Advertisement

Space Science Reviews

, 214:131 | Cite as

Dust Emission by Active Moons

  • J. K. HillierEmail author
  • J. Schmidt
  • H.-W. Hsu
  • F. Postberg
Article
  • 201 Downloads
Part of the following topical collections:
  1. Cosmic Dust from the Laboratory to the Stars

Abstract

In recent decades, volcanic and cryovolcanic activity on moons within the Solar System has been recognised as an important source of cosmic dust. Two moons, Jupiter’s satellite Io and Saturn’s satellite Enceladus, are known to be actively emitting dust into circumplanetary and interplanetary space. A third moon, Europa, shows tantalising hints of activity. Here we review current observations and theories concerning the generation, emission and evolution of cosmic dust arising from these objects.

Keywords

Cosmic dust Tidal heating Planetary satellites Volcanism 

Notes

Acknowledgements

The authors thank H. Krüger and an anonymous referee for their helpful and constructive comments, which have improved the manuscript. JH acknowledges funding from Universität Heidelberg. The authors thank ISSI and Andrea Fischer for funding and arranging copyright permissions for many of the figures within this work.

References

  1. O. Abramov, J.R. Spencer, Endogenic heat from Enceladus’ south polar fractures: new observations, and models of conductive surface heating. Icarus 199(1), 189–196 (2009).  https://doi.org/10.1016/j.icarus.2008.07.016 ADSCrossRefGoogle Scholar
  2. J.D. Anderson, G. Schubert, Saturn’s gravitational field, internal rotation, and interior structure. Science 317(5843), 1384–1387 (2007).  https://doi.org/10.1126/science.1144835 ADSCrossRefGoogle Scholar
  3. J.D. Anderson, G. Schubert, R.A. Jacobson, E.L. Lau, W.B. Moore, W.L. Sjogren, Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281(5385), 2019–2022 (1998).  https://doi.org/10.1126/science.281.5385.2019. http://www.sciencemag.org/cgi/doi/10.1126/science.276.5316.1236 ADSCrossRefGoogle Scholar
  4. J.D. Anderson, R.A. Jacobson, E.L. Lau, W.B. Moore, G. Schubert, Io’s gravity field and interior structure. J. Geophys. Res., Planets 106(E12), 32963–32969 (2001).  https://doi.org/10.1029/2000JE001367 ADSCrossRefGoogle Scholar
  5. R.M. Baland, M. Yseboodt, T.V. Hoolst, Obliquity of the Galilean satellites: the influence of a global internal liquid layer. Icarus 220(2), 435–448 (2012).  https://doi.org/10.1016/j.icarus.2012.05.020 ADSCrossRefGoogle Scholar
  6. R.M. Baland, M. Yseboodt, T. Van Hoolst, The obliquity of Enceladus. Icarus 268, 12–31 (2016).  https://doi.org/10.1016/j.icarus.2015.11.039. arXiv:1512.0285 ADSCrossRefGoogle Scholar
  7. D.D. Barbosa, F.V. Coroniti, A. Eviatar, Coulomb thermal properties and stability of the Io plasma torus. Astrophys. J. 274, 429–442 (1983).  https://doi.org/10.1086/161459 ADSCrossRefGoogle Scholar
  8. M. Běhounková, O. Souček, J. Hron, O. Čadek, Plume activity and tidal deformation on Enceladus influenced by faults and variable ice shell thickness. Astrobiology 17(9), 941–954 (2017).  https://doi.org/10.1089/ast.2016.1629 ADSCrossRefGoogle Scholar
  9. J.J. Berg, D.B. Goldstein, P.L. Varghese, L.M. Trafton, DSMC simulation of Europa water vapor plumes. Icarus 277, 370–380 (2016).  https://doi.org/10.1016/j.icarus.2016.05.030 ADSCrossRefGoogle Scholar
  10. C.J. Bierson, F. Nimmo, A test for Io’s magma ocean: modeling tidal dissipation with a partially molten mantle. J. Geophys. Res., Planets 121(11), 2211–2224 (2016).  https://doi.org/10.1002/2016JE005005 ADSCrossRefGoogle Scholar
  11. M.T. Bland, W.B. McKinnon, P.M. Schenk, Constraining the heat flux between Enceladus’ tiger stripes: numerical modeling of funiscular plains formation. Icarus 260, 232–245 (2015).  https://doi.org/10.1016/j.icarus.2015.07.016 ADSCrossRefGoogle Scholar
  12. N.V. Brilliantov, J. Schmidt, F. Spahn, Nucleation and growth of a solid phase expanding into vacuum. Int. J. Mod. Phys. C 18(04), 676–684 (2007).  https://doi.org/10.1142/S0129183107010930 ADSCrossRefzbMATHGoogle Scholar
  13. R.H. Brown, R.L. Kirk, T.V. Johnson, L.A. Soderblom, Energy sources for Triton’s geyser-like plumes. Science 250(4979), 431–435 (1990).  https://doi.org/10.1126/science.250.4979.431 ADSCrossRefGoogle Scholar
  14. C. Bu, D.A. Bahr, C.A. Dukes, R.A. Baragiola, The effects of cracking on the surface potential of icy grains in Saturn’s E-ring: laboratory studies. Astrophys. J. 825(2), 106 (2016).  https://doi.org/10.3847/0004-637X/825/2/106 ADSCrossRefGoogle Scholar
  15. O. Čadek, G. Tobie, T. Van Hoolst, M. Massé, G. Choblet, A. Lefèvre, G. Mitri, R.M. Baland, M. Běhounková, O. Bourgeois, A. Trinh, Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Lett. 43(11), 5653–5660 (2016).  https://doi.org/10.1002/2016GL068634 ADSCrossRefGoogle Scholar
  16. M.H. Carr, M.J. Belton, C.R. Chapman, M.E. Davies, P. Geissler, R. Greenberg, A.S. McEwen, B.R. Tufts, R. Greeley, R. Sullivan, J.W. Head, R.T. Pappalardo, K.P. Klaasen, T.V. Johnson, J. Kaufman, D. Senske, J. Moore, G. Neukum, G. Schubert, J.A. Burns, P. Thomas, J. Veverka, Evidence for a subsurface ocean on Europa. Nature 391, 363–365 (1998).  https://doi.org/10.1038/34857 ADSCrossRefGoogle Scholar
  17. J.C. Castillo-Rogez, T.B. McCord, Ceres’ evolution and present state constrained by shape data. Icarus 205(2), 443–459 (2010).  https://doi.org/10.1016/j.icarus.2009.04.008 ADSCrossRefGoogle Scholar
  18. J. Castillo-Rogez, T.V. Johnson, M.H. Lee, N.J. Turner, D.L. Matson, J. Lunine, \(^{26}\mbox{Al}\) decay: heat production and a revised age for Iapetus. Icarus 204(2), 658–662 (2009).  https://doi.org/10.1016/j.icarus.2009.07.025 ADSCrossRefGoogle Scholar
  19. E. Cataldo, L. Wilson, S. Lane, J. Gilbert, A model for large-scale volcanic plumes on Io: implications for eruption rates and interactions between magmas and near-surface volatiles. J. Geophys. Res., Planets 107(E11), 19 (2002).  https://doi.org/10.1029/2001JE001513 CrossRefGoogle Scholar
  20. G. Choblet, G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg, O. Souček, Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1(12), 841–847 (2017).  https://doi.org/10.1038/s41550-017-0289-8 ADSCrossRefGoogle Scholar
  21. S.A. Collins, Spatial color variations in the volcanic plume at Loki, on Io. J. Geophys. Res. Space Phys. 86(A10), 8621–8626 (1981).  https://doi.org/10.1029/JA086iA10p08621 ADSCrossRefGoogle Scholar
  22. G.C. Collins, J.C. Goodman, Enceladus’ south polar sea. Icarus 189(1), 72–82 (2007).  https://doi.org/10.1016/j.icarus.2007.01.010 ADSCrossRefGoogle Scholar
  23. G.J. Consolmagno, Io: thermal models and chemical evolution. Icarus 47, 36–45 (1981) ADSCrossRefGoogle Scholar
  24. G.D. Crawford, D.J. Stevenson, Gas-driven water volcanism and the resurfacing of Europa. Icarus 73(1), 66–79 (1988).  https://doi.org/10.1016/0019-1035(88)90085-1 ADSCrossRefGoogle Scholar
  25. E.N. Crow-Willard, R.T. Pappalardo, Structural mapping of Enceladus and implications for formation of tectonized regions. J. Geophys. Res., Planets 120(5), 928–950 (2015).  https://doi.org/10.1002/2015JE004818 ADSCrossRefGoogle Scholar
  26. A.G. Davies, Volcanism on Io—A Comparison with Earth (Cambridge University Press, Cambridge, 2007) CrossRefGoogle Scholar
  27. A.G. Davies, L.P. Keszthelyi, D.A. Williams, C.B. Phillips, A.S. McEwen, R.M.C. Lopes, W.D. Smythe, L.W. Kamp, L.A. Soderblom, R.W. Carlson, Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io. J. Geophys. Res., Planets 106(E12), 33079–33103 (2001).  https://doi.org/10.1029/2000JE001357 ADSCrossRefGoogle Scholar
  28. G. De Maria, G. Balducci, M. Guido, V. Piacente, Mass spectrometric investigation of the vaporization process of Apollo 12 lunar samples, in Proc. Lunar Planet. Sci. Conf. 2 (MIT Press, Cambridge, 1971), pp. 1367–1380 Google Scholar
  29. I. de Pater, C. Laver, A.G. Davies, K. de Kleer, D.A. Williams, R.R. Howell, J.A. Rathbun, J.R. Spencer, Io: eruptions at Pillan, and the time evolution of Pele and Pillan from 1996 to 2015. Icarus 264(August, 198–212 (2016).  https://doi.org/10.1016/j.icarus.2015.09.006. 2007 ADSCrossRefGoogle Scholar
  30. S.F. Dermott, On the origin of commensurabilities in the Solar System—I. The tidal hypothesis. Mon. Not. R. Astron. Soc. 141(3), 349–361 (1968).  https://doi.org/10.1093/mnras/141.3.349 ADSCrossRefGoogle Scholar
  31. D. Dhingra, M.M. Hedman, R.N. Clark, P.D. Nicholson, Spatially resolved near infrared observations of Enceladus’ tiger stripe eruptions from Cassini VIMS. Icarus 292, 1–12 (2017).  https://doi.org/10.1016/j.icarus.2017.03.002 ADSCrossRefGoogle Scholar
  32. V. Dikarev, Dynamics of particles in Saturn’s E ring: effects of charge variations and the plasma drag force. Astron. Astrophys. 346, 1011–1019 (1999) ADSGoogle Scholar
  33. Y. Dong, T.W. Hill, B.D. Teolis, B.A. Magee, J.H. Waite, The water vapor plumes of Enceladus. J. Geophys. Res. Space Phys. 116(10), 1–13 (2011).  https://doi.org/10.1029/2011JA016693 CrossRefGoogle Scholar
  34. Y. Dong, T.W. Hill, S.Y. Ye, Characteristics of ice grains in the Enceladus plume from Cassini observations. J. Geophys. Res. Space Phys. 120(2), 915–937 (2015).  https://doi.org/10.1002/2014JA020288 ADSCrossRefGoogle Scholar
  35. M.K. Dougherty, K.K. Khurana, F.M. Neubauer, C.T. Russell, J. Saur, J.S. Leisner, M.E. Burton, Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006).  https://doi.org/10.1126/science.1120985 ADSCrossRefGoogle Scholar
  36. G. Dourneau, Orbital elements of the eight major satellites of Saturn determined from a fit of their theories of motion to observations from the 1886 to 1985. Astron. Astrophys. 267, 292–299 (1993) ADSGoogle Scholar
  37. N. Duxbury, R. Brown, The role of an internal heat source for the eruptive plumes on Triton. Icarus 125(1), 83–93 (1997).  https://doi.org/10.1006/icar.1996.5554 ADSCrossRefGoogle Scholar
  38. I.A.D. Engelhardt, J.E. Wahlund, D.J. Andrews, A.I. Eriksson, S. Ye, W.S. Kurth, D.A. Gurnett, M.W. Morooka, W.M. Farrell, M.K. Dougherty, Plasma regions, charged dust and field-aligned currents near Enceladus. Planet. Space Sci. 117, 453–469 (2015).  https://doi.org/10.1016/j.pss.2015.09.010 ADSCrossRefGoogle Scholar
  39. B. Fegley, M.Y. Zolotov, Chemistry of sodium, potassium, and chlorine in volcanic gases on Io. Icarus 148, 193–210 (2000).  https://doi.org/10.1006/icar.2000.6490 ADSCrossRefGoogle Scholar
  40. W.A. Feibelman, Concerning the “D” ring of Saturn. Nature 214, 793 (1967).  https://doi.org/10.1038/214793a0 ADSCrossRefGoogle Scholar
  41. A. Flandes, Dust escape from Io. Geophys. Res. Lett. 31(16), L16802 (2004a).  https://doi.org/10.1029/2004GL020046 ADSCrossRefGoogle Scholar
  42. A. Flandes, Dust escape mechanism from Io. Adv. Space Res. 34(11), 2251–2255 (2004b).  https://doi.org/10.1016/j.asr.2003.09.064 ADSCrossRefGoogle Scholar
  43. A. Flandes, H. Krüger, D.P. Hamilton, J.F. Valdés-Galicia, L. Spilker, R. Caballero, Magnetic field modulated dust streams from Jupiter in interplanetary space. Planet. Space Sci. 59(13), 1455–1471 (2011).  https://doi.org/10.1016/j.pss.2011.05.014 ADSCrossRefGoogle Scholar
  44. L.A. Frank, W.R. Paterson, K.L. Ackerson, V.M. Vasyliunas, F.V. Coroniti, S.J. Bolton, Plasma observations at Io with the Galileo spacecraft. Science 274(5286), 394–395 (1996).  https://doi.org/10.1126/science.274.5286.394 ADSCrossRefGoogle Scholar
  45. J. Fuller, J. Luan, E. Quataert, Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astron. Soc. 458(4), 3867–3879 (2016).  https://doi.org/10.1093/mnras/stw609. arXiv:1601.05804 ADSCrossRefGoogle Scholar
  46. P. Gao, P. Kopparla, X. Zhang, A.P. Ingersoll, Aggregate particles in the plumes of Enceladus. Icarus 264, 227–238 (2016).  https://doi.org/10.1016/j.icarus.2015.09.030. arXiv:1506.00713 ADSCrossRefGoogle Scholar
  47. P.E. Geissler, M.T. McMillan, Galileo observations of volcanic plumes on Io. Icarus 197(2), 505–518 (2008).  https://doi.org/10.1016/j.icarus.2008.05.005 ADSCrossRefGoogle Scholar
  48. P.E. Geissler, A.S. McEwen, L. Keszthelyi, R. Lopes-Gautier, J. Granahan, D.P. Simonelli, Global color variations on Io. Icarus 140, 265–282 (1999).  https://doi.org/10.1006/icar.1999.6128 ADSCrossRefGoogle Scholar
  49. C.R. Glein, E.L. Shock, Sodium chloride as a geophysical probe of a subsurface ocean on Enceladus. Geophys. Res. Lett. 37(9), L09204 (2010).  https://doi.org/10.1029/2010GL042446 ADSCrossRefGoogle Scholar
  50. C.R. Glein, J.A. Baross, J.H. Waite, The pH of Enceladus’ ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015).  https://doi.org/10.1016/j.gca.2015.04.017. arXiv:1502.01946 ADSCrossRefGoogle Scholar
  51. J.D. Goguen, B.J. Buratti, R.H. Brown, R.N. Clark, P.D. Nicholson, M.M. Hedman, R.R. Howell, C. Sotin, D.P. Cruikshank, K.H. Baines, K.J. Lawrence, J.R. Spencer, D.G. Blackburn, The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover. Icarus 226(1), 1128–1137 (2013).  https://doi.org/10.1016/j.icarus.2013.07.012 ADSCrossRefGoogle Scholar
  52. P. Goldreich, S. Soter, \(Q\) in the solar system. Icarus 5, 375–389 (1966).  https://doi.org/10.1016/0019-1035(66)90051-0 ADSCrossRefGoogle Scholar
  53. J.C. Goodman, G.C. Collins, J. Marshall, R.T. Pierrehumbert, Hydrothermal plume dynamics on Europa: implications for chaos formation. J. Geophys. Res. 109, E03008 (2004).  https://doi.org/10.1029/2003JE002073 ADSCrossRefGoogle Scholar
  54. A. Graps, E. Grun, H. Svedhem, H. Kruger, M. Horanyl, S. Heck a Lammers, Io as a source of the Jovian dust streams. Nature 405(6782), 48–50 (2000).  https://doi.org/10.1038/35011008 ADSCrossRefGoogle Scholar
  55. A.L. Graps, G.H. Jones, A. Juhasz, M. Horanyi, O. Havnes, The charging of planetary rings. Space Sci. Rev. 137(1–4), 435–453 (2008).  https://doi.org/10.1007/s11214-008-9406-4 ADSCrossRefGoogle Scholar
  56. R. Greenberg, Tidal-tectonic processes and their implications for the character of Europa’s icy crust. Rev. Geophys. 40(2), 1–34 (2002).  https://doi.org/10.1029/2000RG000096 CrossRefGoogle Scholar
  57. R. Greenberg, The icy Jovian satellites after the Galileo mission. Rep. Prog. Phys. 73, 6801 (2010).  https://doi.org/10.1088/0034-4885/73/3/036801 CrossRefGoogle Scholar
  58. R. Greenberg, P. Geissler, G. Hoppa, B.R. Tufts, D.D. Durda, R. Pappalardo, J.W. Head, R. Greeley, R. Sullivan, M.H. Carr, Tectonic processes on Europa: tidal stresses, mechanical response, and visible features. Icarus 135(1), 64–78 (1998).  https://doi.org/10.1006/icar.1998.5986 ADSCrossRefGoogle Scholar
  59. R. Greenberg, P. Geissler, B.R. Tufts, G.V. Hoppa, Habitability of Europa’s crust: the role of tidal-tectonic processes. J. Geophys. Res., Planets 105(E7), 17551–17562 (2000).  https://doi.org/10.1029/1999JE001147 ADSCrossRefGoogle Scholar
  60. E. Grün, H.A. Zook, M. Baguhl, H. Fechtig, M.S. Hanner, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I.B. Mann, Ulysses dust measurements near Jupiter. Science 257, 1550–1552 (1992).  https://doi.org/10.1126/science.11538054 ADSCrossRefGoogle Scholar
  61. E. Grün, H. Zook, M. Baguhl, A. Balogh, Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430 (1993).  https://doi.org/10.1038/362428a0 ADSCrossRefGoogle Scholar
  62. E. Grün, D.P. Hamilton, M. Baguhl, R. Riemann, M. Horanyi, C. Polanskey, Dust streams from comet Shoemaker-Levy 9? Geophys. Res. Lett. 21(11), 1035–1038 (1994).  https://doi.org/10.1029/94GL00701 ADSCrossRefGoogle Scholar
  63. E. Grün, M. Baguhl, N. Divine, H. Fechtig, D. Hamilton, M. Hanner, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. McDonnell, G. Morfill, C. Polanskey, R. Riemann, G. Schwehm, N. Siddique, P. Staubach, H. Zook, Two years of Ulysses dust data. Planet. Space Sci. 43(8), 971–999 (1995).  https://doi.org/10.1016/0032-0633(94)00233-H ADSCrossRefGoogle Scholar
  64. E. Grün, M. Baguhl, D.P. Hamilton, R. Riemann, H.A. Zook, Constraints from Galileo observations on the origin of Jovian dust streams. Nature 381(6581), 395–398 (1996a).  https://doi.org/10.1038/381395a0 ADSCrossRefGoogle Scholar
  65. E. Grün, D. Hamilton, R. Riemann, S. Dermott, H. Fechtig, B. Gustafson, M. Hanner, A. Heck, M. Horanyi, J. Kissel, H. Kruger, B. Lindblad, D. Linkert, G. Linkert, I. Mann, J. McDonnell, G. Morfill, C. Polanskey, G. Schwehm, R. Srama, H. Zook, Dust measurements during Galileo’s approach to Jupiter and Io encounter. Science 274, 399–401 (1996b).  https://doi.org/10.1126/science.274.5286.399 ADSCrossRefGoogle Scholar
  66. E. Grün, H. Krüger, A.L. Graps, D.P. Hamilton, A. Heck, G. Linkert, H.A. Zook, S. Dermott, H. Fechtig, B.A. Gustafson, M.S. Hanner, M. Horányi, J. Kissel, B.A. Lindblad, D. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, Galileo observes electromagnetically coupled dust in the Jovian magnetosphere. J. Geophys. Res., Planets 103(E9), 20011–20022 (1998).  https://doi.org/10.1029/98JE00228 ADSCrossRefGoogle Scholar
  67. D.P. Hamilton, Motion of dust in a planetary magnetosphere: orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn’s E-ring. Icarus 101, 244–264 (1993).  https://doi.org/10.1006/icar.1993.1065 ADSCrossRefGoogle Scholar
  68. D.P. Hamilton, J.A. Burns, Ejection of dust from Jupiter’s gossamer ring. Nature 364(6439), 695–699 (1993).  https://doi.org/10.1038/364695a0 ADSCrossRefGoogle Scholar
  69. C.W. Hamilton, C.D. Beggan, S. Still, M. Beuthe, R.M.C. Lopes, D.A. Williams, J. Radebaugh, W. Wright, Spatial distribution of volcanoes on Io: implications for tidal heating and magma ascent. Earth Planet. Sci. Lett. 361, 272–286 (2013).  https://doi.org/10.1016/j.epsl.2012.10.032 ADSCrossRefGoogle Scholar
  70. C.J. Hansen, L.W. Esposito, A.I.F. Stewart, J.E. Colwell, A.R. Hendrix, W. Pryor, D.E. Shemansky, R. West, Enceladus’ water vapor plume. Science 311(5766), 1422–1425 (2006).  https://doi.org/10.1126/science.1121254 ADSCrossRefGoogle Scholar
  71. C.J. Hansen, L.W. Esposito, A.I.F. Stewart, B. Meinke, B. Wallis, J.E. Colwell, A.R. Hendrix, K. Larsen, W. Pryor, F. Tian, Water vapour jets inside the plume of gas leaving Enceladus. Nature 456(7221), 477–479 (2008).  https://doi.org/10.1038/nature07542 ADSCrossRefGoogle Scholar
  72. C.J. Hansen, D.E. Shemansky, L.W. Esposito, A.I.F. Stewart, B.R. Lewis, J.E. Colwell, A.R. Hendrix, R.A. West, J.H. Waite, B. Teolis, B.A. Magee, The composition and structure of the Enceladus plume. Geophys. Res. Lett. 38(11), 1–5 (2011).  https://doi.org/10.1029/2011GL047415 CrossRefGoogle Scholar
  73. C.J. Hansen, L.W. Esposito, K.M. Aye, J.E. Colwell, A.R. Hendrix, G. Portyankina, D. Shemansky, Investigation of diurnal variability of water vapor in Enceladus’ plume by the Cassini ultraviolet imaging spectrograph. Geophys. Res. Lett. 44(2), 672–677 (2017).  https://doi.org/10.1002/2016GL071853 ADSCrossRefGoogle Scholar
  74. J.W. Head, R.T. Pappalardo, Brine mobilization during lithospheric heating on Europa: implications for formation of chaos terrain, lenticula texture, and color variations. J. Geophys. Res., Planets 104(E11), 27143–27155 (1999).  https://doi.org/10.1029/1999JE001062 ADSCrossRefGoogle Scholar
  75. M.M. Hedman, P.D. Nicholson, M.R. Showalter, R.H. Brown, B.J. Buratti, R.N. Clark, Spectral observations of the Enceladus plume with Cassini-VIMS. Astrophys. J. 693(2), 1749–1762 (2009).  https://doi.org/10.1088/0004-637X/693/2/1749 ADSCrossRefGoogle Scholar
  76. M.M. Hedman, J.A. Burns, D.P. Hamilton, M.R. Showalter, The three-dimensional structure of Saturn’s E ring. Icarus 217(1), 322–338 (2012).  https://doi.org/10.1016/j.icarus.2011.11.006, arXiv:1111.2568 ADSCrossRefGoogle Scholar
  77. M.M. Hedman, C.M. Gosmeyer, P.D. Nicholson, C. Sotin, R.H. Brown, R.N. Clark, K.H. Baines, B.J. Buratti, M.R. Showalter, An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500(7461), 182–184 (2013).  https://doi.org/10.1038/nature12371 ADSCrossRefGoogle Scholar
  78. M. Hedman, D. Dhingra, P. Nicholson, C. Hansen, G. Portyankina, S. Ye, Y. Dong, Spatial variations in the dust-to-gas ratio of Enceladus’ plume. Icarus 305, 123–138 (2018).  https://doi.org/10.1016/j.icarus.2018.01.006, arXiv:1801.01567 ADSCrossRefGoogle Scholar
  79. P. Helfenstein, C.C. Porco, Enceladus’ geysers: relation to geological features. Astron. J. 150(3), 96 (2015).  https://doi.org/10.1088/0004-6256/150/3/96 ADSCrossRefGoogle Scholar
  80. T.W. Hill, M.F. Thomsen, R.L. Tokar, A.J. Coates, G.R. Lewis, D.T. Young, F.J. Crary, R.A. Baragiola, R.E. Johnson, Y. Dong, R.J. Wilson, G.H. Jones, J.E. Wahlund, D.G. Mitchell, M. Horanyi, Charged nanograins in the Enceladus plume. J. Geophys. Res. Space Phys. 117(5), 1–11 (2012).  https://doi.org/10.1029/2011JA017218 CrossRefGoogle Scholar
  81. J.K. Hillier, S.F. Green, N. McBride, J.P. Schwanethal, F. Postberg, R. Srama, S. Kempf, G. Moragas-Klostermeyer, J.A.M. McDonnell, E. Grun, E. Grün, The composition of Saturn’s E ring. Mon. Not. R. Astron. Soc. 377(4), 1588–1596 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11710.x ADSCrossRefGoogle Scholar
  82. R. Hodyss, C.D. Parkinson, P.V. Johnson, J.V. Stern, J.D. Goguen, Y.L. Yung, I. Kanik, Methanol on Enceladus. Geophys. Res. Lett. 36(17), 17103 (2009).  https://doi.org/10.1029/2009GL039336 ADSCrossRefGoogle Scholar
  83. M. Horányi, Charged Dust Dynamics in the Solar System. Annu. Rev. Astron. Astrophys. 34, 383–418 (1996).  https://doi.org/10.1146/annurev.astro.34.1.383 ADSCrossRefGoogle Scholar
  84. M. Horányi, Dust streams from Jupiter and Saturn. Phys. Plasmas 7(10), 3847–3849 (2000).  https://doi.org/10.1063/1.1288909 ADSCrossRefGoogle Scholar
  85. M. Horányi, G. Morfill, E. Grün, Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere. Nature 363, 144–146 (1993a).  https://doi.org/10.1038/363144a0 ADSCrossRefGoogle Scholar
  86. M. Horányi, G. Morfill, E. Grün, The dusty ballerina skirt of Jupiter. J. Geophys. Res. 98, 245–251 (1993b) CrossRefGoogle Scholar
  87. M. Horányi, E. Grün, A. Heck, Modeling the Galileo dust measurements at Jupiter. Geophys. Res. Lett. 24(17), 2175–2178 (1997).  https://doi.org/10.1029/97GL01539 ADSCrossRefGoogle Scholar
  88. M. Horányi, T.W. Hartquist, O. Havnes, D.A. Mendis, G.E. Morfill, Dusty plasma effects in Saturn’s magnetosphere. Rev. Geophys. 42(4), RG4002 (2004).  https://doi.org/10.1029/2004RG000151 ADSCrossRefGoogle Scholar
  89. M. Horanyi, A. Juhasz, G.E. Morfill, Large-scale structure of Saturn’s E-ring. Geophys. Res. Lett. 35(4), 1–5 (2008).  https://doi.org/10.1029/2007GL032726 CrossRefGoogle Scholar
  90. R.R. Howell, R.M.C. Lopes, Morphology, temperature, and eruption dynamics at Pele. Icarus 213(2), 593–607 (2011).  https://doi.org/10.1016/j.icarus.2011.03.008 ADSCrossRefGoogle Scholar
  91. C.J.A. Howett, J.R. Spencer, J. Pearl, M. Segura, High heat flow from Enceladus’ south polar region measured using \(10\mbox{--}600~\mbox{cm}^{-1}\) Cassini/CIRS data. J. Geophys. Res., Planets 116(3), 1–15 (2011).  https://doi.org/10.1029/2010JE003718 CrossRefGoogle Scholar
  92. H.W. Hsu, S. Kempf, C.M. Jackman, Observation of saturnian stream particles in the interplanetary space. Icarus 206(2), 653–661 (2010a).  https://doi.org/10.1016/j.icarus.2009.06.033 ADSCrossRefGoogle Scholar
  93. H.W. Hsu, S. Kempf, F. Postberg, R. Srama, C.M. Jackman, G. Moragas-Klostermeyer, S. Helfert, E. Grün, Interaction of the solar wind and stream particles, results from the Cassini dust detector. AIP Conf. Proc. 1216, 510–513 (2010b).  https://doi.org/10.1063/1.3395914 ADSCrossRefGoogle Scholar
  94. H.W. Hsu, S. Kempf, F. Postberg, M. Trieloff, M. Burton, M. Roy, G. Moragas-Klostermeyer, R. Srama, Cassini dust stream particle measurements during the first three orbits at Saturn. J. Geophys. Res. Space Phys. 116(8), 1–10 (2011a).  https://doi.org/10.1029/2010JA015959 CrossRefGoogle Scholar
  95. H.W. Hsu, F. Postberg, S. Kempf, M. Trieloff, M. Burton, M. Roy, G. Moragas-Klostermeyer, R. Srama, Stream particles as the probe of the dust-plasma-magnetosphere interaction at Saturn. J. Geophys. Res. Space Phys. 116(9), 1–23 (2011b).  https://doi.org/10.1029/2011JA016488 CrossRefGoogle Scholar
  96. H.W. Hsu, H. Krüger, F. Postberg, Dynamics, composition, and origin of Jovian and Saturnian dust-stream particles, in Nanodust in the Solar System: Discoveries and Interpretations (2012), pp. 77–117.  https://doi.org/10.1007/978-3-642-27543-2_5 CrossRefGoogle Scholar
  97. H.W. Hsu, K.C. Hansen, M. Horányi, S. Kempf, A. Mocker, G. Moragas-Klostermeyer, F. Postberg, R. Srama, B. Zieger, Probing IMF using nanodust measurements from inside Saturn’s magnetosphere. Geophys. Res. Lett. 40(12), 2902–2906 (2013).  https://doi.org/10.1002/grl.50604 ADSCrossRefGoogle Scholar
  98. H.W. Hsu, F. Postberg, Y. Sekine, T. Shibuya, S. Kempf, M. Horányi, A. Juhász, N. Altobelli, K. Suzuki, Y. Masaki, T. Kuwatani, S. Tachibana, S.I. Sirono, G. Moragas-Klostermeyer, R. Srama, Ongoing hydrothermal activities within Enceladus. Nature 519(7542), 207–210 (2015).  https://doi.org/10.1038/nature14262 ADSCrossRefGoogle Scholar
  99. H.W. Hsu, S. Kempf, S.V. Badman, W.S. Kurth, F. Postberg, R. Srama, Interplanetary magnetic field structure at Saturn inferred from nanodust measurements during the 2013 aurora campaign. Icarus 263, 10–16 (2016).  https://doi.org/10.1016/j.icarus.2015.02.022 ADSCrossRefGoogle Scholar
  100. T.A. Hurford, P. Helfenstein, J.N. Spitale, Tidal control of jet eruptions on Enceladus as observed by Cassini ISS between 2005 and 2007. Icarus 220, 896–903 (2012).  https://doi.org/10.1016/j.icarus.2012.06.022 ADSCrossRefGoogle Scholar
  101. H. Hussmann, G. Choblet, V. Lainey, D.L. Matson, C. Sotin, G. Tobie, T. Van Hoolst, Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites. Space Sci. Rev. 153(1–4), 317–348 (2010).  https://doi.org/10.1007/s11214-010-9636-0 ADSCrossRefGoogle Scholar
  102. L. Iess, D.J. Stevenson, M. Parisi, D. Hemingway, R.A. Jacobson, J.I. Lunine, F. Nimmo, J.W. Armstrong, S.W. Asmar, M. Ducci, P. Tortora, The gravity field and interior structure of Enceladus. Science 344(6179), 78–80 (2014).  https://doi.org/10.1126/science.1250551 ADSCrossRefGoogle Scholar
  103. A.P. Ingersoll, S.P. Ewald, Total particulate mass in Enceladus plumes and mass of Saturn’s E ring inferred from Cassini ISS images. Icarus 216(2), 492–506 (2011).  https://doi.org/10.1016/j.icarus.2011.09.018 ADSCrossRefGoogle Scholar
  104. A.P. Ingersoll, S.P. Ewald, Decadal timescale variability of the Enceladus plumes inferred from Cassini images. Icarus 282, 260–275 (2017).  https://doi.org/10.1016/j.icarus.2016.09.018 ADSCrossRefGoogle Scholar
  105. A.P. Ingersoll, M. Nakajima, Controlled boiling on Enceladus. 2. Model of the liquid-filled cracks. Icarus 272, 319–326 (2016).  https://doi.org/10.1016/j.icarus.2015.12.040 ADSCrossRefGoogle Scholar
  106. A.P. Ingersoll, A.A. Pankine, Subsurface heat transfer on Enceladus: conditions under which melting occurs. Icarus 206(2), 594–607 (2010).  https://doi.org/10.1016/j.icarus.2009.09.015 ADSCrossRefGoogle Scholar
  107. W.H. Ip, C.K. Goertz, An interpretation of the dawn–dusk asymmetry of UV emission from the Io plasma torus. Nature 302(5905), 232–233 (1983).  https://doi.org/10.1038/302232a0 ADSCrossRefGoogle Scholar
  108. R. Jacobson, P. Antreasian, J. Bordi, K. Criddle, R. Ionasescu, J. Jones, R. Mackenzie, M. Meek, D. Parcher, F. Pelletier, W. Owen Jr., D. Roth, I. Roundhill, J. Stauch, The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. Astron. J. 132(6), 2520–2526 (2006).  https://doi.org/10.1086/508812 ADSCrossRefGoogle Scholar
  109. R. Jaumann, K. Stephan, G.B. Hansen, R.N. Clark, B.J. Buratti, R.H. Brown, K.H. Baines, S.F. Newman, G. Bellucci, G. Filacchione, A. Coradini, D.P. Cruikshank, C.A. Griffith, C.A. Hibbitts, T.B. McCord, R.M. Nelson, P.D. Nicholson, C. Sotin, R. Wagner, Distribution of icy particles across Enceladus’ surface as derived from Cassini-VIMS measurements. Icarus 193(2), 407–419 (2008).  https://doi.org/10.1016/j.icarus.2007.09.013 ADSCrossRefGoogle Scholar
  110. K.L. Jessup, J.R. Spencer, Characterizing Io’s Pele, Tvashtar and Pillan plumes: lessons learned from Hubble. Icarus 218(1), 378–405 (2012).  https://doi.org/10.1016/j.icarus.2011.11.013 ADSCrossRefGoogle Scholar
  111. X. Jia, M.G. Kivelson, K.K. Khurana, W.S. Kurth, Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nat. Astron. 2, 459–464 (2018).  https://doi.org/10.1038/s41550-018-0450-z ADSCrossRefGoogle Scholar
  112. T.V. Johnson, G. Morfill, E. Grün, Dust in Jupiter’s magnetosphere: an Io source? Geophys. Res. Lett. 7(5), 305–308 (1980).  https://doi.org/10.1029/GL007i005p00305 ADSCrossRefGoogle Scholar
  113. G.H. Jones, C.S. Arridge, A.J. Coates, G.R. Lewis, S. Kanani, A. Wellbrock, D.T. Young, F.J. Crary, R.L. Tokar, R.J. Wilson, T.W. Hill, R.E. Johnson, D.G. Mitchell, J. Schmidt, S. Kempf, U. Beckmann, C.T. Russell, Y.D. Jia, M.K. Dougherty, J.H. Waite, B.A. Magee, Fine jet structure of electrically charged grains in Enceladus’ plume. Geophys. Res. Lett. 36(16), 1–6 (2009).  https://doi.org/10.1029/2009GL038284 CrossRefGoogle Scholar
  114. A. Juhász, M. Horányi, G.E. Morfill, Signatures of Enceladus in Saturn’s E ring. Geophys. Res. Lett. 34(9), 1–5 (2007).  https://doi.org/10.1029/2006GL029120 CrossRefGoogle Scholar
  115. S. Jurac, R.E. Johnson, J.D. Richardson, Saturn’s E ring and production of the neutral torus. Icarus 149(2), 384–396 (2001).  https://doi.org/10.1006/icar.2000.6528 ADSCrossRefGoogle Scholar
  116. J.S. Kargel, Cryovolcanism on the icy satellites. Earth Moon Planets 67(1–3), 101–113 (1994).  https://doi.org/10.1007/BF00613296 ADSCrossRefGoogle Scholar
  117. S. Kempf, Interpretation of high rate dust measurements with the Cassini dust detector CDA. Planet. Space Sci. 56(3–4), 378–385 (2008).  https://doi.org/10.1016/j.pss.2007.11.022 ADSCrossRefGoogle Scholar
  118. S. Kempf, R. Srama, M. Horányi, M. Burton, S. Helfert, G. Moragas-Klostermeyer, M. Roy, E. Grün, High-velocity streams of dust originating from Saturn. Nature 433(7023), 289–291 (2005a).  https://doi.org/10.1038/nature03218 ADSCrossRefGoogle Scholar
  119. S. Kempf, R. Srama, F. Postberg, M. Burton, S.F. Green, S. Helfert, J.K. Hillier, N. McBride, J.A.M. McDonnell, G. Moragas-Klostermeyer, M. Roy, E. Grün, Composition of saturnian stream particles. Science 307(5713), 1274–1276 (2005b).  https://doi.org/10.1126/science.1106218 ADSCrossRefGoogle Scholar
  120. S. Kempf, U. Beckmann, R. Srama, M. Horanyi, S. Auer, E. Grün, The electrostatic potential of E ring particles. Planet. Space Sci. 54(9–10), 999–1006 (2006).  https://doi.org/10.1016/j.pss.2006.05.012 ADSCrossRefGoogle Scholar
  121. S. Kempf, U. Beckmann, G. Moragas-Klostermeyer, F. Postberg, R. Srama, T. Economou, J. Schmidt, F. Spahn, E. Grün, The E ring in the vicinity of Enceladus. I. Spatial distribution and properties of the ring particles. Icarus 193(2), 420–437 (2008).  https://doi.org/10.1016/j.icarus.2007.06.027 ADSCrossRefGoogle Scholar
  122. S. Kempf, U. Beckmann, J. Schmidt, How the Enceladus dust plume feeds Saturn’s E ring. Icarus 206(2), 446–457 (2010).  https://doi.org/10.1016/j.icarus.2009.09.016 ADSCrossRefGoogle Scholar
  123. S. Kempf, R. Srama, E. Grün, A. Mocker, F. Postberg, J.K. Hillier, M. Horányi, Z. Sternovsky, B. Abel, A. Beinsen, R. Thissen, J. Schmidt, F. Spahn, N. Altobelli, Linear high resolution dust mass spectrometer for a mission to the Galilean satellites. Planet. Space Sci. 65(1), 10–20 (2012).  https://doi.org/10.1016/j.pss.2011.12.019 ADSCrossRefGoogle Scholar
  124. L. Keszthelyi, A. McEwen, Thermal models for basaltic volcanism on Io. Geophys. Res. Lett. 24(20), 2463–2466 (1997).  https://doi.org/10.1029/97GL01368 ADSCrossRefGoogle Scholar
  125. L. Keszthelyi, W.L. Jaeger, E.P. Turtle, M. Milazzo, J. Radebaugh, A post-Galileo view of Io’s interior. Icarus 169(1), 271–286 (2004).  https://doi.org/10.1016/j.icarus.2004.01.005 ADSCrossRefGoogle Scholar
  126. L. Keszthelyi, W. Jaeger, M. Milazzo, J. Radebaugh, A.G. Davies, K.L. Mitchell, New estimates for Io eruption temperatures: implications for the interior. Icarus 192(2), 491–502 (2007).  https://doi.org/10.1016/j.icarus.2007.07.008 ADSCrossRefGoogle Scholar
  127. K.K. Khurana, M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, C. Polanskey, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395(6704), 777–780 (1998).  https://doi.org/10.1038/27394 ADSCrossRefGoogle Scholar
  128. K.K. Khurana, X. Jia, M.G. Kivelson, F. Nimmo, G. Schubert, C.T. Russell, Evidence of a global magma ocean in Io’s interior. Science 332(6034), 1186–1189 (2011).  https://doi.org/10.1126/science.1201425 ADSCrossRefGoogle Scholar
  129. S.W. Kieffer, R. Lopes-Gautier, A. McEwen, W. Smythe, L. Keszthelyi, R.W. Carlson, Prometheus: Io’s wandering plume. Science 288(5469), 1204–1208 (2000).  https://doi.org/10.1126/science.288.5469.1204 ADSCrossRefGoogle Scholar
  130. M.R. Kirchoff, W.B. McKinnon, P.M. Schenk, Global distribution of volcanic centers and mountains on Io: Control by asthenospheric heating and implications for mountain formation. Earth Planet. Sci. Lett. 301(1–2), 22–30 (2011).  https://doi.org/10.1016/j.epsl.2010.11.018 ADSCrossRefGoogle Scholar
  131. E.S. Kite, A.M. Rubin, Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes. Proc. Natl. Acad. Sci. USA 113(15), 3972–3975 (2016).  https://doi.org/10.1073/pnas.1520507113 ADSCrossRefGoogle Scholar
  132. M.G. Kivelson, Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289(5483), 1340–1343 (2000).  https://doi.org/10.1126/science.289.5483.1340 ADSCrossRefGoogle Scholar
  133. M.G. Kivelson, J.A. Slavin, D.J. Southwood, Magnetospheres of the Galilean satellites. Science 205(4405), 491–493 (1979) ADSCrossRefGoogle Scholar
  134. H. Krüger, E. Grün, Dust en-route to Jupiter and the Galilean satellites, in COSPAR Colloquia Series, vol. 15 (2002), pp. 144–159.  https://doi.org/10.1016/S0964-2749(02)80336-5. arXiv:astro-ph/0205478 CrossRefGoogle Scholar
  135. H. Krüger, E. Grün, A. Graps, S. Lammers, Observations of electromagnetically coupled dust in the Jovian magnetosphere. Astrophys. Space Sci. 264(1–4), 247–256 (1998).  https://doi.org/10.1023/A:1002474912055 ADSCrossRefGoogle Scholar
  136. H. Krüger, E. Grun, A. Heck, S. Lammers, Analysis of the sensor characteristics of the Galileo dust detector with collimated Jovian dust stream particles. Planet. Space Sci. 47(8–9), 1015–1028 (1999).  https://doi.org/10.1016/S0032-0633(99)00027-6 ADSCrossRefGoogle Scholar
  137. H. Krüger, P. Geissler, M. Horányi, A.L. Graps, S. Kempf, R. Srama, G. Moragas-Klostermeyer, R. Moissl, T.V. Johnson, E. Grün, Jovian dust streams: a monitor of Io’s volcanic plume activity. Geophys. Res. Lett. 30(21), 2101 (2003a).  https://doi.org/10.1029/2003gl017827 ADSCrossRefGoogle Scholar
  138. H. Krüger, M. Horányi, E. Grün, Jovian dust streams: probes of the Io plasma torus. Geophys. Res. Lett. 30(2), 10–13 (2003b).  https://doi.org/10.1029/2002GL015920. arXiv:astro-ph/0211061 CrossRefGoogle Scholar
  139. H. Krüger, A.V. Krivov, M. Sremčević, E. Grün, Impact-generated dust clouds surrounding the Galilean moons. Icarus 164(1), 170–187 (2003c).  https://doi.org/10.1016/S0019-1035(03)00127-1. arXiv:astro-ph/0304381 ADSCrossRefGoogle Scholar
  140. H. Krüger, N. Altobelli, B. Anweiler, S.F. Dermott, V. Dikarev, A.L. Graps, E. Grün, B.A. Gustafson, D.P. Hamilton, M.S. Hanner, M. Horányi, J. Kissel, M. Landgraf, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, H.A. Zook, Five years of Ulysses dust data: 2000–2004. Planet. Space Sci. 54(9–10), 932–956 (2006a).  https://doi.org/10.1016/j.pss.2006.04.015 ADSCrossRefGoogle Scholar
  141. H. Krüger, A.L. Graps, D.P. Hamilton, A. Flandes, R.J. Forsyth, M. Horányi, E. Grün, Ulysses jovian latitude scan of high-velocity dust streams originating from the jovian system. Planet. Space Sci. 54(9–10), 919–931 (2006b).  https://doi.org/10.1016/j.pss.2006.05.010 ADSCrossRefGoogle Scholar
  142. H. Krüger, V. Dikarev, B. Anweiler, S.F. Dermott, A.L. Graps, E. Grün, B.A. Gustafson, D.P. Hamilton, M.S. Hanner, M. Horányi, J. Kissel, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, Three years of Ulysses dust data: 2005 to 2007. Planet. Space Sci. 58(7–8), 951–964 (2010).  https://doi.org/10.1016/j.pss.2009.11.002. arXiv:astro-ph/9809133 ADSCrossRefGoogle Scholar
  143. L.A. Morabito, S.P. Synnott, P.N. Kupferman, S.A. Collins, Discovery of currently active extraterrestrial volcanism. Science 204(4396), 972 (1979).  https://doi.org/10.1126/science.204.4396.972 ADSCrossRefGoogle Scholar
  144. V. Lainey, J.E. Arlot, O. Karatekin, T. Van Hoolst, Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459(7249), 957–959 (2009).  https://doi.org/10.1038/nature08108 ADSCrossRefGoogle Scholar
  145. V. Lainey, Ö. Karatekin, J. Desmars, S. Charnoz, J.-E. Arlot, N. Emelyanov, C. Le Poncin-Lafitte, S. Mathis, F. Remus, G. Tobie, J.-P. Zahn, Strong tidal dissipation in Saturn and constraints on Enceladus’ thermal state from astrometry. Astrophys. J. 752(1), 14–33 (2012).  https://doi.org/10.1088/0004-637X/752/1/14 ADSCrossRefGoogle Scholar
  146. V. Lainey, R.A. Jacobson, R. Tajeddine, N.J. Cooper, C. Murray, V. Robert, G. Tobie, T. Guillot, S. Mathis, F. Remus, J. Desmars, J.-E. Arlot, J.-P. De Cuyper, V. Dehant, D. Pascu, W. Thuillot, C. Le Poncin-Lafitte, J.-P. Zahn, New constraints on Saturn’s interior from Cassini astrometric data. Icarus 281, 286–296 (2017).  https://doi.org/10.1016/j.icarus.2016.07.014. arXiv:1510.05870 ADSCrossRefGoogle Scholar
  147. H.M. Lamadrid, J.D. Rimstidt, E.M. Schwarzenbach, F. Klein, S. Ulrich, A. Dolocan, R.J. Bodnar, Effect of water activity on rates of serpentinization of olivine. Nat. Commun. 8(May), 1–9 (2017).  https://doi.org/10.1038/ncomms16107 CrossRefGoogle Scholar
  148. D. Laufer, A. Bar-Nun, I. Pat-El, R. Jacovi, Experimental studies of ice grain ejection by massive gas flow from ice and implications to comets, Triton and Mars. Icarus 222(1), 73–80 (2013).  https://doi.org/10.1016/j.icarus.2012.10.030 ADSCrossRefGoogle Scholar
  149. A. Le Gall, C. Leyrat, M.A. Janssen, G. Choblet, G. Tobie, O. Bourgeois, A. Lucas, C. Sotin, C. Howett, R. Kirk, R.D. Lorenz, R.D. West, A. Stolzenbach, M. Massé, A.H. Hayes, L. Bonnefoy, G. Veyssière, F. Paganelli, Thermally anomalous features in the subsurface of Enceladus’s south polar terrain. Nat. Astron. 1, 0063 (2017).  https://doi.org/10.1038/s41550-017-0063 CrossRefGoogle Scholar
  150. E. Lellouch, G. Paubert, J.I. Moses, N.M. Schneider, D.F. Strobel, Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421(6918), 45–47 (2003).  https://doi.org/10.1038/nature01292 ADSCrossRefGoogle Scholar
  151. G. Leone, L. Wilson, A.G. Davies, The geothermal gradient of Io: consequences for lithosphere structure and volcanic eruptive activity. Icarus 211(1), 623–635 (2011).  https://doi.org/10.1016/j.icarus.2010.10.016 ADSCrossRefGoogle Scholar
  152. R.M. Lopes, J.R. Spencer, Io After Galileo: A New View of Jupiter’s Volcanic Moon (Springer, Berlin, 2007).  https://doi.org/10.1007/978-3-540-48841-5 CrossRefGoogle Scholar
  153. R.M.C. Lopes, R.L. Kirk, K.L. Mitchell, A. LeGall, J.W. Barnes, A. Hayes, J. Kargel, L. Wye, J. Radebaugh, E.R. Stofan, M.A. Janssen, C.D. Neish, S.D. Wall, C.A. Wood, J.I. Lunine, M.J. Malaska, Cryovolcanism on Titan: new results from Cassini radar and VIMS. J. Geophys. Res., Planets 118(3), 416–435 (2013).  https://doi.org/10.1002/jgre.20062 ADSCrossRefGoogle Scholar
  154. R.D. Lorenz, Europa ocean sampling by plume flythrough: astrobiological expectations. Icarus 267, 217–219 (2016).  https://doi.org/10.1016/j.icarus.2015.12.018 ADSCrossRefGoogle Scholar
  155. A.E.H. Love, Treatise on Mathematical Theory of Elasticity, 4th edn. (1944). https://archive.org/details/atreatiseonmath01lovegoog zbMATHGoogle Scholar
  156. R.P. Lowell, M. DuBose, Hydrothermal systems on Europa. Geophys. Res. Lett. 32(January), 4–7 (2005).  https://doi.org/10.1029/2005GL022375 CrossRefGoogle Scholar
  157. V.V. Makarov, M. Efroimsky, Tidal dissipation in a homogeneous spherical body. II. Three examples: Mercury, Io, and Kepler-10b. Astrophys. J. 795(7), 1–10 (2014).  https://doi.org/10.1088/0004-637X/795/1/7 CrossRefGoogle Scholar
  158. B. Malvoisin, N. Brantut, M.A. Kaczmarek, Control of serpentinisation rate by reaction-induced cracking. Earth Planet. Sci. Lett. 476, 143–152 (2017).  https://doi.org/10.1016/j.epsl.2017.07.042 ADSCrossRefGoogle Scholar
  159. D. Maravilla, K. Flammer, D. Mendis, On the injection of fine dust from the Jovian magnetosphere. Astrophys. J. 438, 968–974 (1995). 1995ApJ...438..968M ADSCrossRefGoogle Scholar
  160. H.R. Martens, A.P. Ingersoll, S.P. Ewald, P. Helfenstein, B. Giese, Spatial distribution of ice blocks on Enceladus and implications for their origin and emplacement. Icarus 245, 162–176 (2015).  https://doi.org/10.1016/j.icarus.2014.09.035 ADSCrossRefGoogle Scholar
  161. E.S. Martin, The distribution and characterization of strike-slip faults on Enceladus. Geophys. Res. Lett. 43(6), 2456–2464 (2016).  https://doi.org/10.1002/2016GL067805 ADSCrossRefGoogle Scholar
  162. D.L. Matson, J.C. Castillo-Rogez, A.G. Davies, T.V. Johnson, Enceladus: a hypothesis for bringing both heat and chemicals to the surface. Icarus 221(1), 53–62 (2012).  https://doi.org/10.1016/j.icarus.2012.05.031 ADSCrossRefGoogle Scholar
  163. I. Matsuyama, F. Nimmo, Tectonic patterns on reoriented and despun planetary bodies. Icarus 195(1), 459–473 (2008).  https://doi.org/10.1016/j.icarus.2007.12.003 ADSCrossRefGoogle Scholar
  164. N. McBride, J. Hillier, S. Green, R. Srama, S. Kempf, F. Postberg, G. Moragas-Klostermeyer, J. McDonnell, E. Grün, Cassini cosmic dust analyser: composition of dust at Saturn, in ESA—Workshop on Dust in Planetary Systems SP-643 (2007), pp. 107–110 Google Scholar
  165. W.J. McDoniel, D.B. Goldstein, P.L. Varghese, L.M. Trafton, Three-dimensional simulation of gas and dust in Io’s Pele plume. Icarus 257, 251–274 (2015).  https://doi.org/10.1016/j.icarus.2015.03.019 ADSCrossRefGoogle Scholar
  166. W.J. McDoniel, D.B. Goldstein, P.L. Varghese, L.M. Trafton, The interaction of Io’s plumes and sublimation atmosphere. Icarus 294, 81–97 (2017).  https://doi.org/10.1016/j.icarus.2017.04.021 ADSCrossRefGoogle Scholar
  167. A.S. McEwen, L.A. Soderblom, Two classes of volcanic plumes on Io. Icarus 55(2), 191–217 (1983).  https://doi.org/10.1016/0019-1035(83)90075-1 ADSCrossRefGoogle Scholar
  168. W.B. McKinnon, Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Lett. 42(7), 2137–2143 (2015).  https://doi.org/10.1002/2015GL063384 ADSCrossRefGoogle Scholar
  169. P. Meier, H. Kriegel, U. Motschmann, J. Schmidt, F. Spahn, T.W. Hill, Y. Dong, G.H. Jones, A model of the spatial and size distribution of Enceladus’ dust plume. Planet. Space Sci. 104, 216–233 (2014).  https://doi.org/10.1016/j.pss.2014.09.016 ADSCrossRefGoogle Scholar
  170. D.A. Mendis, W.I. Axford, Satellites and magnetospheres of the outer planets. Annu. Rev. Earth Planet. Sci. 2(1), 419–474 (1974).  https://doi.org/10.1146/annurev.ea.02.050174.002223 ADSCrossRefGoogle Scholar
  171. N. Meyer-Vernet, On the charge of nanograins in cold environments and Enceladus dust. Icarus 226(1), 583–590 (2013).  https://doi.org/10.1016/j.icarus.2013.06.014. arXiv:1306.2228 ADSCrossRefGoogle Scholar
  172. K. Miljković, J.K. Hillier, N.J. Mason, J.C. Zarnecki, Models of dust around Europa and Ganymede. Planet. Space Sci. 70(1), 20–27 (2012).  https://doi.org/10.1016/j.pss.2012.06.006. arXiv:1206.2833v1 ADSCrossRefGoogle Scholar
  173. W.B. Moore, G. Schubert, J.D. Anderson, J.R. Spencer, The interior of Io, in Io After Galileo: A New View of Jupiter’s Volcanic Moon (2007), pp. 89–108.  https://doi.org/10.1007/978-3-540-48841-5_5 CrossRefGoogle Scholar
  174. J.M. Moore, W.B. McKinnon, J.R. Spencer, A.D. Howard, P.M. Schenk, R.A. Beyer, F. Nimmo, K.N. Singer, O.M. Umurhan, O.L. White, S.A. Stern, K. Ennico, C.B. Olkin, H.A. Weaver, L.A. Young, R.P. Binzel, M.W. Buie, B.J. Buratti, A.F. Cheng, D.P. Cruikshank, W.M. Grundy, I.R. Linscott, H.J. Reitsema, D.C. Reuter, M.R. Showalter, V.J. Bray, C.L. Chavez, C.J.A. Howett, T.R. Lauer, C.M. Lisse, A.H. Parker, S.B. Porter, S.J. Robbins, K. Runyon, T. Stryk, H.B. Throop, C.C.C. Tsang, A.J. Verbiscer, A.M. Zangari, A.L. Chaikin, D.E. Wilhelms, F. Bagenal, G.R. Gladstone, T. Andert, J. Andrews, M. Banks, B. Bauer, J. Bauman, O.S. Barnouin, P. Bedini, K. Beisser, S. Bhaskaran, E. Birath, M. Bird, D.J. Bogan, A. Bowman, M. Brozovic, C. Bryan, M.R. Buckley, S.S. Bushman, A. Calloway, B. Carcich, S. Conard, C.A. Conrad, J.C. Cook, O.S. Custodio, C.M.D. Ore, C. Deboy, Z.J.B. Dischner, P. Dumont, A.M. Earle, H.A. Elliott, J. Ercol, C.M. Ernst, T. Finley, S.H. Flanigan, G. Fountain, M.J. Freeze, T. Greathouse, J.L. Green, Y. Guo, M. Hahn, D.P. Hamilton, S.A. Hamilton, J. Hanley, A. Harch, H.M. Hart, C.B. Hersman, A. Hill, M.E. Hill, D.P. Hinson, M.E. Holdridge, M. Horanyi, C. Jackman, R.A. Jacobson, D.E. Jennings, J.A. Kammer, H.K. Kang, D.E. Kaufmann, P. Kollmann, S.M. Krimigis, D. Kusnierkiewicz, J.E. Lee, K.L. Lindstrom, A.W. Lunsford, V.A. Mallder, N. Martin, D.J. McComas, R.L. McNutt, D. Mehoke, T. Mehoke, E.D. Melin, M. Mutchler, D. Nelson, J.I. Nunez, A. Ocampo, W.M. Owen, M. Paetzold, B. Page, J.W. Parker, F. Pelletier, J. Peterson, N. Pinkine, M. Piquette, S. Protopapa, J. Redfern, J.H. Roberts, G. Rogers, D. Rose, K.D. Retherford, M.G. Ryschkewitsch, E. Schindhelm, B. Sepan, M. Soluri, D. Stanbridge, A.J. Steffl, D.F. Strobel, M.E. Summers, J.R. Szalay, M. Tapley, A. Taylor, H. Taylor, G.L. Tyler, M.H. Versteeg, M. Vincent, R. Webbert, S. Weidner, G.E. Weigle, K. Whittenburg, B.G. Williams, K. Williams, S. Williams, W.W. Woods, E. Zirnstein, The geology of Pluto and Charon through the eyes of New Horizons. Science 351, 1284–1293 (2016).  https://doi.org/10.1126/science.aad7055 ADSCrossRefGoogle Scholar
  175. G. Morfill, E. Grün, T. Johnson, Dust in Jupiter’s magnetosphere: physical processes. Planet. Space Sci. 28(12), 1087–1100 (1980).  https://doi.org/10.1016/0032-0633(80)90067-7 ADSCrossRefGoogle Scholar
  176. S. Mostefaoui, G.W. Lugmair, P. Hoppe, \(^{60}\mbox{Fe}\): a heat source for planetary differentiation from a nearby supernova explosion. Astrophys. J. 625(1), 271–277 (2005).  https://doi.org/10.1086/429555, 2005ApJ...625..271M ADSCrossRefGoogle Scholar
  177. A.L. Nahm, S.A. Kattenhorn, A unified nomenclature for tectonic structures on the surface of Enceladus. Icarus 258, 67–81 (2015).  https://doi.org/10.1016/j.icarus.2015.06.009 ADSCrossRefGoogle Scholar
  178. M. Nakajima, A.P. Ingersoll, Controlled boiling on Enceladus. 1. Model of the vapor-driven jets. Icarus 272, 309–318 (2016).  https://doi.org/10.1016/j.icarus.2016.02.027 ADSCrossRefGoogle Scholar
  179. M. Neveu, S.J. Desch, J.C. Castillo-Rogez, Aqueous geochemistry in icy world interiors: equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides. Geochim. Cosmochim. Acta 212, 324–371 (2017).  https://doi.org/10.1016/j.gca.2017.06.023 ADSCrossRefGoogle Scholar
  180. R.C. Newton, C.E. Manning, Solubilities of corundum, wollastonite and quartz in \(\mbox{H}_{2}\mbox{O}\)–NaCl solutions at \(800~^{\circ}\mbox{C}\) and 10 kbar: interaction of simple minerals with brines at high pressure and temperature. Geochim. Cosmochim. Acta 70(22), 5571–5582 (2006).  https://doi.org/10.1016/j.gca.2006.08.012 ADSCrossRefGoogle Scholar
  181. P.D. Nicholson, M.R. Showalter, L. Dones, R.G. French, S.M. Larson, J.J. Lissauer, C.A. McGhee, P. Seitzer, B. Sicardy, G.E. Danielson, Observations of Saturn’s ring-plane crossings in August and November 1995. Science 272(5261), 509–515 (1996).  https://doi.org/10.1126/science.272.5261.509 ADSCrossRefGoogle Scholar
  182. F. Nimmo, M. Manga, Causes, characteristics and consequences of convective diapirism on Europa. Geophys. Res. Lett. 29(23), 24:1–24:4 (2002).  https://doi.org/10.1029/2002GL015754 CrossRefGoogle Scholar
  183. F. Nimmo, R.T. Pappalardo, Diapir-induced reorientation of Saturn’s moon Enceladus. Nature 441(7093), 614–616 (2006).  https://doi.org/10.1038/nature04821 ADSCrossRefGoogle Scholar
  184. F. Nimmo, B. Giese, R.T. Pappalardo, Estimates of Europa’s ice shell thickness from elastically-supported topography. Geophys. Res. Lett. 30(5), 1233 (2003).  https://doi.org/10.1029/2002GL016660 ADSCrossRefGoogle Scholar
  185. F. Nimmo, C. Porco, C. Mitchell, Tidally modulated eruptions on Enceladus: Cassini ISS observations and models. Astron. J. 148(3), 46 (2014).  https://doi.org/10.1088/0004-6256/148/3/46 ADSCrossRefGoogle Scholar
  186. D. O’Brien, P.E. Geissler, R. Greenberg, A melt-through model for chaos formation on Europa. Icarus 156(1), 152–161 (2002).  https://doi.org/10.1006/icar.2001.6777 ADSCrossRefGoogle Scholar
  187. G.W. Ojakangas, D.J. Stevenson, Episodic volcanism of tidally heated satellites with application to Io. Icarus 66(2), 341–358 (1986).  https://doi.org/10.1016/0019-1035(86)90163-6 ADSCrossRefGoogle Scholar
  188. K.M. Ostdiek, T.S. Anderson, W.K. Bauder, M.R. Bowers, A.M. Clark, P. Collon, W. Lu, A.D. Nelson, D. Robertson, M. Skulski, R. Dressler, D. Schumann, J.P. Greene, W. Kutschera, M. Paul, Activity measurement of \(^{60}\mbox{Fe}\) through the decay of \(^{60m}\mbox{Co}\) and confirmation of its half-life. Phys. Rev. C 95(5), 055809 (2017).  https://doi.org/10.1103/PhysRevC.95.055809 ADSCrossRefGoogle Scholar
  189. K.D. Pang, C.C. Voge, J.W. Rhoads, J.M. Ajello, The E ring of Saturn and satellite Enceladus. J. Geophys. Res. 89(B11), 9459–9470 (1984).  https://doi.org/10.1029/JB089iB11p09459 ADSCrossRefGoogle Scholar
  190. R.T. Pappalardo, J.W. Head, R. Greeley, R.J. Sullivan, C. Pilcher, G. Schubert, W.B. Moore, M.H. Carr, J.M. Moore, M.J.S. Belton, D.L. Goldsby, Geological evidence for solid-state convection in Europa’s ice shell. Nature 391(6665), 365–368 (1998).  https://doi.org/10.1038/34862 ADSCrossRefGoogle Scholar
  191. R.T. Pappalardo, M.J.S. Belton, H.H. Breneman, M.H. Carr, C.R. Chapman, G.C. Collins, T. Denk, S. Fagents, P.E. Geissler, B. Giese, R. Greeley, R. Greenberg, J.W. Head, P. Helfenstein, G. Hoppa, S.D. Kadel, K.P. Klaasen, J.E. Klemaszewski, K. Magee, A.S. McEwen, J.M. Moore, W.B. Moore, G. Neukum, C.B. Phillips, L.M. Prockter, G. Schubert, D.A. Senske, R.J. Sullivan, B.R. Tufts, E.P. Turtle, R. Wagner, K.K. Williams, Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res., Planets 104(E10), 24015–24055 (1999).  https://doi.org/10.1029/1998JE000628 ADSCrossRefGoogle Scholar
  192. R.T. Pappalardo, W.B. McKinnon, K.K. Khurana, Europa (University of Arizona Press, Tucson, 2009).  https://doi.org/10.2307/j.ctt1xp3wdw CrossRefGoogle Scholar
  193. D.A. Patthoff, S.A. Kattenhorn, A fracture history on Enceladus provides evidence for a global ocean. Geophys. Res. Lett. 38(18), 1–6 (2011).  https://doi.org/10.1029/2011GL048387 CrossRefGoogle Scholar
  194. S.J. Peale, Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37(1), 533–602 (1999).  https://doi.org/10.1146/annurev.astro.37.1.533 ADSCrossRefGoogle Scholar
  195. S.J. Peale, P. Cassen, R.T. Reynolds, Melting of Io by tidal dissipation. Science 203(4383), 892–894 (1979).  https://doi.org/10.1126/science.203.4383.892 ADSCrossRefGoogle Scholar
  196. C.C. Porco, P. Helfenstein, P.C. Thomas, A.P. Ingersoll, J. Wisdom, R. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch, S. Kieffer, E. Turtle, A. McEwen, T.V. Johnson, J. Rathbun, J. Veverka, D. Wilson, J. Perry, J. Spitale, A. Brahic, J.A. Burns, A.D. Delgenio, L. Dones, C.D. Murray, S. Squyres, Cassini observes the active south pole of Enceladus. Science 311(5766), 1393–1401 (2006).  https://doi.org/10.1126/science.1123013 ADSCrossRefGoogle Scholar
  197. C. Porco, D. DiNino, F. Nimmo, How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related. Astron. J. 148(3), 45 (2014).  https://doi.org/10.1088/0004-6256/148/3/45 ADSCrossRefGoogle Scholar
  198. C.C. Porco, F. Nimmo, D. DiNino, Enceladus’ 101 geysers: phantoms? Hardly, in European Planetary Science Congress 2015 (2015) Google Scholar
  199. F. Postberg, S. Kempf, R. Srama, S.F. Green, J.K. Hillier, N. McBride, E. Grün, Composition of jovian dust stream particles. Icarus 183(1), 122–134 (2006).  https://doi.org/10.1016/j.icarus.2006.02.001 ADSCrossRefGoogle Scholar
  200. F. Postberg, S. Kempf, J.K. Hillier, R. Srama, S.F. Green, N. McBride, E. Grün, The E-ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193(2), 438–454 (2008).  https://doi.org/10.1016/j.icarus.2007.09.001 ADSCrossRefGoogle Scholar
  201. F. Postberg, S. Kempf, D. Rost, T. Stephan, R. Srama, M. Trieloff, A. Mocker, M. Goerlich, Discriminating contamination from particle components in spectra of Cassini’s dust detector CDA. Planet. Space Sci. 57(12), 1359–1374 (2009a).  https://doi.org/10.1016/j.pss.2009.06.027 ADSCrossRefGoogle Scholar
  202. F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, B. a, B. Abel, U. Buck, R. Srama, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459(June), 1–4 (2009b).  https://doi.org/10.1038/nature08046 CrossRefGoogle Scholar
  203. F. Postberg, E. Grün, M. Horanyi, S. Kempf, H. Krüger, J. Schmidt, F. Spahn, R. Srama, Z. Sternovsky, M. Trieloff, Compositional mapping of planetary moons by mass spectrometry of dust ejecta. Planet. Space Sci. 59(14), 1815–1825 (2011a).  https://doi.org/10.1016/j.pss.2011.05.001 ADSCrossRefGoogle Scholar
  204. F. Postberg, J. Schmidt, J. Hillier, S. Kempf, R. Srama, A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474(7353), 620–622 (2011b).  https://doi.org/10.1038/nature10175 ADSCrossRefGoogle Scholar
  205. F. Postberg, N. Khawaja, B. Abel, G. Choblet, C.R. Glein, M.S. Gudipati, B.L. Henderson, H.W. Hsu, S. Kempf, F. Klenner, G. Moragas-Klostermeyer, B. Magee, L. Nlle, M. Perry, R. Reviol, J. Schmidt, R. Srama, F. Stolz, G. Tobie, M. Trieloff, J.H. Waite, Macromolecular organic compounds from the depths of Enceladus. Nature 558(7711), 564–568 (2018).  https://doi.org/10.1038/s41586-018-0246-4 ADSCrossRefGoogle Scholar
  206. L.C. Quick, O.S. Barnouin, L.M. Prockter, G.W. Patterson, Constraints on the detection of cryovolcanic plumes on Europa. Planet. Space Sci. 86, 1–9 (2013).  https://doi.org/10.1016/j.pss.2013.06.028 ADSCrossRefGoogle Scholar
  207. A.R. Rhoden, T.A. Hurford, L. Roth, K. Retherford, Linking Europa’s plume activity to tides, tectonics, and liquid water. Icarus 253, 169–178 (2015).  https://doi.org/10.1016/j.icarus.2015.02.023. arXiv:1011.1669v3 ADSCrossRefGoogle Scholar
  208. A.R. Rhoden, W. Henning, T.A. Hurford, D.A. Patthoff, R. Tajeddine, The implications of tides on the Mimas ocean hypothesis. J. Geophys. Res., Planets 122(2), 400–410 (2017).  https://doi.org/10.1002/2016JE005097 ADSCrossRefGoogle Scholar
  209. J.H. Roberts, The fluffy core of Enceladus. Icarus 258, 54–66 (2015).  https://doi.org/10.1016/j.icarus.2015.05.033 ADSCrossRefGoogle Scholar
  210. M.N. Ross, G. Schubert, Tidally forced viscous heating in a partially molten Io. Icarus 64(3), 391–400 (1985).  https://doi.org/10.1016/0019-1035(85)90063-6 ADSCrossRefGoogle Scholar
  211. L. Roth, K.D. Retherford, J. Saur, D.F. Strobel, P.D. Feldman, M.A. McGrath, F. Nimmo, Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa’s water vapor aurora. Proc. Natl. Acad. Sci. USA 111(48), E5123–E5132 (2014a).  https://doi.org/10.1073/pnas.1416671111 ADSCrossRefGoogle Scholar
  212. L. Roth, J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, F. Nimmo, Transient water vapor at Europa’s south pole. Science 343(6167), 171–174 (2014b).  https://doi.org/10.1126/science.1247051 ADSCrossRefGoogle Scholar
  213. L. Roth, J. Saur, K.D. Retherford, A. Blöcker, D.F. Strobel, P.D. Feldman, Constraints on Io’s interior from auroral spot oscillations. J. Geophys. Res. Space Phys. 122(2), 1903–1927 (2017).  https://doi.org/10.1002/2016JA023701 ADSCrossRefGoogle Scholar
  214. J. Saur, P.D. Feldman, L. Roth, F. Nimmo, D.F. Strobel, K.D. Retherford, M.A. McGrath, N. Schilling, J.C. Gérard, D. Grodent, Hubble Space Telescope/Advanced Camera for Surveys observations of Europa’s atmospheric ultraviolet emission at eastern elongation. Astrophys. J. 738, 153–166 (2011).  https://doi.org/10.1088/0004-637X/738/2/153 ADSCrossRefGoogle Scholar
  215. L. Schaefer, B. Fegley, Alkali and halogen chemistry in volcanic gases on Io. Icarus 173(2), 454–468 (2005).  https://doi.org/10.1016/j.icarus.2004.08.015 ADSCrossRefGoogle Scholar
  216. P. Schenk, H. Hargitai, R. Wilson, A. Mcewen, P. Thomas, The mountains of Io: global and geological perspectives from Voyager and Galileo. J. Geophys. Res. 106(25), 33201–33222 (2001).  https://doi.org/10.1029/2000JE001408 ADSCrossRefGoogle Scholar
  217. P. Schenk, J. Schmidt, O. White, The snows of Enceladus. EPSC Abstracts 6:EPSC-DPS2011-1358-1-2 (2011) Google Scholar
  218. P.M. Schenk, R.N. Clark, C.J.A. Howett, A.J. Verbiscer, J.H. Waite (eds.), Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018) Google Scholar
  219. P. Schippers, M. Blanc, N. André, I. Dandouras, G.R. Lewis, L.K. Gilbert, A.M. Persoon, N. Krupp, D.A. Gurnett, A.J. Coates, S.M. Krimigis, D.T. Young, M.K. Dougherty, Multi-instrument analysis of electron populations in Saturn’s magnetosphere. J. Geophys. Res. Space Phys. 113(A7), A07208 (2008).  https://doi.org/10.1029/2008JA013098 ADSCrossRefGoogle Scholar
  220. J. Schmidt, N. Brilliantov, F. Spahn, S. Kempf, Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451(7179), 685–688 (2008).  https://doi.org/10.1038/nature06491 ADSCrossRefGoogle Scholar
  221. N.M. Schneider, M.H. Burger, E.L. Schaller, M.E. Brown, R.E. Johnson, J.S. Kargel, M.K. Dougherty, A. Na, No sodium in the vapour plumes of Enceladus. Nature 459(7250), 1102–1104 (2009).  https://doi.org/10.1038/nature08070 ADSCrossRefGoogle Scholar
  222. G. Schubert, D.J. Stevenson, K. Ellsworth, Internal structures of the Galilean satellites. Icarus 47(1), 46–59 (1981).  https://doi.org/10.1016/0019-1035(81)90090-7 ADSCrossRefGoogle Scholar
  223. G. Schubert, D.J. Andersen, T. Spohn, W.B. Mckinnon, Interior composition, structure and dynamics of the Galilean satellites, in Jupiter the Planet, Satellites and Magnetosphere (2004), pp. 281–306 Google Scholar
  224. G. Schubert, F. Sohl, H. Hussmann, Interior of Europa, in Europa, ed. by R. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 353–367 Google Scholar
  225. G. Schubert, H. Hussmann, V. Lainey, D.L. Matson, W.B. McKinnon, F. Sohl, C. Sotin, G. Tobie, D. Turrini, T. Van Hoolst, Evolution of icy satellites. Space Sci. Rev. 153(1–4), 447–484 (2010).  https://doi.org/10.1007/s11214-010-9635-1 ADSCrossRefGoogle Scholar
  226. M. Segatz, T. Spohn, M.N. Ross, G. Schubert, Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus 75(2), 187–206 (1988).  https://doi.org/10.1016/0019-1035(88)90001-2 ADSCrossRefGoogle Scholar
  227. P.K. Seidelmann, B.A. Archinal, M.F. A’Hearn, A. Conrad, G.J. Consolmagno, D. Hestroffer, J.L. Hilton, G.A. Krasinsky, G. Neumann, J. Oberst, P. Stooke, E.F. Tedesco, D.J. Tholen, P.C. Thomas, I.P. Williams, Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astron. 98(3), 155–180 (2007).  https://doi.org/10.1007/s10569-007-9072-y ADSCrossRefzbMATHGoogle Scholar
  228. Y. Sekine, T. Shibuya, F. Postberg, H.W. Hsu, K. Suzuki, Y. Masaki, T. Kuwatani, M. Mori, P.K. Hong, M. Yoshizaki, S. Tachibana, S. Si, High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015).  https://doi.org/10.1038/ncomms9604 CrossRefGoogle Scholar
  229. D. Shoji, H. Hussmann, Frequency-dependent tidal dissipation in a viscoelastic Saturnian core and expansion of Mimas’ semi-major axis. Astron. Astrophys. 599, L10 (2017).  https://doi.org/10.1051/0004-6361/201630230 ADSCrossRefGoogle Scholar
  230. M.R. Showalter, J.N. Cuzzi, S.M. Larson, Structure and particle properties of Saturn’s E ring. Icarus 94(2), 451–473 (1991).  https://doi.org/10.1016/0019-1035(91)90241-K ADSCrossRefGoogle Scholar
  231. A.P. Showman, I. Mosqueira, J.W. Head, On the resurfacing of Ganymede by liquid water volcanism. Icarus 172, 625–640 (2004).  https://doi.org/10.1016/j.icarus.2004.07.011 ADSCrossRefGoogle Scholar
  232. B.A. Smith, E.M. Shoemaker, S.W. Kieffer, A.F. Cook, The role of \(\mbox{SO}_{2}\) in volcanism on Io. Nature 280, 738–743 (1979).  https://doi.org/10.1038/280738a0 ADSCrossRefGoogle Scholar
  233. B.A. Smith, L.A. Soderblom, D. Banfield, C. Barnet, A.T. Basilevsky, R.F. Beebe, K. Bollinger, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, C. Chyba, S.A. Collins, T. Colvin, A.F. Cook II, D. Crisp, S.K. Croft, D. Cruikshank, J.N. Cuzzi, G.E. Danielson, M.E. Davies, E. De Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, V.R. Haemmerle, H. Hammel, C.J. Hansen, C.P. Helfenstein, C. Howell, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, J. Kargel, R. Kirk, D.I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J.B. Pollack, C.C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E.M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synott, R.J. Terrile, P. Thomas, W.R. Thompson, A. Verbiscer, J. Veverka, Voyager 2 at Neptune—imaging science results. Science 246(4936), 1422–1449 (1989).  https://doi.org/10.1126/science.246.4936.1422 ADSCrossRefGoogle Scholar
  234. L.A. Soderblom, S.W. Kieffer, T.L. Becker, R.H. Brown, A.F. Cook, C.J. Hansen, T.V. Johnson, R.L. Kirk, E.M. Shoemaker, Triton’s geyser-like plumes: discovery and basic characterization. Science 250(4979), 410–415 (1990).  https://doi.org/10.1126/science.250.4979.410 ADSCrossRefGoogle Scholar
  235. F. Sohl, T. Spohn, D. Breuer, K. Nagel, Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157(1), 104–119 (2002).  https://doi.org/10.1006/icar.2002.6828 ADSCrossRefGoogle Scholar
  236. F. Sohl, M. Choukroun, J. Kargel, J. Kimura, R. Pappalardo, S. Vance, M. Zolotov, Subsurface water oceans on icy satellites: chemical composition and exchange processes. Space Sci. Rev. 153(1–4), 485–510 (2010).  https://doi.org/10.1007/s11214-010-9646-y ADSCrossRefGoogle Scholar
  237. O. Souček, J. Hron, M. Běhounková, O. Čadek, Effect of the tiger stripes on the deformation of Saturn’s moon Enceladus. Geophys. Res. Lett. 43(14), 7417–7423 (2016).  https://doi.org/10.1002/2016GL069415 ADSCrossRefGoogle Scholar
  238. B.S. Southworth, S. Kempf, J. Schmidt, Modeling Europa’s dust plumes. Geophys. Res. Lett. 42(24), 10541–10548 (2015).  https://doi.org/10.1002/2015GL066502 ADSCrossRefGoogle Scholar
  239. F. Spahn, N. Albers, M. Hörning, S. Kempf, A.V. Krivov, M. Makuch, J. Schmidt, M. Seiß, M. Sremčević, E ring dust sources: implications from Cassini’s dust measurements. Planet. Space Sci. 54(9–10), 1024–1032 (2006a).  https://doi.org/10.1016/j.pss.2006.05.022 ADSCrossRefGoogle Scholar
  240. F. Spahn, J. Schmidt, N. Albers, M. Hörning, M. Makuch, M. Seiß, S. Kempf, R. Srama, V. Dikarev, S. Helfert, G. Moragas-Klostermeyer, A. Krivov, M. Sremčević, A.J. Tuzzolino, T. Economou, E. Grün, Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311(5766), 1416–1418 (2006b).  https://doi.org/10.1126/science.1121375 ADSCrossRefGoogle Scholar
  241. W.B. Sparks, K.P. Hand, M.A. McGrath, E. Bergeron, M. Cracraft, S.E. Deustua, Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829(2), 121–132 (2016).  https://doi.org/10.3847/0004-637X/829/2/121 ADSCrossRefGoogle Scholar
  242. W.B. Sparks, B.E. Schmidt, M.A. Mcgrath, K.P. Hand, J.R. Spencer, M. Cracraft, S.E. Deustua, Active cryovolcanism on Europa? Astrophys. J. Lett. 839(2), L18–L23 (2017).  https://doi.org/10.3847/2041-8213/aa67f8. arXiv:1704.04283 ADSCrossRefGoogle Scholar
  243. J. Spencer, C. Howett, Enceladus heat flow from high spatial resolution thermal emission observations. EPSC Abstracts 8, 1–2 (2013). http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-840-1.pdf Google Scholar
  244. J.R. Spencer, L.K. Tamppari, T.Z. Martin, L.D. Travis, Temperatures on Europa from Galileo photopolarimeter-radiometer: nighttime thermal anomalies. Science 284(5419), 1514–1516 (1999).  https://doi.org/10.1126/science.284.5419.1514 ADSCrossRefGoogle Scholar
  245. J.R. Spencer, J. Pearl, M. Segura, F.M. Flasar, A. Mamoutkine, P. Romani, B.J. Buratti, A.R. Hendrix, L. Spilker, R.M.C. Lopes, Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311(5766), 1401–1405 (2006).  https://doi.org/10.1126/science.1121661 ADSCrossRefGoogle Scholar
  246. J.R. Spencer, S.A. Stern, A.F. Cheng, H.A. Weaver, D.C. Reuter, K. Retherford, A. Lunsford, J.M. Moore, O. Abramov, R.M.C. Lopes, J.E. Perry, L. Kamp, M. Showalter, K.L. Jessup, F. Marchis, P.M. Schenk, C. Dumas, Io volcanism seen by New Horizons: a major eruption of the Tvashtar volcano. Science 318(5848), 240–243 (2007).  https://doi.org/10.1126/science.1147621 ADSCrossRefGoogle Scholar
  247. J.N. Spitale, C.C. Porco, Association of the jets of Enceladus with the warmest regions on its south-polar fractures. Nature 449(7163), 695–697 (2007).  https://doi.org/10.1038/nature06217. arXiv:1507.02142v2 ADSCrossRefGoogle Scholar
  248. J.N. Spitale, T.A. Hurford, A.R. Rhoden, E.E. Berkson, S.S. Platts, Curtain eruptions from Enceladus’ south-polar terrain. Nature 521(7550), 57–60 (2015).  https://doi.org/10.1038/nature14368 ADSCrossRefGoogle Scholar
  249. T. Spohn, G. Schubert, Oceans in the icy Galilean satellites of Jupiter? Icarus 161(2), 456–467 (2003).  https://doi.org/10.1016/S0019-1035(02)00048-9 ADSCrossRefGoogle Scholar
  250. S.W. Squyres, R.T. Reynolds, P.M. Cassen, S.J. Peale, Liquid water and active resurfacing on Europa. Nature 301(5897), 225–226 (1983).  https://doi.org/10.1038/301225a0 ADSCrossRefGoogle Scholar
  251. R. Srama, S. Kempf, G. Moragas-Klostermeyer, S. Helfert, T.J. Ahrens, N. Altobelli, S. Auer, U. Beckmann, J.G. Bradley, M. Burton, V.V. Dikarev, T. Economou, H. Fechtig, S.F. Green, M. Grande, O. Havnes, J.K. Hillier, M. Horanyi, E. Igenbergs, E.K. Jessberger, T.V. Johnson, H. Krüger, G. Matt, N. McBride, A. Mocker, P. Lamy, D. Linkert, G. Linkert, F. Lura, J.A.M. McDonnell, D. Möhlmann, G.E. Morfill, F. Postberg, M. Roy, G.H. Schwehm, F. Spahn, J. Svestka, V. Tschernjawski, A.J. Tuzzolino, R. Wäsch, E. Grün, In situ dust measurements in the inner Saturnian system. Planet. Space Sci. 54(9–10), 967–987 (2006).  https://doi.org/10.1016/j.pss.2006.05.021 ADSCrossRefGoogle Scholar
  252. M. Sremčević, A.V. Krivov, H. Krüger, F. Spahn, Impact-generated dust clouds around planetary satellites: model versus Galileo data. Planet. Space Sci. 53(6), 625–641 (2005).  https://doi.org/10.1016/j.pss.2004.10.001 ADSCrossRefGoogle Scholar
  253. R.G. Strom, N.M. Schneider, R.J. Terrile, A.F. Cook, C. Hansen, Volcanic eruptions on Io. J. Geophys. Res. Space Phys. 86(A10), 8593–8620 (1981).  https://doi.org/10.1029/JA086iA10p08593 ADSCrossRefGoogle Scholar
  254. P.J. Tackley, G. Schubert, G.A. Glatzmaier, P. Schenk, J.T. Ratcliff, J.P. Matas, Three-dimensional simulations of mantle convection in Io. Icarus 149(1), 79–93 (2001).  https://doi.org/10.1006/icar.2000.6536 ADSCrossRefGoogle Scholar
  255. R. Tajeddine, K.M. Soderlund, P.C. Thomas, P. Helfenstein, M.M. Hedman, J.A. Burns, P.M. Schenk, True polar wander of Enceladus from topographic data. Icarus 295, 46–60 (2017).  https://doi.org/10.1016/j.icarus.2017.04.019 ADSCrossRefGoogle Scholar
  256. B.D. Teolis, M.E. Perry, B.A. Magee, J. Westlake, J.H. Waite, Detection and measurement of ice grains and gas distribution in the Enceladus plume by Cassini’s Ion Neutral Mass Spectrometer. J. Geophys. Res. Space Phys. 115(9), 1–12 (2010).  https://doi.org/10.1029/2009JA015192 CrossRefGoogle Scholar
  257. B.D. Teolis, D.Y. Wyrick, A. Bouquet, B.A. Magee, J.H. Waite, Plume and surface feature structure and compositional effects on Europa’s global exosphere: preliminary Europa mission predictions. Icarus 284, 18–29 (2017a).  https://doi.org/10.1016/j.icarus.2016.10.027 ADSCrossRefGoogle Scholar
  258. B.D. Teolis, D.Y. Wyrick, A. Bouquet, B.A. Magee, J.H. Waite, Plume and surface feature structure and compositional effects on Europa’s global exosphere: preliminary Europa mission predictions. Icarus 284, 18–29 (2017b).  https://doi.org/10.1016/j.icarus.2016.10.027 ADSCrossRefGoogle Scholar
  259. P.C. Thomas, Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus 208(1), 395–401 (2010).  https://doi.org/10.1016/j.icarus.2010.01.025 ADSCrossRefGoogle Scholar
  260. P. Thomas, J. Burns, P. Helfenstein, S. Squyres, J. Veverka, C. Porco, E. Turtle, A. McEwen, T. Denk, B. Giese, Shapes of the saturnian icy satellites and their significance. Icarus 190(2), 573–584 (2007).  https://doi.org/10.1016/j.icarus.2007.03.012 ADSCrossRefGoogle Scholar
  261. P.C. Thomas, R. Tajeddine, M.S. Tiscareno, J.A. Burns, J. Joseph, T.J. Loredo, P. Helfenstein, C. Porco, Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016).  https://doi.org/10.1016/j.icarus.2015.08.037. arXiv:1509.07555 ADSCrossRefGoogle Scholar
  262. F. Tian, A. Stewart, O. Toon, K. Larsen, L. Esposito, Monte Carlo simulations of the water vapor plumes on Enceladus. Icarus 188(1), 154–161 (2007).  https://doi.org/10.1016/j.icarus.2006.11.010 ADSCrossRefGoogle Scholar
  263. G. Tobie, A. Mocquet, C. Sotin, Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177(2), 534–549 (2005).  https://doi.org/10.1016/j.icarus.2005.04.006 ADSCrossRefGoogle Scholar
  264. R.L. Tokar, The interaction of the atmosphere of Enceladus with Saturn’s plasma. Science 311(5766), 1409–1412 (2006).  https://doi.org/10.1126/science.1121061 ADSCrossRefGoogle Scholar
  265. B.J. Travis, G. Schubert, Keeping Enceladus warm. Icarus 250, 32–42 (2015).  https://doi.org/10.1016/j.icarus.2014.11.017 ADSCrossRefGoogle Scholar
  266. S.K. Trumbo, M.E. Brown, B.J. Butler, ALMA thermal observations of a proposed plume source region on Europa. Astron. J. 154(4), 148 (2017).  https://doi.org/10.3847/1538-3881/aa8769. arXiv:1708.07922 ADSCrossRefGoogle Scholar
  267. B.M. Tutolo, A.J. Luhmann, N.J. Tosca, W.E. Seyfried, Serpentinization as a reactive transport process: the brucite silicification reaction. Earth Planet. Sci. Lett. 484, 385–395 (2018).  https://doi.org/10.1016/j.epsl.2017.12.029 ADSCrossRefGoogle Scholar
  268. R.H. Tyler, W.G. Henning, C.W. Hamilton, Tidal heating in a magma ocean within Jupiter’s moon Io. Astrophys. J. Suppl. Ser. 218(2), 22 (2015).  https://doi.org/10.1088/0067-0049/218/2/22 ADSCrossRefGoogle Scholar
  269. T. Van Hoolst, R.M. Baland, A. Trinh, The diurnal libration and interior structure of Enceladus. Icarus 277, 311–318 (2016).  https://doi.org/10.1016/j.icarus.2016.05.025 ADSCrossRefGoogle Scholar
  270. W.R. Van Schmus, Natural radioactivity of the crust and mantle, in Global Earth Physics: A Handbook of Physical Constants (1995), pp. 283–291 Google Scholar
  271. S. Vance, J. Harnmeijer, J. Kimura, H. Hussmann, B. Demartin, J.M. Brown, Hydrothermal systems in small ocean planets. Astrobiology 7(6), 987–1005 (2007).  https://doi.org/10.1089/ast.2007.0075 ADSCrossRefGoogle Scholar
  272. P. Varga, B. Süle, E. Illés-Almár, On the tidal heating of Enceladus. J. Geodyn. 48(3–5), 247–252 (2009).  https://doi.org/10.1016/j.jog.2009.09.031 CrossRefGoogle Scholar
  273. G.J. Veeder, D.L. Matson, T.V. Johnson, A.G. Davies, D.L. Blaney, The polar contribution to the heat flow of Io. Icarus 169(1), 264–270 (2004).  https://doi.org/10.1016/j.icarus.2003.11.016 ADSCrossRefGoogle Scholar
  274. A.J. Verbiscer, M.F. Skrutskie, D.P. Hamilton, Saturn’s largest ring. Nature 461(7267), 1098–1100 (2009).  https://doi.org/10.1038/nature08515 ADSCrossRefGoogle Scholar
  275. J.E. Wahlund, M. André, A. Eriksson, M. Lundberg, M. Morooka, M. Shafiq, T. Averkamp, D. Gurnett, G. Hospodarsky, W. Kurth, K. Jacobsen, A. Pedersen, W. Farrell, S. Ratynskaia, N. Piskunov, Detection of dusty plasma near the E-ring of Saturn. Planet. Space Sci. 57(14–15), 1795–1806 (2009).  https://doi.org/10.1016/j.pss.2009.03.011 ADSCrossRefGoogle Scholar
  276. J.H. Waite, M.R. Combi, W.H. Ip, T.E. Cravens, R.L. McNutt, W. Kasprzak, R. Yelle, J. Luhmann, H. Niemann, D. Gell, B. Magee, G. Fletcher, J. Lunine, W.L. Tseng, Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311(5766), 1419–1422 (2006).  https://doi.org/10.1126/science.1121290 ADSCrossRefGoogle Scholar
  277. J.H. Waite, W.S. Lewis, B.A. Magee, J.I. Lunine, W.B. McKinnon, C.R. Glein, O. Mousis, D.T. Young, T. Brockwell, J. Westlake, M.J. Nguyen, B.D. Teolis, H.B. Niemann, R.L. McNutt, M. Perry, W.H. Ip, Liquid water on Enceladus from observations of ammonia and \(^{40}\mbox{Ar}\) in the plume. Nature 460(7254), 487–490 (2009).  https://doi.org/10.1038/nature08153 ADSCrossRefGoogle Scholar
  278. J.H. Waite, C.R. Glein, R.S. Perryman, B.D. Teolis, B.A. Magee, G. Miller, J. Grimes, M.E. Perry, K.E. Miller, A. Bouquet, J.I. Lunine, T. Brockwell, S.J. Bolton, Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356(6334), 155–159 (2017).  https://doi.org/10.1126/science.aai8703 ADSCrossRefGoogle Scholar
  279. W.W. Wegner, W.G. Ernst, Experimentally determined hydration and dehydration reaction rates in the system MgO-\(\mbox{SiO}_{2}\)-\(\mbox{H}_{2}\mbox{O}\) (1983) Google Scholar
  280. R.J. Wilson, R.L. Tokar, M.G. Henderson, T.W. Hill, M.F. Thomsen, D.H. Pontius, Cassini plasma spectrometer thermal ion measurements in Saturn’s inner magnetosphere. J. Geophys. Res. Space Phys. 113(A12), A12218 (2008).  https://doi.org/10.1029/2008JA013486 ADSCrossRefGoogle Scholar
  281. S.Y. Ye, D. Gurnett, W. Kurth, T. Averkamp, S. Kempf, H.W. Hsu, R. Srama, E. Grün, Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft. J. Geophys. Res. Space Phys. 119, 6294–6312 (2014).  https://doi.org/10.1002/2014JA020024 ADSCrossRefGoogle Scholar
  282. S.Y. Ye, D.A. Gurnett, W.S. Kurth, In-situ measurements of Saturn’s dusty rings based on dust impact signals detected by Cassini RPWS. Icarus 279, 51–61 (2016).  https://doi.org/10.1016/j.icarus.2016.05.006 ADSCrossRefGoogle Scholar
  283. S.K. Yeoh, Z. Li, D.B. Goldstein, P.L. Varghese, D.A. Levin, L.M. Trafton, Constraining the Enceladus plume using numerical simulation and Cassini data. Icarus 281, 357–378 (2017).  https://doi.org/10.1016/j.icarus.2016.08.028 ADSCrossRefGoogle Scholar
  284. J. Zhang, D.B. Goldstein, P.L. Varghese, N.E. Gimelshein, S.F. Gimelshein, D.A. Levin, Simulation of gas dynamics and radiation in volcanic plumes on Io. Icarus 163(1), 182–197 (2003).  https://doi.org/10.1016/S0019-1035(03)00050-2 ADSCrossRefGoogle Scholar
  285. J. Zhang, D.B. Goldstein, P.L. Varghese, L. Trafton, C. Moore, K. Miki, Numerical modeling of ionian volcanic plumes with entrained particulates. Icarus 172(2), 479–502 (2004).  https://doi.org/10.1016/j.icarus.2004.06.016 ADSCrossRefGoogle Scholar
  286. M.Y. Zolotov, An oceanic composition on early and today’s Enceladus. Geophys. Res. Lett. 34(23), 1–5 (2007).  https://doi.org/10.1029/2007GL031234 CrossRefGoogle Scholar
  287. M.Y. Zolotov, B. Fegley, Oxidation state of volcanic gases and the interior of Io. Icarus 141(1), 40–52 (1999).  https://doi.org/10.1006/icar.1999.6164 ADSCrossRefGoogle Scholar
  288. M.Y. Zolotov, B. Fegley, Eruption conditions of Pele volcano on Io inferred from chemistry of its volcanic plume. Geophys. Res. Lett. 27(17), 2789–2792 (2000).  https://doi.org/10.1029/2000GL011608 ADSCrossRefGoogle Scholar
  289. H.A. Zook, E. Grun, M. Baguhl, D.P. Hamilton, G. Linkert, J.C. Liou, R. Forsyth, J.L. Phillips, Solar wind magnetic field bending of Jovian dust trajectories. Science 274(5292), 1501–1503 (1996).  https://doi.org/10.1126/science.274.5292.1501 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • J. K. Hillier
    • 1
    • 2
    Email author
  • J. Schmidt
    • 3
  • H.-W. Hsu
    • 4
  • F. Postberg
    • 5
  1. 1.School of Physical SciencesUniversity of KentCanterburyUK
  2. 2.Institute of Geological SciencesFreie Universität BerlinBerlinGermany
  3. 3.University of OuluOuluFinland
  4. 4.LASPUniversity of Colorado at BoulderBoulderUSA
  5. 5.Institute of Geological SciencesFreie Universität BerlinBerlinGermany

Personalised recommendations