Space Science Reviews

, 214:115 | Cite as

Origin of Molecular Oxygen in Comets: Current Knowledge and Perspectives

  • Adrienn Luspay-KutiEmail author
  • Olivier Mousis
  • Jonathan I. Lunine
  • Yves Ellinger
  • Françoise Pauzat
  • Ujjwal Raut
  • Alexis Bouquet
  • Kathleen E. Mandt
  • Romain Maggiolo
  • Thomas Ronnet
  • Bastien Brugger
  • Ozge Ozgurel
  • Stephen A. Fuselier
Part of the following topical collections:
  1. Ices in the Solar System


The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument onboard the Rosetta spacecraft has measured molecular oxygen (O2) in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) in surprisingly high abundances. These measurements mark the first unequivocal detection of O2 in a cometary environment. The large relative abundance of O2 in 67P/C-G despite its high reactivity and low interstellar abundance poses a puzzle for its origin in comet 67P/C-G, and potentially other comets. Since its detection, there have been a number of hypotheses put forward to explain the production and origin of O2 in the comet. These hypotheses cover a wide range of possibilities from various in situ production mechanisms to protosolar nebula and primordial origins. Here, we review the O2 formation mechanisms from the literature, and provide a comprehensive summary of the current state of knowledge of the sources and origin of cometary O2.


Molecular oxygen Comets Radiolysis Ice Astrobiology 



This review would not have been possible without the work of the many scientists, engineers, and technicians involved in the Rosetta mission, and of the ROSINA instrument and science team. A.L.-K. and K.E.M. acknowledge support from NASA grant 80NSSC18K1620. A.L.-K. and S.A.F. gratefully acknowledge support from the US National Aeronautics and Space Administration Jet Propulsion Laboratory (NASA JPL), subcontract no. 1496541. The work by O.M., T.R., and B.B. was carried out thanks to the support of the A*MIDEX project (no. ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French government program, managed by the French National Research Agency. O.M. also acknowledges support from CNES (Centre National d’Études Spatiales). J.I.L. was a Moore Distinguished Scholar in Planetary Science at Caltech during the preparation of this chapter. The LCT team benefited from the support of the CNRS-INSU national program PCMI, and of the DIM ACAV+ regional program of Ile de France. A.B. is funded by the Cassini Project through JPL subcontract 1405853, and by the ROSINA project through JPL subcontract 129600. The work by K.E.M. was supported by the US National Aeronautics and Space Administration JPL Subcontract 1585002. The work by R.M. was supported by the Belgian Science Policy Office via PRODEX/ROSINA PEA90020 and 400010770. The authors would also like to thank two anonymous reviewers for their comments, which helped improve this paper.


  1. K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. LeRoy, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, H. Waite, P. Wurz, 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(27), 1261952 (2015). CrossRefGoogle Scholar
  2. D.A. Bahr, M. Famá, R.A. Vidal, R.A. Baragiola, Radiolysis of water ice in the outer solar system: sputtering and trapping of radiation products. J. Geophys. Res. 106, 33285–33290 (2001). ADSCrossRefGoogle Scholar
  3. H. Balsiger, K. Altwegg, P. Bochsler, P. Eberhardt, J. Fischer, S. Graf, A. Jäckel, E. Kopp, U. Langer, M. Mildner, J. Müller, T. Riesen, M. Rubin, S. Scherer, P. Wurz, S. Wüthrich, E. Arijs, S. Delanoye, J. de Keyser, E. Neefs, D. Nevejans, H. Rème, C. Aoustin, C. Mazelle, J.-L. Médale, J.A. Sauvaud, J.-J. Berthelier, J.-L. Bertaux, L. Duvet, J.-M. Illiano, S.A. Fuselier, A.G. Ghielmetti, T. Magoncelli, E.G. Shelley, A. Korth, K. Heerlein, H. Lauche, S. Livi, A. Loose, U. Mall, B. Wilken, F. Gliem, B. Fiethe, T.I. Gombosi, B. Block, G.R. Carignan, L.A. Fisk, J.H. Waite, D.T. Young, H. Wollnik, ROSINA Rosetta orbiter spectrometer for ion and neutral analysis. Space Sci. Rev. 128, 745–801 (2007). ADSCrossRefGoogle Scholar
  4. H. Balsiger, K. Altwegg, A. Bar-Nun, J.-J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, et al., Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 1(8), 1500377 (2015) ADSCrossRefGoogle Scholar
  5. E.S. Barker, Detection of molecular oxygen in the Martian atmosphere. Nature 238, 447–448 (1972). ADSCrossRefGoogle Scholar
  6. P. Bergman, B. Parise, R. Liseau, B. Larsson, H. Olofsson, K.M. Menten, R. Güsten, Detection of interstellar hydrogen peroxide. Astron. Astrophys. 531, 8 (2011). ADSCrossRefGoogle Scholar
  7. A. Bieler, K. Altwegg, H. Balsiger, A. Bar-Nun, J.-J. Berthelier, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. de Keyser, E.F. van Dishoeck, B. Fiethe, S.A. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. Le Roy, U. Mall, R. Maggiolo, B. Marty, O. Mousis, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, J.H. Waite, C. Walsh, P. Wurz, Abundant molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko. Nature 526, 678–681 (2015). ADSCrossRefGoogle Scholar
  8. A. Bouquet, C.R. Glein, D. Wyrick, J.H. Waite, Alternative energy: production of H2 by radiolysis of water in the rocky cores of icy bodies. Astrophys. J. Lett. 840, 8 (2017). ADSCrossRefGoogle Scholar
  9. A. Bouquet, O. Mousis, B. Teolis, G. Nicolaou, O. Ozgurel, F. Pauzat, Y. Ellinger, T. Ronnet, J.H. Waite, Endogenic radiolysis as a source of molecular oxygen in comet 67P/Churyumov-Gerasimenko? Astrophys. J. 869, 1–9 (2018). CrossRefGoogle Scholar
  10. J.-H. Chen, P.F. Goldsmith, S. Viti, R. Snell, D.C. Lis, A. Benz, E. Bergin, J. Black, P. Caselli, P. Encrenaz, E. Falgarone, J.R. Goicoechea, Å. Hjalmarson, D. Hollenbach, M. Kaufman, G. Melnick, D. Neufeld, L. Pagani, F. van der Tak, E. van Dishoeck, U.A. Yıldız, Herschel HIFI observations of O2 toward orion: special conditions for shock enhanced emission. Astrophys. J. 793, 111 (2014). ADSCrossRefGoogle Scholar
  11. F.J. Ciesla, The phases of water ice in the solar nebula. Astrophys. J. Lett. 784, 1 (2014). ADSCrossRefGoogle Scholar
  12. A.L. Cochran, A search for \(\mbox{N}^{+}_{2}\) in spectra of comet C/2002 C1 (Ikeya-Zhang). Astrophys. J. Lett. 576, 165–168 (2002). ADSCrossRefGoogle Scholar
  13. A.L. Cochran, W.D. Cochran, E.S. Barker, \(\mbox{N}^{+}_{2}\) and \(\mbox{CO}^{+}\) in comets 122P/1995 S1 (deVico) and C/1995 O1 (Hale-Bopp). Icarus 146, 583–593 (2000). ADSCrossRefGoogle Scholar
  14. J.F. Cooper, E.R. Christian, J.D. Richardson, C. Wang, Proton irradiation of Centaur, Kuiper belt, and Oort cloud objects at plasma to cosmic ray energy. Earth Moon Planets 92, 261–277 (2003). ADSCrossRefGoogle Scholar
  15. D.P. Cruikshank, R.H. Brown, W.M. Calvin, T.L. Roush, M.J. Bartholomew, Ices on the satellites of Jupiter, Saturn, and Uranus, in Solar System Ices (Springer, Berlin, 1998), pp. 579–606 CrossRefGoogle Scholar
  16. H.M. Cuppen, E. Herbst, Simulation of the formation and morphology of ice mantles on interstellar grains. Astrophys. J. 668, 294–309 (2007). ADSCrossRefGoogle Scholar
  17. L.B. D’Hendecourt, L.J. Allamandola, J.M. Greenberg, Time dependent chemistry in dense molecular clouds. I—grain surface reactions, gas/grain interactions and infrared spectroscopy. Astron. Astrophys. 152, 130–150 (1985) ADSGoogle Scholar
  18. F. Dhooghe, J. De Keyser, K. Altwegg, C. Briois, H. Balsiger, J.-J. Berthelier, U. Calmonte, G. Cessateur, M.R. Combi, E. Equeter, B. Fiethe, N. Fray, S. Fuselier, S. Gasc, A. Gibbons, T. Gombosi, H. Gunell, M. Hässig, M. Hilchenbach, L. Le Roy, R. Maggiolo, U. Mall, B. Marty, E. Neefs, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, P. Wurz, Halogens as tracers of protosolar nebula material in comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 472, 1336–1345 (2017). ADSCrossRefGoogle Scholar
  19. F. Dulieu, L. Amiaud, E. Congiu, J.-H. Fillion, E. Matar, A. Momeni, V. Pirronello, J.L. Lemaire, Experimental evidence for water formation on interstellar dust grains by hydrogen and oxygen atoms. Astron. Astrophys. 512, 30 (2010). CrossRefGoogle Scholar
  20. F. Dulieu, M. Minissale, D. Bockelée-Morvan, Production of O2 through dismutation of H2O2 during water ice desorption: a key to understanding comet O2 abundances. Astron. Astrophys. 597, 56 (2017). ADSCrossRefGoogle Scholar
  21. Y. Ellinger, F. Pauzat, O. Mousis, A. Guilbert-Lepoutre, F. Leblanc, M. Ali-Dib, M. Doronin, E. Zicler, A. Doressoundiram, Neutral Na in cometary tails as a remnant of early aqueous alteration. Astrophys. J. Lett. 801, 30 (2015). ADSCrossRefGoogle Scholar
  22. N. Fougere, K. Altwegg, J.-J. Berthelier, A. Bieler, D. Bockelée-Morvan, U. Calmonte, F. Capaccioni, M.R. Combi, J. De Keyser, V. Debout, S. Erard, B. Fiethe, G. Filacchione, U. Fink, S.A. Fuselier, T.I. Gombosi, K.C. Hansen, M. Hässig, Z. Huang, L. Le Roy, C. Leyrat, A. Migliorini, G. Piccioni, G. Rinaldi, M. Rubin, Y. Shou, V. Tenishev, G. Toth, C.-Y. Tzou, Direct simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 462, 156–169 (2016). CrossRefGoogle Scholar
  23. N. Fray, B. Schmitt, Sublimation of ices of astrophysical interest: a bibliographic review. Planet. Space Sci. 57, 2053–2080 (2009). ADSCrossRefGoogle Scholar
  24. K. Furuya, Y. Aikawa, U. Hincelin, G.E. Hassel, E.A. Bergin, A.I. Vasyunin, E. Herbst, Water deuteration and ortho-to-para nuclear spin ratio of H2 in molecular clouds formed via the accumulation of H I gas. Astron. Astrophys. 584, 124 (2015). ADSCrossRefGoogle Scholar
  25. K. Furuya, E.F. van Dishoeck, Y. Aikawa, Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores. Astron. Astrophys. 586, 127 (2016). CrossRefGoogle Scholar
  26. S.A. Fuselier, K. Altwegg, H. Balsiger, J.J. Berthelier, A. Bieler, C. Briois, T.W. Broiles, J.L. Burch, U. Calmonte, G. Cessateur, M. Combi, J. De Keyser, B. Fiethe, M. Galand, S. Gasc, T.I. Gombosi, H. Gunell, K.C. Hansen, M. Hässig, A. Jäckel, A. Korth, L. Le Roy, U. Mall, K.E. Mandt, S.M. Petrinec, S. Raghuram, H. Rème, M. Rinaldi, M. Rubin, T. Sémon, K.J. Trattner, C.-Y. Tzou, E. Vigren, J.H. Waite, P. Wurz, ROSINA/DFMS and IES observations of 67P: ion-neutral chemistry in the coma of a weakly outgassing comet. Astron. Astrophys. 583, 2 (2015). CrossRefGoogle Scholar
  27. P.F. Goldsmith, R. Liseau, T.A. Bell, J.H. Black, J.-H. Chen, D. Hollenbach, M.J. Kaufman, D. Li, D.C. Lis, G. Melnick, D. Neufeld, L. Pagani, R. Snell, A.O. Benz, E. Bergin, S. Bruderer, P. Caselli, E. Caux, P. Encrenaz, E. Falgarone, M. Gerin, J.R. Goicoechea, Å. Hjalmarson, B. Larsson, J. Le Bourlot, F. Le Petit, M. De Luca, Z. Nagy, E. Roueff, A. Sandqvist, F. van der Tak, E.F. van Dishoeck, C. Vastel, S. Viti, U. Yıldız, Herschel measurements of molecular oxygen in orion. Astrophys. J. 737, 96 (2011). ADSCrossRefGoogle Scholar
  28. D.T. Hall, D.F. Strobel, P.D. Feldman, M.A. McGrath, H.A. Weaver, Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373, 677–679 (1995). ADSCrossRefGoogle Scholar
  29. K.C. Hansen, K. Altwegg, J.-J. Berthelier, A. Bieler, N. Biver, D. Bockelée-Morvan, U. Calmonte, F. Capaccioni, M.R. Combi, J. de Keyser, B. Fiethe, N. Fougere, S.A. Fuselier, S. Gasc, T.I. Gombosi, Z. Huang, L. Le Roy, S. Lee, H. Nilsson, M. Rubin, Y. Shou, C. Snodgrass, V. Tenishev, G. Toth, C.-Y. Tzou, C.S. Wedlund (Rosina Team), Evolution of water production of 67P/Churyumov-Gerasimenko: an empirical model and a multi-instrument study. Mon. Not. R. Astron. Soc. 462, 491–506 (2016). CrossRefGoogle Scholar
  30. T.I. Hasegawa, E. Herbst, C.M. Leung, Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. Astrophys. J. Suppl. Ser. 82, 167–195 (1992). ADSCrossRefGoogle Scholar
  31. K.L. Heritier, K. Altwegg, J.J. Berthelier, A. Beth, C.M. Carr, J. De Keyser, A.I. Ericksson, S.A. Fuselier, M. Galand, T.I. Gombosi, P. Henri, F.L. Johansson, H. Nilsson, M. Rubin, C. Simon Wedlund, M.G.G.T. Taylor, E. Vigren, Correspondence: on the origin of molecular oxygen in cometary comae. Nat. Commun. 9(2580) (2018) Google Scholar
  32. F. Hersant, D. Gautier, J.-M. Huré, A two-dimensional model for the primordial nebula constrained by D/H measurements in the solar system: implications for the formation of giant planets. Astrophys. J. 554, 391–407 (2001). ADSCrossRefGoogle Scholar
  33. B. Hofman, Isolated reduction phenomena in red-beds: a result of porewater radiolysis, in Proceedings of the 7th International Symposium on Water-Rock Interaction (1992), pp. 503–506 Google Scholar
  34. S. Ioppolo, H.M. Cuppen, C. Romanzin, E.F. van Dishoeck, H. Linnartz, Laboratory evidence for efficient water formation in interstellar ices. Astrophys. J. 686, 1474–1479 (2008). ADSCrossRefGoogle Scholar
  35. D. Jing, J. He, J. Brucato, A. De Sio, L. Tozzetti, G. Vidali, On water formation in the interstellar medium: laboratory study of the \(\mbox{O}+\mbox{D}\) reaction on surfaces. Astrophys. J. Lett. 741, 9 (2011). ADSCrossRefGoogle Scholar
  36. R.E. Johnson, Irradiation effects in a comet’s outer layers. J. Geophys. Res. 96, 17 (1991). CrossRefGoogle Scholar
  37. R.E. Johnson, Sputtering of ices in the outer solar system. Rev. Mod. Phys. 68, 305–312 (1996). ADSCrossRefGoogle Scholar
  38. R.E. Johnson, W.A. Jesser, O2/O3 microatmospheres in the surface of Ganymede. Astrophys. J. Lett. 480, 79–82 (1997). ADSCrossRefGoogle Scholar
  39. R.E. Johnson, T.I. Quickenden, Photolysis and radiolysis of water ice on outer solar system bodies. J. Geophys. Res. 102, 10985–10996 (1997). ADSCrossRefGoogle Scholar
  40. R.E. Johnson, J.G. Luhmann, R.L. Tokar, M. Bouhram, J.J. Berthelier, E.C. Sittler, J.F. Cooper, T.W. Hill, H.T. Smith, M. Michael, M. Liu, F.J. Crary, D.T. Young, Production, ionization and redistribution of O2 in Saturn’s ring atmosphere. Icarus 180, 393–402 (2006). ADSCrossRefGoogle Scholar
  41. B.A. Keeney, S.A. Stern, M.F. A’Hearn, J.-L. Bertaux, L.M. Feaga, P.D. Feldman, R.A. Medina, J.W. Parker, J.P. Pineau, E. Schindhelm, A.J. Steffl, M. Versteeg, H.A. Weaver, H2O and O2 absorption in the coma of comet 67P/Churyumov-Gerasimenko measured by the Alice far-ultraviolet spectrograph on Rosetta. Mon. Not. R. Astron. Soc. 469, 158–177 (2017a). CrossRefGoogle Scholar
  42. B.A. Keeney, S.A. Stern, P.D. Feldman, M. A’Hearn, J.-L. Bertaux, L.M. Feaga, R. Medina, J.W. Parker, J. Pineau, E. Schindhelm, A.J. Steffl, M.H. Versteeg, H.A. Weaver, Stellar occultation by comet 67P/Churyumov-Gerasimenko observed with the R-alice ultraviolet spectrograph, in AAS/Division for Planetary Sciences Meeting Abstracts #49. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 49 (2017b), 509.08 Google Scholar
  43. A. Kouchi, T. Yamamoto, T. Kozasa, T. Kuroda, J.M. Greenberg, Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices. Astron. Astrophys. 290, 1009–1018 (1994) ADSGoogle Scholar
  44. G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993). ADSCrossRefGoogle Scholar
  45. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994). ADSCrossRefGoogle Scholar
  46. B. Larsson, R. Liseau, L. Pagani, P. Bergman, P. Bernath, N. Biver, J.H. Black, R.S. Booth, V. Buat, J. Crovisier, C.L. Curry, M. Dahlgren, P.J. Encrenaz, E. Falgarone, P.A. Feldman, M. Fich, H.G. Florén, M. Fredrixon, U. Frisk, G.F. Gahm, M. Gerin, M. Hagström, J. Harju, T. Hasegawa, Å. Hjalmarson, L.E.B. Johansson, K. Justtanont, A. Klotz, E. Kyrölä, S. Kwok, A. Lecacheux, T. Liljeström, E.J. Llewellyn, S. Lundin, G. Mégie, G.F. Mitchell, D. Murtagh, L.H. Nordh, L.-Å. Nyman, M. Olberg, A.O.H. Olofsson, G. Olofsson, H. Olofsson, G. Persson, R. Plume, H. Rickman, I. Ristorcelli, G. Rydbeck, A.A. Sandqvist, F.V. Schéele, G. Serra, S. Torchinsky, N.F. Tothill, K. Volk, T. Wiklind, C.D. Wilson, A. Winnberg, G. Witt, Molecular oxygen in the \(\rho \) Ophiuchi cloud. Astron. Astrophys. 466, 999–1003 (2007). ADSCrossRefGoogle Scholar
  47. M. Lattelais, M. Bertin, H. Mokrane, C. Romanzin, X. Michaut, P. Jeseck, J.-H. Fillion, H. Chaabouni, E. Congiu, F. Dulieu, S. Baouche, J.-L. Lemaire, F. Pauzat, J. Pilmé, C. Minot, Y. Ellinger, Differential adsorption of complex organic molecules isomers at interstellar ice surfaces. Astron. Astrophys. 532, 12 (2011). CrossRefGoogle Scholar
  48. M. Lattelais, F. Pauzat, Y. Ellinger, C. Ceccarelli, Differential adsorption of CHON isomers at interstellar grain surfaces. Astron. Astrophys. 578, 62 (2015). ADSCrossRefGoogle Scholar
  49. D. Laufer, A. Bar-Nun, A. Ninio Greenberg, Trapping mechanism of O2 in water ice as first measured by Rosetta spacecraft. Mon. Not. R. Astron. Soc. 469(2), 818–823 (2018) Google Scholar
  50. L.-H. Lin, G.F. Slater, B.S. Lollar, G. Lacrampe-Couloume, T.C. Onstott, The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta 69, 893 (2005a). ADSCrossRefGoogle Scholar
  51. L.-H. Lin, J. Hall, J. Lippmann-Pipke, J.A. Ward, B. Sherwood Lollar, M. DeFlaun, R. Rothmel, D. Moser, T.M. Gihring, B. Mislowack, et al., Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochem. Geophys. Geosyst. (2005b). CrossRefGoogle Scholar
  52. R. Liseau, P.F. Goldsmith, B. Larsson, L. Pagani, P. Bergman, J. Le Bourlot, T.A. Bell, A.O. Benz, E.A. Bergin, P. Bjerkeli, J.H. Black, S. Bruderer, P. Caselli, E. Caux, J.-H. Chen, M. de Luca, P. Encrenaz, E. Falgarone, M. Gerin, J.R. Goicoechea, Å. Hjalmarson, D.J. Hollenbach, K. Justtanont, M.J. Kaufman, F. Le Petit, D. Li, D.C. Lis, G.J. Melnick, Z. Nagy, A.O.H. Olofsson, G. Olofsson, E. Roueff, A. Sandqvist, R.L. Snell, F.F.S. van der Tak, E.F. van Dishoeck, C. Vastel, S. Viti, U.A. Yıldız, Multi-line detection of O2 toward \(\rho\) Ophuichi A. Astron. Astrophys. 541, 73 (2012). CrossRefGoogle Scholar
  53. M.J. Loeffler, B.D. Teolis, R.A. Baragiola, A model study of the thermal evolution of astrophysical ices. Astrophys. J. Lett. 639, 103–106 (2006a). ADSCrossRefGoogle Scholar
  54. M.J. Loeffler, B.D. Teolis, R.A. Baragiola, Distillation kinetics of solid mixtures of hydrogen peroxide and water and the isolation of pure hydrogen peroxide in ultrahigh vacuum. J. Phys. Chem. B 110, 6911–6915 (2006b). CrossRefGoogle Scholar
  55. J.I. Lunine, D.J. Stevenson, Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys. J. Suppl. Ser. 58, 493–531 (1985). ADSCrossRefGoogle Scholar
  56. J.I. Lunine, S. Engel, B. Rizk, M. Horanyi, Sublimation and reformation of icy grains in the primitive solar nebula. Icarus 94, 333–344 (1991a). ADSCrossRefGoogle Scholar
  57. J.I. Lunine, S. Engel, B. Rizk, M. Horanyi, Sublimation and reformation of icy grains in the primitive solar nebula. Icarus 94, 333–344 (1991b). ADSCrossRefGoogle Scholar
  58. M.M. Maldoni, M.P. Egan, R.G. Smith, G. Robinson, C.M. Wright, Crystalline water ice in OH32.8-0.3. Mon. Not. R. Astron. Soc. 345, 912–922 (2003). ADSCrossRefGoogle Scholar
  59. H. Mokrane, H. Chaabouni, M. Accolla, E. Congiu, F. Dulieu, M. Chehrouri, J.L. Lemaire, Experimental evidence for water formation via ozone hydrogenation on dust grains at 10 K. Astrophys. J. Lett. 705, 195–198 (2009). ADSCrossRefGoogle Scholar
  60. O. Mousis, J.I. Lunine, A. Luspay-Kuti, T. Guillot, B. Marty, M. Ali-Dib, P. Wurz, K. Altwegg, A. Bieler, M. Hässig, M. Rubin, P. Vernazza, J.H. Waite, A protosolar nebula origin for the ices agglomerated by comet 67P/Churyumov-Gerasimenko. Astrophys. J. Lett. 819, 33 (2016a). ADSCrossRefGoogle Scholar
  61. O. Mousis, T. Ronnet, B. Brugger, O. Ozgurel, F. Pauzat, Y. Ellinger, R. Maggiolo, P. Wurz, P. Vernazza, J.I. Lunine, A. Luspay-Kuti, K.E. Mandt, K. Altwegg, A. Bieler, A. Markovits, M. Rubin, Origin of molecular oxygen in comet 67P/Churyumov-Gerasimenko. Astrophys. J. Lett. 823, 41 (2016b). ADSCrossRefGoogle Scholar
  62. O. Mousis, A. Drouard, P. Vernazza, J.I. Lunine, M. Monnereau, R. Maggiolo, K. Altwegg, H. Balsiger, J.-J. Berthelier, G. Cessateur, J. De Keyser, S.A. Fuselier, S. Gasc, A. Korth, T. Le Deun, U. Mall, B. Marty, H. Rème, M. Rubin, C.-Y. Tzou, J.H. Waite, P. Wurz, Impact of radiogenic heating on the formation conditions of comet 67P/Churyumov-Gerasimenko. Astrophys. J. Lett. 839, 4 (2017). ADSCrossRefGoogle Scholar
  63. O. Mousis, T. Ronnet, J.I. Lunine, R. Maggiolo, P. Wurz, G. Danger, A. Bouquet, Synthesis of molecular oxygen via irradiation of icy grains in the protosolar nebula. Astrophys. J. 858, 66 (2018) ADSCrossRefGoogle Scholar
  64. H. Nilsson, G. Stenberg Wieser, E. Behar, C.S. Wedlund, E. Kallio, H. Gunell, N.J.T. Edberg, A.I. Eriksson, M. Yamauchi, C. Koenders, M. Wieser, R. Lundin, S. Barabash, K. Mandt, J.L. Burch, R. Goldstein, P. Mokashi, C. Carr, E. Cupido, P.T. Fox, K. Szego, Z. Nemeth, A. Fedorov, J.-A. Sauvaud, H. Koskinen, I. Richter, J.-P. Lebreton, P. Henri, M. Volwerk, C. Vallat, B. Geiger, Evolution of the ion environment of comet 67P/Churyumov-Gerasimenko. Observations between 3.6 and 2.0 AU. Astron. Astrophys. 583, 20 (2015). CrossRefGoogle Scholar
  65. H. Nilsson, G.S. Wieser, E. Behar, H. Gunell, M. Wieser, M. Galand, C. Simon Wedlund, M. Alho, C. Goetz, M. Yamauchi, P. Henri, E. Odelstad, E. Vigren, Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA. Mon. Not. R. Astron. Soc. 469, 252–261 (2017). ADSCrossRefGoogle Scholar
  66. K.S. Noll, T.L. Roush, D.P. Cruikshank, R.E. Johnson, Y.J. Pendleton, Detection of ozone on Saturn’s satellites Rhea and Dione. Nature 388, 45–47 (1997) ADSCrossRefGoogle Scholar
  67. Y. Oba, N. Miyauchi, H. Hidaka, T. Chigai, N. Watanabe, A. Kouchi, Formation of compact amorphous H2O ice by codeposition of hydrogen atoms with oxygen molecules on grain surfaces. Astrophys. J. 701, 464–470 (2009). ADSCrossRefGoogle Scholar
  68. A. Rotundi, H. Sierks, V. Della Corte, M. Fulle, P.J. Gutierrez, L. Lara, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H.U. Keller, J.J. López-Moreno, M. Accolla, J. Agarwal, M.F. A’Hearn, N. Altobelli, F. Angrilli, M.A. Barucci, J.-L. Bertaux, I. Bertini, D. Bodewits, E. Bussoletti, L. Colangeli, M. Cosi, G. Cremonese, J.-F. Crifo, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, F. Esposito, M. Ferrari, S. Fornasier, F. Giovane, B. Gustafson, S.F. Green, O. Groussin, E. Grün, C. Güttler, M.L. Herranz, S.F. Hviid, W. Ip, S. Ivanovski, J.M. Jerónimo, L. Jorda, J. Knollenberg, R. Kramm, E. Kührt, M. Küppers, M. Lazzarin, M.R. Leese, A.C. López-Jiménez, F. Lucarelli, S.C. Lowry, F. Marzari, E.M. Epifani, J.A.M. McDonnell, V. Mennella, H. Michalik, A. Molina, R. Morales, F. Moreno, S. Mottola, G. Naletto, N. Oklay, J.L. Ortiz, E. Palomba, P. Palumbo, J.-M. Perrin, J. Rodríguez, L. Sabau, C. Snodgrass, R. Sordini, N. Thomas, C. Tubiana, J.-B. Vincent, P. Weissman, K.-P. Wenzel, V. Zakharov, J.C. Zarnecki, Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science 347(1), 3905 (2015). CrossRefGoogle Scholar
  69. M. Rubin, K. Altwegg, H. Balsiger, A. Bar-Nun, J.-J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, F. Dhooghe, P. Eberhardt, B. Fiethe, S.A. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. Le Roy, U. Mall, B. Marty, O. Mousis, T. Owen, H. Rème, T. Sémon, C.-Y. Tzou, J.H. Waite, P. Wurz, Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science 348, 232–235 (2015a). ADSCrossRefGoogle Scholar
  70. M. Rubin, K. Altwegg, E.F. van Dishoeck, G. Schwehm, Molecular oxygen in Oort cloud comet 1P/Halley. Astrophys. J. Lett. 815, 11 (2015b). ADSCrossRefGoogle Scholar
  71. M.T. Sieger, W.C. Simpson, T.M. Orlando, Production of O2 on icy satellites by electronic excitation of low-temperature water ice. Nature 394, 554–556 (1998). ADSCrossRefGoogle Scholar
  72. R.G. Smith, S.B. Charnley, Y.J. Pendleton, C.M. Wright, M.M. Maldoni, G. Robinson, On the formation of interstellar water ice: constraints from a search for hydrogen peroxide ice in molecular clouds. Astrophys. J. 743, 131 (2011). ADSCrossRefGoogle Scholar
  73. R.S. Smith, R.A. May, B.D. Kay, Desorption kinetics of Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from graphene and amorphous solid water surfaces. J. Phys. Chem. B 120(8), 1979–1987 (2015) CrossRefGoogle Scholar
  74. J.R. Spencer, W.M. Calvin, M.J. Person, CCD spectra of the Galilean satellites: molecular oxygen on Ganymede. J. Geophys. Res. 100, 19049–19056 (1995). ADSCrossRefGoogle Scholar
  75. V. Taquet, K. Furuya, C. Walsh, E.F. van Dishoeck, A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O2 ice from clouds to discs. Mon. Not. R. Astron. Soc. 462, 99–115 (2016). CrossRefGoogle Scholar
  76. V. Taquet, K. Furuya, C. Walsh, E.F. van Dishoeck, On the origin of O2 and other volatile species in comets. ArXiv e-prints (2017) Google Scholar
  77. B.D. Teolis, M.J. Loeffler, U. Raut, M. Famá, R.A. Baragiola, Ozone synthesis on the icy satellites. Astrophys. J. Lett. 644, 141–144 (2006). ADSCrossRefGoogle Scholar
  78. B.D. Teolis, G.H. Jones, P.F. Miles, R.L. Tokar, B.A. Magee, J.H. Waite, E. Roussos, D.T. Young, F.J. Crary, A.J. Coates, R.E. Johnson, W.-L. Tseng, R.A. Baragiola, Cassini finds an oxygen-carbon dioxide atmosphere at Saturn’s icy moon Rhea. Science 330, 1813 (2010). ADSCrossRefGoogle Scholar
  79. B.D. Teolis, C. Plainaki, T.A. Cassidy, U. Raut, Water ice radiolytic O2, H2, and H2O2 yields for any projectile species, energy, or temperature: a model for icy astrophysical bodies. J. Geophys. Res., Planets 122, 1996–2012 (2017). ADSCrossRefGoogle Scholar
  80. A.G.G.M. Tielens, W. Hagen, Model calculations of the molecular composition of interstellar grain mantles. Astron. Astrophys. 114, 245–260 (1982) ADSGoogle Scholar
  81. J. Tse, Y. Handa, C. Ratcliffe, B. Powell, Structure of oxygen clathrate hydrate by neutron powder diffraction. J. Incl. Phenom. Macrocycl. Chem. 4(3), 235–240 (1986) CrossRefGoogle Scholar
  82. E.F. van Dishoeck, E. Herbst, D.A. Neufeld, Interstellar water chemistry: from laboratory to observations. Chem. Rev. 113, 9043–9085 (2013). CrossRefGoogle Scholar
  83. R. Visser, E.F. van Dishoeck, S.D. Doty, C.P. Dullemond, The chemical history of molecules in circumstellar disks. I. Ices. Astron. Astrophys. 495, 881–897 (2009). ADSCrossRefGoogle Scholar
  84. W.R. Webber, S.M. Yushak, A measurement of the energy spectra and relative abundance of the cosmic-ray H and He isotopes over a broad energy range. Astrophys. J. 275, 391–404 (1983). ADSCrossRefGoogle Scholar
  85. Y. Yao, K.P. Giapis, Dynamic molecular oxygen production in cometary comae. Nat. Commun. 8, 15298 (2017). ADSCrossRefGoogle Scholar
  86. Y. Yao, K. Giapis, Reply to “on the origin of molecular oxygen in cometary comae”. Nat. Commun. 9 (2018) Google Scholar
  87. A.G. Yeghikyan, Irradiation of dust in molecular clouds. II. Doses produced by cosmic rays. Astrophysics 54, 87–99 (2011). ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Adrienn Luspay-Kuti
    • 1
    Email author return OK on get
  • Olivier Mousis
    • 2
  • Jonathan I. Lunine
    • 3
    • 8
  • Yves Ellinger
    • 4
  • Françoise Pauzat
    • 4
  • Ujjwal Raut
    • 5
  • Alexis Bouquet
    • 5
    • 6
  • Kathleen E. Mandt
    • 1
  • Romain Maggiolo
    • 7
  • Thomas Ronnet
    • 2
  • Bastien Brugger
    • 2
  • Ozge Ozgurel
    • 4
  • Stephen A. Fuselier
    • 5
    • 6
  1. 1.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  2. 2.Laboratoire d’Astrophysique de Marseille, UMR CNRS 7326Aix-Marseille Université & OSU PythéasMarseilleFrance
  3. 3.Cornell Center for Astrophysics and Planetary ScienceCornell UniversityIthacaUSA
  4. 4.CNRS, Laboratoire de Chimie Théorique, LCTSorbonne UniversitéParisFrance
  5. 5.Department of Space ResearchSouthwest Research InstituteSan AntonioUSA
  6. 6.Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioUSA
  7. 7.Royal Institute for Space AeronomyBrusselsBelgium
  8. 8.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations