossRefGoogle Scholar
  243. L. Malavolta, C. Sneden, G. Piotto, A.P. Milone, L.R. Bedin, V. Nascimbeni, Atmospheric parameters and metallicities for 2191 stars in the globular cluster M4. Astron. J. 147, 25 (2014).  https://doi.org/10.1088/0004-6256/147/2/25. arXiv:1311.2592 ADSCrossRefGoogle Scholar
  244. M. Marconi, M. Di Criscienzo, Updated pulsation models for BL Herculis stars. Astron. Astrophys. 467, 223–227 (2007).  https://doi.org/10.1051/0004-6361:20066646. arXiv:astro-ph/0701256 ADSCrossRefGoogle Scholar
  245. M. Marconi, F. Caputo, M. Di Criscienzo, M. Castellani, RR Lyrae stars in galactic globular clusters. II. A theoretical approach to variables in M3. Astrophys. J. 596, 299–313 (2003).  https://doi.org/10.1086/377641. arXiv:astro-ph/0306356 ADSCrossRefGoogle Scholar
  246. M. Marconi, I. Musella, G. Fiorentino, Cepheid pulsation models at varying metallicity and \(\Delta \)Y/\(\Delta\)Z. Astrophys. J. 632, 590–610 (2005a).  https://doi.org/10.1086/432790. arXiv:astro-ph/0506207 ADSCrossRefGoogle Scholar
  247. M. Marconi, T. Nordgren, G. Bono, G. Schnider, F. Caputo, Predicted and empirical radii of RR Lyrae stars. Astrophys. J. Lett. 623, L133–L136 (2005b).  https://doi.org/10.1086/430273. arXiv:astro-ph/0503382 ADSCrossRefGoogle Scholar
  248. M. Marconi, G. Bono, F. Caputo, A.M. Piersimoni, A. Pietrinferni, R.F. Stellingwerf, On the period distribution of cluster RR Lyrae stars to constrain their helium content: the case of \(\omega\) Centauri. Astrophys. J. 738, 111 (2011).  https://doi.org/10.1088/0004-637X/738/1/111. arXiv:1106.4931 ADSCrossRefGoogle Scholar
  249. M. Marconi, G. Coppola, G. Bono, V. Braga, A. Pietrinferni, R. Buonanno, M. Castellani, I. Musella, V. Ripepi, R.F. Stellingwerf, On a new theoretical framework for RR Lyrae stars. I. The metallicity dependence. Astrophys. J. 808, 50 (2015).  https://doi.org/10.1088/0004-637X/808/1/50. arXiv:1505.02531 ADSCrossRefGoogle Scholar
  250. M. Marconi, G. Coppola, G. Bono, V. Braga, A. Pietrinferni, Helium abundance effects on RR Lyrae pulsation properties. Commun. Konkoly Obs. Hung. Acad. Sci. 105, 125–a128 (2016) ADSGoogle Scholar
  251. A.F. Marino, S. Villanova, G. Piotto, A.P. Milone, Y. Momany, L.R. Bedin, A.M. Medling, Spectroscopic and photometric evidence of two stellar populations in the Galactic globular cluster NGC 6121 (M 4). Astron. Astrophys. 490, 625–640 (2008).  https://doi.org/10.1051/0004-6361:200810389. arXiv:0808.1414 ADSCrossRefGoogle Scholar
  252. S.L. Martell, S. Sharma, S. Buder, L. Duong, K.J. Schlesinger, J. Simpson, K. Lind, M. Ness, J.P. Marshall, M. Asplund, J. Bland-Hawthorn, A.R. Casey, G. De Silva, K.C. Freeman, J. Kos, J. Lin, D.B. Zucker, T. Zwitter, B. Anguiano, C. Bacigalupo, D. Carollo, L. Casagrande, G.S. Da Costa, J. Horner, D. Huber, E.A. Hyde, P.R. Kafle, G.F. Lewis, D. Nataf, C.A. Navin, D. Stello, C.G. Tinney, F.G. Watson, R. Wittenmyer, The GALAH survey: observational overview and Gaia DR1 companion. Mon. Not. R. Astron. Soc. 465, 3203–3219 (2017).  https://doi.org/10.1093/mnras/stw2835. arXiv:1609.02822 ADSCrossRefGoogle Scholar
  253. C.E. Martínez-Vázquez, M. Monelli, G. Bono, P.B. Stetson, I. Ferraro, E.J. Bernard, C. Gallart, G. Fiorentino, G. Iannicola, A. Udalski, Variable stars in Local Group galaxies—I. Tracing the early chemical enrichment and radial gradients in the Sculptor dSph with RR Lyrae stars. Mon. Not. R. Astron. Soc. 454, 1509–1516 (2015).  https://doi.org/10.1093/mnras/stv2014. arXiv:1508.06942 ADSCrossRefGoogle Scholar
  254. C.E. Martínez-Vázquez, M. Monelli, C. Gallart, G. Bono, E.J. Bernard, P.B. Stetson, I. Ferraro, A.R. Walker, M. Dall’Ora, G. Fiorentino, G. Iannicola, Probing the early chemical evolution of the Sculptor dSph with purely old stellar tracers. Mon. Not. R. Astron. Soc. 461, L41–L45 (2016a).  https://doi.org/10.1093/mnrasl/slw093. arXiv:1605.02768 ADSCrossRefGoogle Scholar
  255. C.E. Martínez-Vázquez, P.B. Stetson, M. Monelli, E.J. Bernard, G. Fiorentino, C. Gallart, G. Bono, S. Cassisi, M. Dall’Ora, I. Ferraro, G. Iannicola, A.R. Walker, Variable stars in Local Group galaxies—II. Sculptor dSph. Mon. Not. R. Astron. Soc. 462, 4349–4370 (2016b).  https://doi.org/10.1093/mnras/stw1895. arXiv:1607.08518 ADSCrossRefGoogle Scholar
  256. C.E. Martínez-Vázquez, M. Monelli, E.J. Bernard, C. Gallart, P.B. Stetson, E.D. Skillman, G. Bono, S. Cassisi, G. Fiorentino, K.B.W. McQuinn, A.A. Cole, A.W. McConnachie, N.F. Martin, A.E. Dolphin, M. Boylan-Kolchin, A. Aparicio, S.L. Hidalgo, D.R. Weisz, The ISLAnds project. III. Variable stars in six Andromeda dwarf spheroidal galaxies. Astrophys. J. 850, 137 (2017).  https://doi.org/10.3847/1538-4357/aa9381. arXiv:1710.09038 ADSCrossRefGoogle Scholar
  257. N. Matsunaga, H. Fukushi, Y. Nakada, T. Tanabé, M.W. Feast, J.W. Menzies, Y. Ita, S. Nishiyama, D. Baba, T. Naoi, H. Nakaya, T. Kawadu, A. Ishihara, D. Kato, The period-luminosity relation for type II Cepheids in globular clusters. Mon. Not. R. Astron. Soc. 370, 1979–1990 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10620.x. arXiv:astro-ph/0606609 ADSCrossRefGoogle Scholar
  258. N. Matsunaga, M.W. Feast, T. Kawadu, S. Nishiyama, T. Nagayama, T. Nagata, M. Tamura, G. Bono, N. Kobayashi, Cepheids and other short-period variables near the Galactic centre. Mon. Not. R. Astron. Soc. 429, 385–397 (2013).  https://doi.org/10.1093/mnras/sts343. arXiv:1211.0151 ADSCrossRefGoogle Scholar
  259. R. McGonegal, C.W. McAlary, B.F. Madore, R.A. McLaren, The Cepheid distance scale—a new application for infrared photometry. Astrophys. J. Lett. 257, L33–L36 (1982).  https://doi.org/10.1086/183803 ADSCrossRefGoogle Scholar
  260. D.H. McNamara, Period-luminosity relations of population II Cepheids. Astron. J. 109, 2134 (1995).  https://doi.org/10.1086/117438 ADSCrossRefGoogle Scholar
  261. D.H. McNamara, The absolute magnitudes of the RR Lyrae stars. Publ. Astron. Soc. Pac. 109, 857–867 (1997).  https://doi.org/10.1086/133956 ADSCrossRefGoogle Scholar
  262. A. McWilliam (ed.), RR Lyrae Stars, Metal-Poor Stars, and the Galaxy, vol. 5 (2011). arXiv:1109.1324 Google Scholar
  263. B. Méndez, M. Davis, J. Moustakas, J. Newman, B.F. Madore, W.L. Freedman, Deviations from the local Hubble flow. I. The tip of the red giant branch as a distance indicator. Astron. J. 124, 213–233 (2002).  https://doi.org/10.1086/341168. arXiv:astro-ph/0204192 ADSCrossRefGoogle Scholar
  264. D. Michalik, L. Lindegren, D. Hobbs, The Tycho-Gaia astrometric solution How to get 2.5 million parallaxes with less than one year of Gaia data. Astron. Astrophys. 574, A115 (2015).  https://doi.org/10.1051/0004-6361/201425310 ADSCrossRefGoogle Scholar
  265. M. Miyoshi, J. Moran, J. Herrnstein, L. Greenhill, N. Nakai, P. Diamond, M. Inoue, Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258. Nature 373, 127–129 (1995).  https://doi.org/10.1038/373127a0 ADSCrossRefGoogle Scholar
  266. A.J. Monson, R.L. Beaton, V. Scowcroft, W.L. Freedman, B.F. Madore, J.A. Rich, M. Seibert, J.A. Kollmeier, G. Clementini, Standard galactic field RR Lyrae. I. Optical to mid-infrared phased photometry. Astron. J. 153, 96 (2017).  https://doi.org/10.3847/1538-3881/153/3/96. arXiv:1703.01520 ADSCrossRefGoogle Scholar
  267. M.I. Moretti, G. Clementini, T. Muraveva, V. Ripepi, J.B. Marquette, M.R.L. Cioni, M. Marconi, L. Girardi, S. Rubele, P. Tisserand, R. de Grijs, M.A.T. Groenewegen, R. Guandalini, V.D. Ivanov, J.T. van Loon, The VMC survey—X. Cepheids, RR Lyrae stars and binaries as probes of the Magellanic System’s structure. Mon. Not. R. Astron. Soc. 437, 2702–2719 (2014).  https://doi.org/10.1093/mnras/stt2081. arXiv:1310.6849 ADSCrossRefGoogle Scholar
  268. M. Mouhcine, H.C. Ferguson, R.M. Rich, T.M. Brown, T.E. Smith, Halos of spiral galaxies. I. The tip of the red giant branch as a distance indicator. Astrophys. J. 633, 810–820 (2005).  https://doi.org/10.1086/468177. arXiv:astro-ph/0510253 ADSCrossRefGoogle Scholar
  269. J. Mould, S. Sakai, The extragalactic distance scale without Cepheids. Astrophys. J. Lett. 686, L75 (2008).  https://doi.org/10.1086/592964 ADSCrossRefGoogle Scholar
  270. T. Muraveva, M. Palmer, G. Clementini, X. Luri, M.R.L. Cioni, M.I. Moretti, M. Marconi, V. Ripepi, S. Rubele, New near-infrared period-luminosity–metallicity relations for RR Lyrae stars and the outlook for Gaia. Astrophys. J. 807, 127 (2015).  https://doi.org/10.1088/0004-637X/807/2/127. arXiv:1505.06001 ADSCrossRefGoogle Scholar
  271. T. Muraveva, H.E. Delgado, G. Clementini, L.M. Sarro, A. Garofalo, RR Lyrae stars as standard candles in the Gaia Data Release 2 Era (2018a). arXiv:1805.08742
  272. T. Muraveva, A. Garofalo, V. Scowcroft, G. Clementini, W.L. Freedman, B.F. Madore, A.J. Monson, The Carnegie RR Lyrae program: mid-infrared period-luminosity relations of RR Lyrae stars in reticulum. Mon. Not. R. Astron. Soc. (2018b).  https://doi.org/10.1093/mnras/sty1959. arXiv:1807.07493 CrossRefGoogle Scholar
  273. T. Muraveva, S. Subramanian, G. Clementini, M.R.L. Cioni, M. Palmer, J.T. van Loon, M.I. Moretti, R. de Grijs, R. Molinaro, V. Ripepi, M. Marconi, J. Emerson, V.D. Ivanov, The VMC survey—XXVI. Structure of the Small Magellanic Cloud from RR Lyrae stars. Mon. Not. R. Astron. Soc. 473, 3131–3146 (2018c).  https://doi.org/10.1093/mnras/stx2514. arXiv:1709.09064 ADSCrossRefGoogle Scholar
  274. J.R. Neeley, M. Marengo, G. Bono, V.F. Braga, M. Dall’Ora, P.B. Stetson, R. Buonanno, I. Ferraro, W.L. Freedman, G. Iannicola, B.F. Madore, N. Matsunaga, A. Monson, S.E. Persson, V. Scowcroft, M. Seibert, On the distance of the globular cluster M4 (NGC 6121) using RR Lyrae stars. II. Mid-infrared period-luminosity relations. Astrophys. J. 808, 11 (2015).  https://doi.org/10.1088/0004-637X/808/1/11. arXiv:1505.07858 ADSCrossRefGoogle Scholar
  275. J.R. Neeley, M. Marengo, G. Bono, V.F. Braga, M. Dall’Ora, D. Magurno, M. Marconi, N. Trueba, E. Tognelli, P.G. Prada Moroni, R.L. Beaton, W.L. Freedman, B.F. Madore, A.J. Monson, V. Scowcroft, M. Seibert, P.B. Stetson, On a new theoretical framework for RR Lyrae stars. II. Mid-infrared period-luminosity–metallicity relations. Astrophys. J. 841, 84 (2017).  https://doi.org/10.3847/1538-4357/aa713d. arXiv:1705.01970 ADSCrossRefGoogle Scholar
  276. C.C. Ngeow, S.M. Kanbur, S. Nikolaev, J. Buonaccorsi, K.H. Cook, D.L. Welch, Further empirical evidence for the non-linearity of the period-luminosity relations as seen in the Large Magellanic Cloud Cepheids. Mon. Not. R. Astron. Soc. 363, 831–846 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09477.x. arXiv:astro-ph/0507601 ADSCrossRefGoogle Scholar
  277. P.T. Oosterhoff, Some remarks on the variable stars in globular clusters. Observatory 62, 104–109 (1939) ADSGoogle Scholar
  278. A. Peimbert, M. Peimbert, On the O/H, Mg/H, Si/H, and Fe/H gas and dust abundance ratios in galactic and extragalactic H II regions. Astrophys. J. 724, 791–798 (2010).  https://doi.org/10.1088/0004-637X/724/1/791. arXiv:1006.0692 ADSCrossRefGoogle Scholar
  279. M.A.C. Perryman, L. Lindegren, J. Kovalevsky, E. Hoeg, U. Bastian, P.L. Bernacca, M. Crézé, F. Donati, M. Grenon, M. Grewing, F. van Leeuwen, H. van der Marel, F. Mignard, C.A. Murray, R.S. Le Poole, H. Schrijver, C. Turon, F. Arenou, M. Froeschlé, C.S. Petersen, The HIPPARCOS catalogue. Astron. Astrophys. 323, L49–L52 (1997) ADSGoogle Scholar
  280. M.A.C. Perryman, K.S. de Boer, G. Gilmore, E. Høg, M.G. Lattanzi, L. Lindegren, X. Luri, F. Mignard, O. Pace, P.T. de Zeeuw, GAIA: composition, formation and evolution of the Galaxy. Astron. Astrophys. 369, 339–363 (2001).  https://doi.org/10.1051/0004-6361:20010085. arXiv:astro-ph/0101235 ADSCrossRefGoogle Scholar
  281. E.C. Pickering, Variable star in cluster G.C. 3636. Astron. Nachr. 123, 207 (1889).  https://doi.org/10.1002/asna.18901231306 ADSCrossRefGoogle Scholar
  282. E.C. Pickering, H.R. Colson, W.P. Fleming, L.D. Wells, Sixty-four new variable stars. Astrophys. J. 13, 226 (1901).  https://doi.org/10.1086/140808 ADSCrossRefGoogle Scholar
  283. A. Pietrinferni, S. Cassisi, M. Salaris, F. Castelli, A large stellar evolution database for population synthesis studies. I. Scaled solar models and isochrones. Astrophys. J. 612, 168–190 (2004).  https://doi.org/10.1086/422498. arXiv:astro-ph/0405193 ADSCrossRefGoogle Scholar
  284. G. Pietrzyński, W. Gieren, I. Soszyński, F. Bresolin, R.P. Kudritzki, M. Dall’Ora, J. Storm, G. Bono, The Araucaria project: the distance to the Local Group galaxy IC 1613 from near-infrared photometry of Cepheid variables. Astrophys. J. 642, 216–224 (2006).  https://doi.org/10.1086/500926. arXiv:astro-ph/0601309 ADSCrossRefGoogle Scholar
  285. G. Pietrzyński, W. Gieren, O. Szewczyk, A. Walker, L. Rizzi, F. Bresolin, R.P. Kudritzki, K. Nalewajko, J. Storm, M. Dall’Ora, V. Ivanov, The Araucaria project: the distance to the Sculptor dwarf spheroidal galaxy from infrared photometry of RR Lyrae stars. Astron. J. 135, 1993–1997 (2008).  https://doi.org/10.1088/0004-6256/135/6/1993. arXiv:0804.0347 ADSCrossRefGoogle Scholar
  286. G. Pietrzyński, M. Górski, W. Gieren, D. Laney, A. Udalski, A. Ciechanowska, The Araucaria project. Population effects on the V- and I-band magnitudes of red clump stars. Astron. J. 140, 1038–1042 (2010).  https://doi.org/10.1088/0004-6256/140/4/1038. arXiv:1008.1259 ADSCrossRefGoogle Scholar
  287. G. Pietrzyński, D. Graczyk, W. Gieren, I.B. Thompson, B. Pilecki, A. Udalski, I. Soszyński, S. Kozłowski, P. Konorski, K. Suchomska, G. Bono, P.G.P. Moroni, S. Villanova, N. Nardetto, F. Bresolin, R.P. Kudritzki, J. Storm, A. Gallenne, R. Smolec, D. Minniti, M. Kubiak, M.K. Szymański, R. Poleski, Ł. Wyrzykowski, K. Ulaczyk, P. Pietrukowicz, M. Górski, P. Karczmarek, An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent. Nature 495, 76–79 (2013).  https://doi.org/10.1038/nature11878. arXiv:1303.2063 ADSCrossRefGoogle Scholar
  288. B. Pilecki, W. Gieren, R. Smolec, G. Pietrzyński, I.B. Thompson, R.I. Anderson, G. Bono, I. Soszyński, P. Kervella, N. Nardetto, M. Taormina, K. Stȩpień, P. Wielgórski, Mass and p-factor of the type II Cepheid OGLE-LMC-T2CEP-098 in a binary system. Astrophys. J. 842, 110 (2017).  https://doi.org/10.3847/1538-4357/aa6ff7. arXiv:1704.07782 ADSCrossRefGoogle Scholar
  289. B. Pilecki, W. Gieren, G. Pietrzyński, I.B. Thompson, R. Smolec, D. Graczyk, M. Taormina, A. Udalski, J. Storm, N. Nardetto, A. Gallenne, P. Kervella, I. Soszyński, M. Górski, P. Wielgórski, K. Suchomska, P. Karczmarek, B. Zgirski, The Araucaria project: high-precision Cepheid astrophysics from the analysis of variables in double-lined eclipsing binaries. Astrophys. J. 862, 43 (2018).  https://doi.org/10.3847/1538-4357/aacb32. arXiv:1806.01391 ADSCrossRefGoogle Scholar
  290. P. Popowski, A. Gould, Mathematics of Statistical Parallax and the Local Distance Scale. ArXiv Astrophysics e-prints (1997). arXiv:astro-ph/9703140
  291. P. Popowski, A. Gould, Systematics of RR Lyrae statistical parallax. I. Mathematics. Astrophys. J. 506, 259–270 (1998a).  https://doi.org/10.1086/306216 ADSCrossRefGoogle Scholar
  292. P. Popowski, A. Gould, Systematics of RR Lyrae statistical parallax. II. Proper motions and radial velocities. Astrophys. J. 506, 271–280 (1998b).  https://doi.org/10.1086/306239 ADSCrossRefGoogle Scholar
  293. G.W. Preston, A spectroscopic study of the RR Lyrae stars. Astrophys. J. 130, 507 (1959).  https://doi.org/10.1086/146743 ADSCrossRefGoogle Scholar
  294. B.J. Pritzl, H.A. Smith, P.B. Stetson, M. Catelan, A.V. Sweigart, A.C. Layden, R.M. Rich, Hubble Space Telescope snapshot study of variable stars in globular clusters: the inner region of NGC 6441. Astron. J. 126, 1381–1401 (2003).  https://doi.org/10.1086/377024. arXiv:astro-ph/0305339 ADSCrossRefGoogle Scholar
  295. T. Prusti, J.H.J. Bruijne, A.G.A. Brown, A. Vallenari, C. Babusiaux, C.A.L. Bailer-Jones, U. Bastian, M. Biermann, D.W. Evans et al. (Gaia Collaboration), The Gaia mission. Astron. Astrophys. 595, A1 (2016).  https://doi.org/10.1051/0004-6361/201629272. arXiv:1609.04153 CrossRefGoogle Scholar
  296. K. Rabidoux, H.A. Smith, B.J. Pritzl, W. Osborn, C. Kuehn, J. Randall, R. Lustig, K. Wells, L. Taylor, N. De Lee, K. Kinemuchi, A. LaCluyzé, D. Hartley, C. Greenwood, M. Ingber, M. Ireland, E. Pellegrini, M. Anderson, G. Purdum, J. Lacy, M. Curtis, J. Smolinski, S. Danford, Light curves and period changes of type II Cepheids in the globular clusters M3 and M5. Astron. J. 139, 2300–2307 (2010).  https://doi.org/10.1088/0004-6256/139/6/2300. arXiv:1003.5924 ADSCrossRefGoogle Scholar
  297. I.N. Reid, The HR diagram and the galactic distance scale after HIPPARCOS. Annu. Rev. Astron. Astrophys. 37, 191–237 (1999).  https://doi.org/10.1146/annurev.astro.37.1.191 ADSCrossRefGoogle Scholar
  298. S.C. Rey, Y.W. Lee, J.M. Joo, A. Walker, S. Baird, CCD photometry of the globular cluster \(\omega\) Centauri. I. Metallicity of RR Lyrae stars from CABY photometry. Astron. J. 119, 1824–1838 (2000).  https://doi.org/10.1086/301304. arXiv:astro-ph/0001101 ADSCrossRefGoogle Scholar
  299. J.A. Rich, S.E. Persson, W.L. Freedman, B.F. Madore, A.J. Monson, V. Scowcroft, M. Seibert, A new Cepheid distance measurement and method for NGC 6822. Astrophys. J. 794, 107 (2014).  https://doi.org/10.1088/0004-637X/794/2/107. arXiv:1409.6830 ADSCrossRefGoogle Scholar
  300. G.R. Ricker, J.N. Winn, R. Vanderspek, D.W. Latham, B. GÁ, J.L. Bean, Z.K. Berta-Thompson, T.M. Brown, L. Buchhave, N.R. Butler, R.P. Butler, W.J. Chaplin, D. Charbonneau, J. Christensen-Dalsgaard, M. Clampin, D. Deming, J. Doty, N. De Lee, C. Dressing, E.W. Dunham, M. Endl, F. Fressin, J. Ge, T. Henning, M.J. Holman, A.W. Howard, S. Ida, J.M. Jenkins, G. Jernigan, J.A. Johnson, L. Kaltenegger, N. Kawai, H. Kjeldsen, G. Laughlin, A.M. Levine, D. Lin, J.J. Lissauer, P. MacQueen, G. Marcy, P.R. McCullough, T.D. Morton, N. Narita, M. Paegert, E. Palle, F. Pepe, J. Pepper, A. Quirrenbach, S.A. Rinehart, D. Sasselov, B. Sato, S. Seager, A. Sozzetti, K.G. Stassun, P. Sullivan, A. Szentgyorgyi, G. Torres, S. Udry, J. Villasenor, Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1(1), 014003 (2015).  https://doi.org/10.1117/1.JATIS.1.1.014003 ADSCrossRefGoogle Scholar
  301. A.G. Riess, An Independent Determination of WFC3-IR Zeropoints and Count Rate Non-Linearity from 2MASS Asterisms Tech. rep. (2011) Google Scholar
  302. A.G. Riess, L. Macri, S. Casertano, H. Lampeitl, H.C. Ferguson, A.V. Filippenko, S.W. Jha, W. Li, R. Chornock, A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys. J. 730, 119 (2011).  https://doi.org/10.1088/0004-637X/730/2/119. arXiv:1103.2976 ADSCrossRefGoogle Scholar
  303. A.G. Riess, L. Macri, S. Casertano, H. Lampeitl, H.C. Ferguson, A.V. Filippenko, S.W. Jha, W. Li, R. Chornock, J.M. Silverman, Erratum: “A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3”. Astrophys. J. 752, 76 (2012).  https://doi.org/10.1088/0004-637X/752/1/76 ADSCrossRefGoogle Scholar
  304. A.G. Riess, L.M. Macri, S.L. Hoffmann, D. Scolnic, S. Casertano, A.V. Filippenko, B.E. Tucker, M.J. Reid, D.O. Jones, J.M. Silverman, R. Chornock, P. Challis, W. Yuan, P.J. Brown, R.J. Foley, A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016).  https://doi.org/10.3847/0004-637X/826/1/56 ADSCrossRefGoogle Scholar
  305. V. Ripepi, M.I. Moretti, G. Clementini, M. Marconi, M.R. Cioni, J.B. Marquette, P. Tisserand, Preliminary results for RR Lyrae stars and Classical Cepheids from the Vista Magellanic Cloud (VMC) survey. Astrophys. Space Sci. 341, 51–56 (2012a).  https://doi.org/10.1007/s10509-012-1021-x. arXiv:1202.5863 ADSCrossRefGoogle Scholar
  306. V. Ripepi, M.I. Moretti, M. Marconi, G. Clementini, M.R.L. Cioni, J.B. Marquette, L. Girardi, S. Rubele, M.A.T. Groenewegen, R. de Grijs, B.K. Gibson, J.M. Oliveira, J.T. van Loon, J.P. Emerson, The VMC survey—V. First results for classical Cepheids. Mon. Not. R. Astron. Soc. 424, 1807–1816 (2012b).  https://doi.org/10.1111/j.1365-2966.2012.21274.x. arXiv:1204.2273 ADSCrossRefGoogle Scholar
  307. V. Ripepi, M.I. Moretti, M. Marconi, G. Clementini, M.R.L. Cioni, R. de Grijs, J.P. Emerson, M.A.T. Groenewegen, V.D. Ivanov, T. Muraveva, A.E. Piatti, S. Subramanian, The VMC survey—XIII. Type II Cepheids in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 446, 3034–3061 (2015).  https://doi.org/10.1093/mnras/stu2260. arXiv:1410.7817 ADSCrossRefGoogle Scholar
  308. A. Ritter, Untersuchungen über die Höhe der Atmosphäre und die Constitution gasförmiger Weltkörper. Ann. Phys. 244, 157–183 (1879).  https://doi.org/10.1002/andp.18792440910 CrossRefzbMATHGoogle Scholar
  309. L. Rizzi PhD thesis, University of Padova, Italy (2002) Google Scholar
  310. L. Rizzi, R.B. Tully, D. Makarov, L. Makarova, A.E. Dolphin, S. Sakai, E.J. Shaya, Tip of the red giant branch distances. II. Zero-point calibration. Astrophys. J. 661, 815–829 (2007).  https://doi.org/10.1086/516566. arXiv:astro-ph/0701518 ADSCrossRefGoogle Scholar
  311. P. Rosenfield, P. Marigo, L. Girardi, J.J. Dalcanton, A. Bressan, M. Gullieuszik, D. Weisz, B.F. Williams, A. Dolphin, B. Aringer, Evolution of thermally pulsing asymptotic giant branch stars. IV. Constraining mass loss and lifetimes of low mass, low metallicity AGB stars. Astrophys. J. 790, 22 (2014).  https://doi.org/10.1088/0004-637X/790/1/22. arXiv:1406.0676 ADSCrossRefGoogle Scholar
  312. P. Rosenfield, P. Marigo, L. Girardi, J.J. Dalcanton, A. Bressan, B.F. Williams, A. Dolphin, Evolution of thermally pulsing asymptotic giant branch stars. V. Constraining the mass loss and lifetimes of intermediate-mass, low-metallicity AGB stars. Astrophys. J. 822, 73 (2016).  https://doi.org/10.3847/0004-637X/822/2/73. arXiv:1603.05283 ADSCrossRefGoogle Scholar
  313. M. Rozyczka, J. Kaluzny, I.B. Thompson, A. Dotter, W. Pych, W. Narloch, The Clusters AgeS Experiment (CASE). Analysis of the detached eclipsing binary V15 in the metal-rich open cluster NGC 6253. Acta Astron. 64, 233–246 (2014). arXiv:1410.1324 ADSGoogle Scholar
  314. S.C. Russell, RV Tau variables in globular clusters: clues on their nature? Publ. Astron. Soc. Aust. 15, 189–193 (1998).  https://doi.org/10.1071/AS98189 ADSCrossRefGoogle Scholar
  315. S. Sakai, B.F. Madore, W.L. Freedman, Tip of the red giant branch distances to galaxies. III. The Dwarf Galaxy Sextans A. Astrophys. J. 461, 713 (1996).  https://doi.org/10.1086/177096 ADSCrossRefGoogle Scholar
  316. S. Sakai, L. Ferrarese, R.C. Kennicutt Jr., A. Saha, The effect of metallicity on Cepheid-based distances. Astrophys. J. 608, 42–61 (2004).  https://doi.org/10.1086/386540. arXiv:astro-ph/0402499 ADSCrossRefGoogle Scholar
  317. M. Salaris, S. Cassisi, The ‘tip’ of the red giant branch as a distance indicator: results from evolutionary models. Mon. Not. R. Astron. Soc. 289, 406–414 (1997).  https://doi.org/10.1093/mnras/289.2.406. arXiv:astro-ph/9703186 ADSCrossRefGoogle Scholar
  318. M. Salaris, S. Cassisi, A new analysis of the red giant branch ‘tip’ distance scale and the value of the Hubble constant. Mon. Not. R. Astron. Soc. 298, 166–178 (1998).  https://doi.org/10.1046/j.1365-8711.1998.01598.x. arXiv:astro-ph/9803103 ADSCrossRefGoogle Scholar
  319. M. Salaris, S. Cassisi, Evolution of Stars and Stellar Populations (2005) CrossRefGoogle Scholar
  320. M. Salaris, L. Girardi, Tip of the red giant branch distances to galaxies with composite stellar populations. Mon. Not. R. Astron. Soc. 357, 669–678 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08689.x. arXiv:astro-ph/0412156 ADSCrossRefGoogle Scholar
  321. M. Salaris, S. Cassisi, A. Weiss, Red giant branch stars: the theoretical framework. Publ. Astron. Soc. Pac. 114, 375–402 (2002).  https://doi.org/10.1086/342498. arXiv:astro-ph/0201387 ADSCrossRefGoogle Scholar
  322. M. Salaris, T. de Boer, E. Tolstoy, G. Fiorentino, S. Cassisi, The horizontal branch of the Sculptor dwarf galaxy. Astron. Astrophys. 559, A57 (2013).  https://doi.org/10.1051/0004-6361/201322501. arXiv:1309.4353 CrossRefGoogle Scholar
  323. N.N. Samus, E.V. Kazarovets, O.V. Durlevich, N.N. Kireeva, E.N. Pastukhova, General catalogue of variable stars: version GCVS 5.1. Astron. Rep. 61, 80–88 (2017).  https://doi.org/10.1134/S1063772917010085 ADSCrossRefGoogle Scholar
  324. A. Sandage, The color–magnitude diagrams of galactic and globular clusters and their interpretation as age groups. Ric. Astron. 5, 41 (1958) Google Scholar
  325. A. Sandage, The distance of the local-group galaxy IC 1613 obtained from Baade’s work on its stellar content. Astrophys. J. 166, 13 (1971).  https://doi.org/10.1086/150939 ADSCrossRefGoogle Scholar
  326. A. Sandage, The Oosterhoff period groups and the age of globular clusters. III—the age of the globular cluster system. Astrophys. J. 252, 553–581 (1982).  https://doi.org/10.1086/159582 ADSCrossRefGoogle Scholar
  327. A. Sandage, The Mount Wilson Observatory (2004) Google Scholar
  328. A. Sandage, On the predicted and observed color boundaries of the RR Lyrae instability strip as a function of metallicity. Astron. J. 131, 1750–1765 (2006).  https://doi.org/10.1086/500012. arXiv:astro-ph/0508057 ADSCrossRefGoogle Scholar
  329. A. Sandage, B. Katem, On the intrinsic widths of the subgiant and horizontal branch sequences in the globular cluster M3. Astron. J. 87, 537–554 (1982).  https://doi.org/10.1086/113127 ADSCrossRefGoogle Scholar
  330. A. Sandage, G.A. Tammann, Absolute magnitude calibrations of population I and II Cepheids and other pulsating variables in the instability strip of the Hertzsprung–Russell diagram. Annu. Rev. Astron. Astrophys. 44, 93–140 (2006).  https://doi.org/10.1146/annurev.astro.43.072103.150612 ADSCrossRefGoogle Scholar
  331. A. Sandage, G. Wallerstein, Color–magnitude diagram for disk globular cluster NGC 6356 compared with Halo clusters. Astrophys. J. 131, 598 (1960).  https://doi.org/10.1086/146872 ADSCrossRefGoogle Scholar
  332. A. Sandage, R.L. Beaton, S.R. Majewski, Comparison of hipparcos trigonometric and mount Wilson spectroscopic parallaxes for 90 subgiants that defined the class in 1935. Publ. Astron. Soc. Pac. 064, 202 (2016).  https://doi.org/10.1088/1538-3873/128/964/064202. arXiv:1511.05930 CrossRefGoogle Scholar
  333. A. Sarajedini, M.K. Barker, D. Geisler, P. Harding, R. Schommer, RR Lyrae variables in M33. I. Evidence for a field halo population. Astron. J. 132, 1361–1371 (2006).  https://doi.org/10.1086/506152. arXiv:astro-ph/0605580 ADSCrossRefGoogle Scholar
  334. A. Sarajedini, C.L. Mancone, T.R. Lauer, A. Dressler, W. Freedman, S.C. Trager, C. Grillmair, K.J. Mighell, RR Lyrae variables in two fields in the spheroid of M31. Astron. J. 138, 184–195 (2009).  https://doi.org/10.1088/0004-6256/138/1/184. arXiv:0904.4290 ADSCrossRefGoogle Scholar
  335. I. Saviane, J.E. Hibbard, R.M. Rich, The stellar content of the southern tail of NGC 4038/4039 and a revised distance. Astron. J. 127, 660–678 (2004).  https://doi.org/10.1086/381059. arXiv:astro-ph/0311200 ADSCrossRefGoogle Scholar
  336. I. Saviane, Y. Momany, G.S. da Costa, R.M. Rich, J.E. Hibbard, A new red giant-based distance modulus of 13.3 Mpc to the Antennae Galaxies and its consequences. Astrophys. J. 678, 179–186 (2008).  https://doi.org/10.1086/533408. arXiv:0802.1045 ADSCrossRefGoogle Scholar
  337. P.L. Schechter, M. Mateo, A. Saha, DOPHOT, a CCD photometry program: description and tests. Publ. Astron. Soc. Pac. 105, 1342–1353 (1993).  https://doi.org/10.1086/133316 ADSCrossRefGoogle Scholar
  338. E.F. Schlafly, D.P. Finkbeiner, Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).  https://doi.org/10.1088/0004-637X/737/2/103. arXiv:1012.4804 ADSCrossRefGoogle Scholar
  339. D.J. Schlegel, D.P. Finkbeiner, M. Davis, Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).  https://doi.org/10.1086/305772. arXiv:astro-ph/9710327 ADSCrossRefGoogle Scholar
  340. M. Schwarzschild, On the variables in Messier 3. Harv. Coll. Obs. Circ. 437, 1–12 (1940) ADSGoogle Scholar
  341. M. Schwarzschild, R. Härm, On the evolutionary phase of Cepheids in globular clusters. Astrophys. J. 160, 341 (1970).  https://doi.org/10.1086/150433 ADSCrossRefGoogle Scholar
  342. F. Schweizer, C.R. Burns, B.F. Madore, V.A. Mager, M.M. Phillips, W.L. Freedman, L. Boldt, C. Contreras, G. Folatelli, S. González, M. Hamuy, W. Krzeminski, N.I. Morrell, S.E. Persson, M.R. Roth, M.D. Stritzinger, A new distance to the Antennae galaxies (NGC 4038/39) based on the type Ia supernova 2007sr. Astron. J. 136, 1482–1489 (2008).  https://doi.org/10.1088/0004-6256/136/4/1482. arXiv:0807.3955 ADSCrossRefGoogle Scholar
  343. V. Scowcroft, W.L. Freedman, B.F. Madore, A.J. Monson, S.E. Persson, M. Seibert, J.R. Rigby, J. Melbourne, The Carnegie Hubble program: the infrared leavitt law in IC 1613. Astrophys. J. 773, 106 (2013).  https://doi.org/10.1088/0004-637X/773/2/106. arXiv:1306.5802 ADSCrossRefGoogle Scholar
  344. A. Serenelli, A. Weiss, S. Cassisi, M. Salaris, A. Pietrinferni, The brightness of the red giant branch tip. Theoretical framework, a set of reference models, and predicted observables. Astron. Astrophys. 606, A33 (2017).  https://doi.org/10.1051/0004-6361/201731004. arXiv:1706.09910 ADSCrossRefGoogle Scholar
  345. B. Sesar, Template RR Lyrae H\(\alpha\), H\(\beta\), and H\(\gamma\) velocity curves. Astron. J. 144, 114 (2012).  https://doi.org/10.1088/0004-6256/144/4/114. arXiv:1208.1997 ADSCrossRefGoogle Scholar
  346. B. Sesar, M. Fouesneau, A.M. Price-Whelan, C.A.L. Bailer-Jones, A. Gould, H.W. Rix, A probabilistic approach to fitting period-luminosity relations and validating Gaia parallaxes. Astrophys. J. 838, 107 (2017).  https://doi.org/10.3847/1538-4357/aa643b. arXiv:1611.07035 ADSCrossRefGoogle Scholar
  347. H. Shapley, On the nature and cause of Cepheid variation. Astrophys. J. 40, 448 (1914).  https://doi.org/10.1086/142137 ADSCrossRefGoogle Scholar
  348. M. Skarka, Bright Blazhko RRab Lyrae stars observed by ASAS and the SuperWASP surveys. Astron. Astrophys. 562, A90 (2014).  https://doi.org/10.1051/0004-6361/201322491. arXiv:1402.3111 ADSCrossRefGoogle Scholar
  349. I. Skillen, J.A. Fernley, R.S. Stobie, R.F. Jameson, The absolute magnitudes of Rr-Lyrae stars—part five—Wy-Antliae W-Crateris Rv-Octantis Bb-Puppis. Mon. Not. R. Astron. Soc. 265, 301 (1993).  https://doi.org/10.1093/mnras/265.2.301 ADSCrossRefGoogle Scholar
  350. P. Smeyers, T. van Hoolst (eds.), Linear Isentropic Oscillations of Stars: Theoretical Foundations. Astrophys. Space Sci. Library, vol. 371 (2010).  https://doi.org/10.1007/978-3-642-13030-4 CrossRefGoogle Scholar
  351. G.H. Smith, M.A. Dopita, The chemical inhomogeneity of the Sculptor dwarf spheroidal galaxy. Astrophys. J. 271, 113–122 (1983).  https://doi.org/10.1086/161180 ADSCrossRefGoogle Scholar
  352. H.A. Smith, RR Lyrae Stars. Cambridge Astrophysics Series, vol. 27 (1995) Google Scholar
  353. R. Smolec, Metallicity dependence of the Blazhko effect. Acta Astron. 55, 59–84 (2005). arXiv:astro-ph/0503614 ADSGoogle Scholar
  354. R. Smolec, Survey of non-linear hydrodynamic models of type-II Cepheids. Mon. Not. R. Astron. Soc. 456, 3475–3493 (2016).  https://doi.org/10.1093/mnras/stv2868. arXiv:1512.01550 ADSCrossRefGoogle Scholar
  355. C. Sneden, G.W. Preston, J.A. Kollmeier, J.D. Crane, N. Morrell, J.L. Prieto, S.A. Shectman, D.M. Skowron, I.B. Thompson, Metal-rich RRc stars in the Carnegie RR Lyrae survey. Astron. J. 155, 45 (2018).  https://doi.org/10.3847/1538-3881/aa9f16. arXiv:1712.00159 ADSCrossRefGoogle Scholar
  356. D. Sobel, The Glass Universe: How the Ladies of the Harvard Observatory Took the Measure of the Stars (Penguin, Baltimore, 2016). https://books.google.com/books?id=wcq-CwAAQBAJ Google Scholar
  357. E. Solano, The absolute magnitude of RR Lyraes: from HIPPARCOS parallaxes and proper motions. Astrophys. Space Sci. 263, 219–222 (1998).  https://doi.org/10.1023/A:1002114428541 ADSCrossRefGoogle Scholar
  358. A. Sollima, C. Cacciari, E. Valenti, The RR Lyrae period-K-luminosity relation for globular clusters: an observational approach. Mon. Not. R. Astron. Soc. 372, 1675–1680 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10962.x. arXiv:astro-ph/0608397 ADSCrossRefGoogle Scholar
  359. A. Sollima, C. Cacciari, A.A.H. Arkharov, V.M. Larionov, D.L. Gorshanov, N.V. Efimova, A. Piersimoni, The infrared JHK light curves of RR Lyr. Mon. Not. R. Astron. Soc. 384, 1583–1587 (2008).  https://doi.org/10.1111/j.1365-2966.2007.12804.x. arXiv:0712.0578 ADSCrossRefGoogle Scholar
  360. I. Soszyński, A. Udalski, M.K. Szymański, M. Kubiak, G. Pietrzyński, Ł. Wyrzykowski, O. Szewczyk, K. Ulaczyk, R. Poleski, The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. II. Type II Cepheids and anomalous Cepheids in the Large Magellanic Cloud. Acta Astron. 58, 293 (2008). arXiv:0811.3636 ADSGoogle Scholar
  361. I. Soszyński, A. Udalski, M.K. Szymański, M. Kubiak, G. Pietrzyński, Ł. Wyrzykowski, K. Ulaczyk, R. Poleski, The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. VIII. Type II Cepheids in the Small Magellanic Cloud. Acta Astron. 60, 91–107 (2010). arXiv:1005.3544 ADSGoogle Scholar
  362. I. Soszyński, A. Udalski, M.K. Szymański, D. Skowron, G. Pietrzyński, R. Poleski, P. Pietrukowicz, J. Skowron, P. Mróz, S. Kozłowski, Ł. Wyrzykowski, K. Ulaczyk, M. Pawlak, The OGLE collection of variable stars. Classical Cepheids in the Magellanic System. Acta Astron. 65, 297–312 (2015). arXiv:1601.01318 ADSGoogle Scholar
  363. I. Soszyński, R. Smolec, W.A. Dziembowski, A. Udalski, M.K. Szymański, Ł. Wyrzykowski, K. Ulaczyk, R. Poleski, P. Pietrukowicz, S. Kozłowski, D. Skowron, J. Skowron, P. Mróz, M. Pawlak, Anomalous double-mode RR Lyrae stars in the Magellanic Clouds. Mon. Not. R. Astron. Soc. 463, 1332–1341 (2016).  https://doi.org/10.1093/mnras/stw1933. arXiv:1608.00576 ADSCrossRefGoogle Scholar
  364. I. Soszyński, A. Udalski, M.K. Szymański, Ł. Wyrzykowski, K. Ulaczyk, R. Poleski, P. Pietrukowicz, S. Kozłowski, D.M. Skowron, J. Skowron, P. Mróz, M. Pawlak, The OGLE collection of variable stars. Over 45 000 RR Lyrae stars in the Magellanic System. Acta Astron. 66, 131–147 (2016b). arXiv:1606.02727 ADSGoogle Scholar
  365. I. Soszyński, A. Udalski, M.K. Szymański, Ł. Wyrzykowski, K. Ulaczyk, R. Poleski, P. Pietrukowicz, S. Kozłowski, D.M. Skowron, J. Skowron, P. Mróz, M. Pawlak, K. Rybicki, A. Jacyszyn-Dobrzeniecka, The OGLE collection of variable stars. Classical, type II, and anomalous Cepheids toward the Galactic center. Acta Astron. 67, 297–316 (2017). arXiv:1712.01307 ADSGoogle Scholar
  366. I. Soszyński, A. Udalski, M.K. Szymański, Ł. Wyrzykowski, K. Ulaczyk, R. Poleski, P. Pietrukowicz, S. Kozłowski, D. Skowron, J. Skowron, P. Mróz, K. Rybicki, P. Iwanek, The OGLE collection of variable stars. Type II Cepheids in the Magellanic System. Acta Astron. 68, 89–109 (2018). arXiv:1807.00008 ADSGoogle Scholar
  367. E. Starkenburg, V. Hill, E. Tolstoy, P. François, M.J. Irwin, L. Boschman, K.A. de Venn, T.J.L. Boer, B. Lemasle, P. Jablonka, G. Battaglia, P. Groot, L. Kaper, The extremely low-metallicity tail of the Sculptor dwarf spheroidal galaxy. Astron. Astrophys. 549, A88 (2013).  https://doi.org/10.1051/0004-6361/201220349. arXiv:1211.4592 CrossRefGoogle Scholar
  368. M. Steinmetz, T. Zwitter, A. Siebert, F.G. Watson, K.C. Freeman, U. Munari, R. Campbell, M. Williams, G.M. Seabroke, R.F.G. Wyse, Q.A. Parker, O. Bienaymé, S. Roeser, B.K. Gibson, G. Gilmore, E.K. Grebel, A. Helmi, J.F. Navarro, D. Burton, C.J.P. Cass, J.A. Dawe, K. Fiegert, M. Hartley, K.S. Russell, W. Saunders, H. Enke, J. Bailin, J. Binney, J. Bland-Hawthorn, C. Boeche, W. Dehnen, D.J. Eisenstein, N.W. Evans, M. Fiorucci, J.P. Fulbright, O. Gerhard, U. Jauregi, A. Kelz, L. Mijović, I. Minchev, G. Parmentier, J. Peñarrubia, A.C. Quillen, M.A. Read, G. Ruchti, R.D. Scholz, A. Siviero, M.C. Smith, R. Sordo, L. Veltz, S. Vidrih, R. von Berlepsch, B.J. Boyle, E. Schilbach, The Radial Velocity Experiment (RAVE): first data release. Astron. J. 132, 1645–1668 (2006).  https://doi.org/10.1086/506564. arXiv:astro-ph/0606211 ADSCrossRefGoogle Scholar
  369. R.F. Stellingwerf, The calculation of periodic pulsations of stellar models. Astrophys. J. 192, 139–146 (1974).  https://doi.org/10.1086/153043 ADSCrossRefGoogle Scholar
  370. R.F. Stellingwerf, Pulsation in the lower Cepheid strip. I—linear survey. Astrophys. J. 227, 935–942 (1979).  https://doi.org/10.1086/156802 ADSCrossRefGoogle Scholar
  371. R.F. Stellingwerf, Convection in pulsating stars. I—nonlinear hydrodynamics. II—RR Lyrae convection and stability. Astrophys. J. 262, 330–343 (1982).  https://doi.org/10.1086/160425 ADSCrossRefGoogle Scholar
  372. R.F. Stellingwerf, Hydra—an implicit partial differential equation relaxation stability analysis package. Astrophys. J. 271, 876 (1983).  https://doi.org/10.1086/161253 ADSCrossRefGoogle Scholar
  373. P.B. Stetson, DAOPHOT—a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191–222 (1987).  https://doi.org/10.1086/131977 ADSCrossRefGoogle Scholar
  374. P.B. Stetson, The center of the core-cusp globular cluster M15: CFHT and HST observations, ALLFRAME reductions. Publ. Astron. Soc. Pac. 106, 250–280 (1994).  https://doi.org/10.1086/133378 ADSCrossRefGoogle Scholar
  375. P.B. Stetson, J.E. Hesser, T.A. Smecker-Hane, Homogeneous photometry for star clusters and resolved galaxies. I. A survey of bright stars in the Fornax dwarf spheroidal galaxy. Publ. Astron. Soc. Pac. 110, 533–552 (1998).  https://doi.org/10.1086/316164 ADSCrossRefGoogle Scholar
  376. P.B. Stetson, V.F. Braga, M. Dall’Ora, G. Bono, R. Buonanno, I. Ferraro, G. Iannicola, M. Marengo, J. Neeley, Optical and near-infrared UBVRIJHK photometry for the RR Lyrae stars in the nearby globular cluster M4 (NGC 6121). Publ. Astron. Soc. Pac. 126, 521 (2014a).  https://doi.org/10.1086/677195. arXiv:1406.7531 ADSCrossRefGoogle Scholar
  377. P.B. Stetson, G. Fiorentino, G. Bono, E.J. Bernard, M. Monelli, G. Iannicola, C. Gallart, I. Ferraro, Homogeneous photometry VI: variable stars in the Leo I dwarf spheroidal galaxy. Publ. Astron. Soc. Pac. 126, 616–641 (2014b).  https://doi.org/10.1086/677352. arXiv:1406.6704 ADSCrossRefGoogle Scholar
  378. J. Storm, The distance to IC 4499 from \(K\)-band photometry of 32 RR Lyrae stars. Astron. Astrophys. 415, 987–991 (2004).  https://doi.org/10.1051/0004-6361:20034287. arXiv:astro-ph/0401237 ADSCrossRefGoogle Scholar
  379. J. Storm, W. Gieren, P. Fouqué, T.G. Barnes, I. Soszyński, G. Pietrzyński, N. Nardetto, D. Queloz, Calibrating the Cepheid period-luminosity relation from the infrared surface brightness technique. II. The effect of metallicity and the distance to the LMC. Astron. Astrophys. 534, A95 (2011).  https://doi.org/10.1051/0004-6361/201117154. arXiv:1109.2016 ADSCrossRefGoogle Scholar
  380. S. Subramanian, M. Marengo, A. Bhardwaj, Y. Huang, L. Inno, A. Nakagawa, J. Storm, Young and intermediate-age distance indicators. Space Sci. Rev. 212, 1817–1869 (2017).  https://doi.org/10.1007/s11214-017-0427-8. arXiv:1709.07265 ADSCrossRefGoogle Scholar
  381. R. Szabó, Z. Kolláth, J.R. Buchler, Automated nonlinear stellar pulsation calculations: applications to RR Lyrae stars. The slope of the fundamental blue edge and the first RRd model survey. Astron. Astrophys. 425, 627–639 (2004).  https://doi.org/10.1051/0004-6361:20035698. arXiv:astro-ph/0406373 ADSCrossRefGoogle Scholar
  382. R. Szabó, J.M. Benkő, M. Paparó, E. Chapellier, E. Poretti, A. Baglin, W.W. Weiss, K. Kolenberg, E. Guggenberger, J.F. Le Borgne, Revisiting CoRoT RR Lyrae stars: detection of period doubling and temporal variation of additional frequencies. Astron. Astrophys. 570, A100 (2014).  https://doi.org/10.1051/0004-6361/201424522. arXiv:1408.0653 ADSCrossRefGoogle Scholar
  383. O. Szewczyk, G. Pietrzyński, W. Gieren, A. Ciechanowska, F. Bresolin, R.P. Kudritzki, The Araucaria project: the distance to the Small Magellanic Cloud from near-infrared photometry of RR Lyrae variables. Astron. J. 138, 1661–1666 (2009).  https://doi.org/10.1088/0004-6256/138/6/1661. arXiv:0910.3885 ADSCrossRefGoogle Scholar
  384. V. Tabur, L.L. Kiss, T.R. Bedding, Hipparcos calibration of the tip of the red giant branch. Astrophys. J. Lett. 703, L72–L75 (2009).  https://doi.org/10.1088/0004-637X/703/1/L72. arXiv:0908.2873 ADSCrossRefGoogle Scholar
  385. G.A. Tammann, B. Reindl, The luminosity of supernovae of type Ia from tip of the red-giant branch distances and the value of H0. Astron. Astrophys. 549, A136 (2013).  https://doi.org/10.1051/0004-6361/201219671. arXiv:1208.5054 ADSCrossRefGoogle Scholar
  386. G.A. Tammann, A. Sandage, B. Reindl, Comparison of distances from RR Lyrae stars, the tip of the red giant branch, and Classical Cepheids. Astrophys. J. 679, 52–70 (2008).  https://doi.org/10.1086/529508. arXiv:0712.2346 ADSCrossRefGoogle Scholar
  387. F. Thévenin, M. Falanga, C.Y. Kuo, G. Pietrzyński, M. Yamaguchi, Modern geometric methods of distance determination. Space Sci. Rev. 212, 1787–1815 (2017).  https://doi.org/10.1007/s11214-017-0418-9 ADSCrossRefGoogle Scholar
  388. I.B. Thompson, J. Kaluzny, W. Pych, G. Burley, W. Krzeminski, B. Paczyński, S.E. Persson, G.W. Preston, Cluster AgeS Experiment: the age and distance of the globular cluster \(\omega\) Centauri determined from observations of the eclipsing binary OGLEGC 17. Astron. J. 121, 3089–3099 (2001).  https://doi.org/10.1086/321084. arXiv:astro-ph/0012493 ADSCrossRefGoogle Scholar
  389. I.B. Thompson, J. Kaluzny, S.M. Rucinski, W. Krzeminski, W. Pych, A. Dotter, G.S. Burley, The Cluster AgeS Experiment (CASE). IV. Analysis of the eclipsing binary V69 in the globular cluster 47 Tuc. Astron. J. 139, 329–341 (2010).  https://doi.org/10.1088/0004-6256/139/2/329. arXiv:0910.4262 ADSCrossRefGoogle Scholar
  390. N.A. Tikhonov, O.A. Galazutdinova, Photometry of red giants in the disk of IC 1613. Astron. Astrophys. 394, 33–38 (2002).  https://doi.org/10.1051/0004-6361:20021016 ADSCrossRefGoogle Scholar
  391. E. Tolstoy, M.J. Irwin, A. Helmi, G. Battaglia, P. Jablonka, V. Hill, K.A. Venn, M.D. Shetrone, B. Letarte, A.A. Cole, F. Primas, P. Francois, N. Arimoto, K. Sadakane, A. Kaufer, T. Szeifert, T. Abel, Two distinct ancient components in the Sculptor dwarf spheroidal galaxy: first results from the Dwarf Abundances and Radial velocities Team. Astrophys. J. Lett. 617, L119–L122 (2004).  https://doi.org/10.1086/427388. arXiv:astro-ph/0411029 ADSCrossRefGoogle Scholar
  392. I. Trujillo, M.A. Beasley, A. Borlaff, E.R. Carrasco, A. Di Cintio, M. Filho, M. Monelli, M. Montes, J. Roman, T. Ruiz-Lara, J. Sanchez Almeida, D. Valls-Gabaud, A. Vazdekis, A distance of 13 Mpc resolves the claimed anomalies of the galaxy lacking dark matter (2018). arXiv:1806.10141
  393. R. Tully, The Geometry and Kinematics of the Local Volume (2011). HST Proposal Google Scholar
  394. R.B. Tully, H.M. Courtois, J.G. Sorce, Cosmicflows-3. Astron. J. 152, 50 (2016).  https://doi.org/10.3847/0004-6256/152/2/50. arXiv:1605.01765 ADSCrossRefGoogle Scholar
  395. A. Udalski, L. Wyrzykowski, G. Pietrzynski, O. Szewczyk, M. Szymanski, M. Kubiak, I. Soszynski, K. Zebrun, The optical gravitational lensing experiment. Cepheids in the Galaxy IC1613: no dependence of the period-luminosity relation on metallicity. Acta Astron. 51, 221–245 (2001). arXiv:astro-ph/0109446 ADSGoogle Scholar
  396. A.R. Upgren, Trigonometric parallaxes and their calibration, in Calibration of Fundamental Stellar Quantities, IAU Symposium, vol. 111, ed. by D.S. Hayes, L.E. Pasinetti, A.G.D. Philip (1985), pp. 31–49 CrossRefGoogle Scholar
  397. E. Valenti, F.R. Ferraro, L. Origlia, Red giant branch in near-infrared colour-magnitude diagrams—II. The luminosity of the bump and the tip. Mon. Not. R. Astron. Soc. 354, 815–820 (2004).  https://doi.org/10.1111/j.1365-2966.2004.08249.x. arXiv:astro-ph/0404403 ADSCrossRefGoogle Scholar
  398. T.S. van Albada, N. Baker, On the masses, luminosities, and compositions of horizontal-branch stars. Astrophys. J. 169, 311 (1971).  https://doi.org/10.1086/151144 ADSCrossRefGoogle Scholar
  399. T.S. van Albada, N. Baker, On the two Oosterhoff groups of globular clusters. Astrophys. J. 185, 477–498 (1973).  https://doi.org/10.1086/152434 ADSCrossRefGoogle Scholar
  400. W.F. van Altena, Astrometry. Annu. Rev. Astron. Astrophys. 21, 131–164 (1983).  https://doi.org/10.1146/annurev.aa.21.090183.001023 ADSCrossRefGoogle Scholar
  401. S. van den Bergh, The Extragalactic Distance Scale (University of Chicago Press, Chicago, 1975), p. 509 Google Scholar
  402. P. van Dokkum, S. Danieli, Y. Cohen, C. Conroy, The Distance of the Dark Matter Deficient Galaxy NGC1052–DF2 (2018). arXiv:1807.06025
  403. P. van Dokkum, S. Danieli, Y. Cohen, A. Merritt, A.J. Romanowsky, R. Abraham, J. Brodie, C. Conroy, D. Lokhorst, L. Mowla, E. O’Sullivan, J. Zhang, A galaxy lacking dark matter. Nature 555, 629–632 (2018b).  https://doi.org/10.1038/nature25767. arXiv:1803.10237 ADSCrossRefGoogle Scholar
  404. F. van Leeuwen (ed.), Hipparcos, the New Reduction of the Raw Data. Astrophys. Space Sci. Library, vol. 350 (2007).  https://doi.org/10.1007/978-1-4020-6342-8 CrossRefGoogle Scholar
  405. S. Vasilevskis, The accuracy of trigonometric parallaxes of stars. Annu. Rev. Astron. Astrophys. 4, 57 (1966).  https://doi.org/10.1146/annurev.aa.04.090166.000421 ADSCrossRefGoogle Scholar
  406. F. Vilardell, I. Ribas, C. Jordi, E.L. Fitzpatrick, E.F. Guinan, The distance to the Andromeda galaxy from eclipsing binaries. Astron. Astrophys. 509, A70 (2010).  https://doi.org/10.1051/0004-6361/200913299. arXiv:0911.3391 ADSCrossRefGoogle Scholar
  407. A.R. Walker, CCD photometry of galactic globular clusters. IV. The NGC 1851 RR Lyrae variables. Astron. J. 116, 220–236 (1998).  https://doi.org/10.1086/300432. arXiv:astro-ph/9804339 ADSCrossRefGoogle Scholar
  408. M.G. Walker, M. Mateo, E.W. Olszewski, O.Y. Gnedin, X. Wang, B. Sen, M. Woodroofe, Velocity dispersion profiles of seven dwarf spheroidal galaxies. Astrophys. J. Lett. 667, L53–L56 (2007).  https://doi.org/10.1086/521998. arXiv:0708.0010 ADSCrossRefGoogle Scholar
  409. M.G. Walker, M. Mateo, E.W. Olszewski, B. Sen, M. Woodroofe, Clean kinematic samples in dwarf spheroidals: an algorithm for evaluating membership and estimating distribution parameters when contamination is present. Astron. J. 137, 3109–3138 (2009).  https://doi.org/10.1088/0004-6256/137/2/3109. arXiv:0811.1990 ADSCrossRefGoogle Scholar
  410. G. Wallerstein, On the incidence of Cepheids in globular clusters. Astrophys. J. 160, 345 (1970).  https://doi.org/10.1086/150434 ADSCrossRefGoogle Scholar
  411. G. Wallerstein, The Cepheids of Population II and related stars. Publ. Astron. Soc. Pac. 114, 689–699 (2002).  https://doi.org/10.1086/341698 ADSCrossRefGoogle Scholar
  412. G. Wallerstein, C.A. Nachr, The Population II Cepheids. Publ. Astron. Soc. Pac. 96, 677–691 (1984).  https://doi.org/10.1086/131406 ADSCrossRefGoogle Scholar
  413. D.L. Welch, Type 2 Cepheids in the Milky Way Galaxy and the Magellanic Clouds. J. Am. Assoc. Var. Star Obs. 40, 492 (2012) ADSGoogle Scholar
  414. D.L. Welch, P.B. Stetson, Robust variable star detection techniques suitable for automated searches—new results for NGC 1866. Astron. J. 105, 1813–1821 (1993).  https://doi.org/10.1086/116556 ADSCrossRefGoogle Scholar
  415. A.J. Wesselink, The colour index of a black body with infinite temperature. Bull. Astron. Inst. Neth. 10, 99 (1946) ADSGoogle Scholar
  416. A.J. Wesselink, Surface brightnesses in the U, B, V system with applications of Mv and dimensions of stars. Mon. Not. R. Astron. Soc. 144, 297 (1969).  https://doi.org/10.1093/mnras/144.3.297 ADSCrossRefGoogle Scholar
  417. G. Worthey, H.c. Lee, An empirical UBV RI JHK color–temperature calibration for stars. Astrophys. J. Suppl. Ser. 193, 1 (2011).  https://doi.org/10.1088/0067-0049/193/1/1. arXiv:astro-ph/0604590 ADSCrossRefGoogle Scholar
  418. P.F. Wu, R.B. Tully, L. Rizzi, A.E. Dolphin, B.A. Jacobs, I.D. Karachentsev, Infrared tip of the red giant branch and distances to the Maffei/IC 342 group. Astron. J. 148, 7 (2014).  https://doi.org/10.1088/0004-6256/148/1/7. arXiv:1404.2987 ADSCrossRefGoogle Scholar
  419. D. Zaritsky, J. Harris, I.B. Thompson, E.K. Grebel, P. Massey, The Magellanic clouds photometric survey: the Small Magellanic Cloud stellar catalog and extinction map. Astron. J. 123, 855–872 (2002).  https://doi.org/10.1086/338437. arXiv:astro-ph/0110665 ADSCrossRefGoogle Scholar
  420. D. Zaritsky, J. Harris, I.B. Thompson, E.K. Grebel, The Magellanic clouds photometric survey: the Large Magellanic Cloud stellar catalog and extinction map. Astron. J. 128, 1606–1614 (2004).  https://doi.org/10.1086/423910. arXiv:astro-ph/0407006 ADSCrossRefGoogle Scholar
  421. G. Zhao, Y.H. Zhao, Y.Q. Chu, Y.P. Jing, L.C. Deng, LAMOST spectral survey: an overview. Res. Astron. Astrophys. 12, 723–734 (2012).  https://doi.org/10.1088/1674-4527/12/7/002 ADSCrossRefGoogle Scholar
  422. S.A. Zhevakin, On the pulsational theory of stellar variability. VI. (A unified interpretation of various types of variability). Sov. Astron. 3, 913 (1959) ADSMathSciNetGoogle Scholar
  423. R. Zinn, M.J. West, The globular cluster system of the galaxy. III—measurements of radial velocity and metallicity for 60 clusters and a compilation of metallicities for 121 clusters. Astrophys. J. Suppl. Ser. 55, 45–66 (1984).  https://doi.org/10.1086/190947 ADSCrossRefGoogle Scholar
  424. E. Zsoldos, No RV Tauri stars in globular clusters? Acta Astron. 48, 775–788 (1998) ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Rachael L. Beaton
    • 1
    • 2
    Email author
  • Giuseppe Bono
    • 3
    • 4
  • Vittorio Francesco Braga
    • 3
    • 5
  • Massimo Dall’Ora
    • 6
  • Giuliana Fiorentino
    • 7
  • In Sung Jang
    • 8
  • Clara E. Martínez-Vázquez
    • 9
  • Noriyuki Matsunaga
    • 10
  • Matteo Monelli
    • 11
    • 12
  • Jillian R. Neeley
    • 13
  • Maurizio Salaris
    • 14
  1. 1.Department of Astrophysical SciencesPrinceton UniversityPrincetonUSA
  2. 2.The Observatories of the Carnegie Institution for SciencePasadenaUSA
  3. 3.Department of PhysicsUniversity of Rome Tor VergataRomeItaly
  4. 4.INAF-Osservatorio Astronomico di RomaRomeItaly
  5. 5.ASDCRomeItaly
  6. 6.INAF-Osservatorio Astronomico di CapodimonteNaplesItaly
  7. 7.INAF—OAS Osservatorio di Astrofisica & Scienza dello Spazio di BolognaBolognaItaly
  8. 8.Leibniz-Institut für Astrophysics PotsdamPotsdamGermany
  9. 9.Cerro Tololo Inter-AmericanNational Optical Astronomy ObservatoryLa SerenaChile
  10. 10.Department of Astronomy, School of ScienceThe University of TokyoTokyoJapan
  11. 11.IAC-Instituto de Astrofísica de CanariasLa LagunaSpain
  12. 12.Departmento de AstrofísicaUniversidad de La LagunaLa LagunaSpain
  13. 13.Department of PhysicsFlorida Atlantic UniversityBoca RatonUSA
  14. 14.Astrophysics Research InstituteLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations