Space Science Reviews

, 214:52 | Cite as

Dust Evolution in Protoplanetary Discs and the Formation of Planetesimals

What Have We Learned from Laboratory Experiments?
Article
  • 120 Downloads
Part of the following topical collections:
  1. Cosmic Dust from the Laboratory to the Stars

Abstract

After 25 years of laboratory research on protoplanetary dust agglomeration, a consistent picture of the various processes that involve colliding dust aggregates has emerged. Besides sticking, bouncing and fragmentation, other effects, like, e.g., erosion or mass transfer, have now been extensively studied. Coagulation simulations consistently show that \(\upmu\mbox{m}\)-sized dust grains can grow to mm- to cm-sized aggregates before they encounter the bouncing barrier, whereas sub-\(\upmu\mbox{m}\)-sized water-ice particles can directly grow to planetesimal sizes. For siliceous materials, other processes have to be responsible for turning the dust aggregates into planetesimals. In this article, these processes are discussed, the physical properties of the emerging dusty or icy planetesimals are presented and compared to empirical evidence from within and without the Solar System. In conclusion, the formation of planetesimals by a gravitational collapse of dust “pebbles” seems the most likely.

Keywords

Protoplanetary dust Planetesimals Planet formation 

Notes

Acknowledgements

I thank the Deutsche Forschungsgemeinschaft and the Deutsches Zentrum für Luft- und Raumfahrt for continuous support. I thank Stefan Kothe for providing me with Fig. 1. I also thank Stu Weidenschilling for his constructive suggestions during the review process. Finally, I thank ISSI for inviting me to a wonderful and fruitful workshop.

References

  1. J. Agarwal, M. Müller, W.T. Reach, M.V. Sykes, H. Boehnhardt, E. Grün, The dust trail of Comet 67P/Churyumov-Gerasimenko between 2004 and 2006. Icarus 207, 992–1012 (2010).  https://doi.org/10.1016/j.icarus.2010.01.003 ADSCrossRefGoogle Scholar
  2. K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. LeRoy, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, H. Waite, P. Wurz, 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(27), 1261952 (2015).  https://doi.org/10.1126/science.1261952 CrossRefGoogle Scholar
  3. E. Beitz, C. Güttler, J. Blum, T. Meisner, J. Teiser, G. Wurm, Low-velocity collisions of centimeter-sized dust aggregates. Astrophys. J. 736, 34 (2011).  https://doi.org/10.1088/0004-637X/736/1/34 ADSCrossRefGoogle Scholar
  4. A. Bieler, K. Altwegg, H. Balsiger, A. Bar-Nun, J.-J. Berthelier, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. de Keyser, E.F. van Dishoeck, B. Fiethe, S.A. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. Le Roy, U. Mall, R. Maggiolo, B. Marty, O. Mousis, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, J.H. Waite, C. Walsh, P. Wurz, Abundant molecular oxygen in the coma of comet 67P/Churyumov-Gerasimenko. Nature 526, 678–681 (2015).  https://doi.org/10.1038/nature15707 ADSCrossRefGoogle Scholar
  5. T. Birnstiel, L. Ricci, F. Trotta, C.P. Dullemond, A. Natta, L. Testi, C. Dominik, T. Henning, C.W. Ormel, A. Zsom, Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks. Astron. Astrophys. 516, 14 (2010).  https://doi.org/10.1051/0004-6361/201014893 ADSCrossRefGoogle Scholar
  6. T. Birnstiel, M. Fang, A. Johansen, Dust evolution and the formation of planetesimals. Space Sci. Rev. 205, 41–75 (2016).  https://doi.org/10.1007/s11214-016-0256-1 ADSCrossRefGoogle Scholar
  7. J. Blum, Dust agglomeration. Adv. Phys. 55, 881–947 (2006).  https://doi.org/10.1080/00018730601095039 ADSCrossRefGoogle Scholar
  8. J. Blum, M. Münch, Experimental investigations on aggregate-aggregate collisions in the early solar nebula. Icarus 106, 151 (1993).  https://doi.org/10.1006/icar.1993.1163 ADSCrossRefGoogle Scholar
  9. J. Blum, G. Wurm, Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus 143, 138–146 (2000).  https://doi.org/10.1006/icar.1999.6234 ADSCrossRefGoogle Scholar
  10. J. Blum, G. Wurm, The growth mechanisms of macroscopic bodies in protoplanetary disks. Annu. Rev. Astron. Astrophys. 46, 21–56 (2008).  https://doi.org/10.1146/annurev.astro.46.060407.145152 ADSCrossRefGoogle Scholar
  11. J. Blum, G. Wurm, T. Poppe, L.-O. Heim, Aspects of laboratory dust aggregation with relevance to the formation of planetesimals. Earth Moon Planets 80, 285–309 (1998).  https://doi.org/10.1023/A:1006386417473 ADSCrossRefGoogle Scholar
  12. J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H.U. Keller, W.J. Markiewicz, I. Mann, B.A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S.J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip, Growth and form of planetary seedlings: results from a microgravity aggregation experiment. Phys. Rev. Lett. 85, 2426–2429 (2000).  https://doi.org/10.1103/PhysRevLett.85.2426 ADSCrossRefGoogle Scholar
  13. J. Blum, R. Schräpler, B.J.R. Davidsson, J.M. Trigo-Rodríguez, The physics of protoplanetesimal dust agglomerates. I. Mechanical properties and relations to primitive bodies in the solar system. Astrophys. J. 652, 1768–1781 (2006).  https://doi.org/10.1086/508017 ADSCrossRefGoogle Scholar
  14. J. Blum, B. Gundlach, S. Mühle, J.M. Trigo-Rodriguez, Comets formed in solar-nebula instabilities!—An experimental and modeling attempt to relate the activity of comets to their formation process. Icarus 235, 156–169 (2014).  https://doi.org/10.1016/j.icarus.2014.03.016 ADSCrossRefGoogle Scholar
  15. J. Blum, B. Gundlach, M. Krause, M. Fulle, A. Johansen, J. Agarwal, I. von Borstel, X. Shi, X. Hu, M.S. Bentley, F. Capaccioni, L. Colangeli, V. Della Corte, N. Fougere, S.F. Green, S. Ivanovski, T. Mannel, S. Merouane, A. Migliorini, A. Rotundi, R. Schmied, C. Snodgrass, Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles. Mon. Not. R. Astron. Soc. 469, 755–773 (2017).  https://doi.org/10.1093/mnras/stx2741 CrossRefGoogle Scholar
  16. R.A. Booth, F. Meru, M.H. Lee, C.J. Clarke, Breakthrough revisited: investigating the requirements for growth of dust beyond the bouncing barrier. Mon. Not. R. Astron. Soc. 475, 167–180 (2018).  https://doi.org/10.1093/mnras/stx3084 ADSCrossRefGoogle Scholar
  17. J. Brisset, D. Heißelmann, S. Kothe, R. Weidling, J. Blum, Submillimetre-sized dust aggregate collision and growth properties. Experimental study of a multi-particle system on a suborbital rocket. Astron. Astrophys. 593, 3 (2016).  https://doi.org/10.1051/0004-6361/201527288 CrossRefGoogle Scholar
  18. J. Brisset, D. Heißelmann, S. Kothe, R. Weidling, J. Blum, Low-velocity collision behaviour of clusters composed of sub-millimetre sized dust aggregates. Astron. Astrophys. 603, 66 (2017).  https://doi.org/10.1051/0004-6361/201630345 CrossRefGoogle Scholar
  19. M. Bukhari Syed, J. Blum, K. Wahlberg Jansson, A. Johansen, The role of pebble fragmentation in planetesimal formation. I. Experimental study. Astrophys. J. 834, 145 (2017).  https://doi.org/10.3847/1538-4357/834/2/145 ADSCrossRefGoogle Scholar
  20. P. D’Alessio, N. Calvet, L. Hartmann, R. Franco-Hernández, H. Servín, Effects of dust growth and settling in T Tauri disks. Astrophys. J. 638, 314–335 (2006).  https://doi.org/10.1086/498861 ADSCrossRefGoogle Scholar
  21. J. Deckers, J. Teiser, Colliding decimeter dust. Astrophys. J. 769, 151 (2013).  https://doi.org/10.1088/0004-637X/769/2/151 ADSCrossRefGoogle Scholar
  22. J. Deckers, J. Teiser, Macroscopic dust in protoplanetary disks—from growth to destruction. Astrophys. J. 796, 99 (2014).  https://doi.org/10.1088/0004-637X/796/2/99 ADSCrossRefGoogle Scholar
  23. C. Dominik, A.G.G.M. Tielens, The physics of dust coagulation and the structure of dust aggregates in space. Astrophys. J. 480, 647–673 (1997).  https://doi.org/10.1086/303996 ADSCrossRefGoogle Scholar
  24. C. Dominik, D. Paszun, H. Borel, The structure of dust aggregates in hierarchical coagulation. ArXiv e-prints (2016) Google Scholar
  25. G.J. Flynn, S. Wirick, L.P. Keller, Organic grain coatings in primitive interplanetary dust particles: implications for grain sticking in the Solar Nebula. Earth Planets Space 65, 1159–1166 (2013).  https://doi.org/10.5047/eps.2013.05.007 ADSCrossRefGoogle Scholar
  26. M. Fulle, J. Blum, Fractal dust constrains the collisional history of comets. Mon. Not. R. Astron. Soc. 469, 39–44 (2017).  https://doi.org/10.1093/mnras/stx971 ADSCrossRefGoogle Scholar
  27. M. Fulle, L. Colangeli, J. Agarwal, A. Aronica, V. Della Corte, F. Esposito, E. Grün, M. Ishiguro, R. Ligustri, J.J. Lopez Moreno, E. Mazzotta Epifani, G. Milani, F. Moreno, P. Palumbo, J. Rodríguez Gómez, A. Rotundi, Comet 67P/Churyumov-Gerasimenko: the GIADA dust environment model of the Rosetta mission target. Astron. Astrophys. 522, 63 (2010).  https://doi.org/10.1051/0004-6361/201014928 CrossRefGoogle Scholar
  28. M. Fulle, V. Della Corte, A. Rotundi, P. Weissman, A. Juhasz, K. Szego, R. Sordini, M. Ferrari, S. Ivanovski, F. Lucarelli, M. Accolla, S. Merouane, V. Zakharov, E. Mazzotta Epifani, J.J. López-Moreno, J. Rodríguez, L. Colangeli, P. Palumbo, E. Grün, M. Hilchenbach, E. Bussoletti, F. Esposito, S.F. Green, P.L. Lamy, J.A.M. McDonnell, V. Mennella, A. Molina, R. Morales, F. Moreno, J.L. Ortiz, E. Palomba, R. Rodrigo, J.C. Zarnecki, M. Cosi, F. Giovane, B. Gustafson, M.L. Herranz, J.M. Jerónimo, M.R. Leese, A.C. López-Jiménez, N. Altobelli, Density and charge of pristine fluffy particles from comet 67P/Churyumov-Gerasimenko. Astrophys. J. Lett. 802, 12 (2015).  https://doi.org/10.1088/2041-8205/802/1/L12 ADSCrossRefGoogle Scholar
  29. M. Fulle, V. Della Corte, A. Rotundi, F.J.M. Rietmeijer, S.F. Green, P. Weissman, M. Accolla, L. Colangeli, M. Ferrari, S. Ivanovski, J.J. Lopez-Moreno, E.M. Epifani, R. Morales, J.L. Ortiz, E. Palomba, P. Palumbo, J. Rodriguez, R. Sordini, V. Zakharov, Comet 67P/Churyumov-Gerasimenko preserved the pebbles that formed planetesimals. Mon. Not. R. Astron. Soc. 462, 132–137 (2016a).  https://doi.org/10.1093/mnras/stw2299 CrossRefGoogle Scholar
  30. M. Fulle, N. Altobelli, B. Buratti, M. Choukroun, M. Fulchignoni, E. Grün, M.G.G.T. Taylor, P. Weissman, Unexpected and significant findings in comet 67P/Churyumov-Gerasimenko: an interdisciplinary view. Mon. Not. R. Astron. Soc. 462, 2–8 (2016b).  https://doi.org/10.1093/mnras/stw1663 ADSCrossRefGoogle Scholar
  31. P. Garaud, F. Meru, M. Galvagni, C. Olczak, From dust to planetesimals: an improved model for collisional growth in protoplanetary disks. Astrophys. J. 764, 146 (2013).  https://doi.org/10.1088/0004-637X/764/2/146 ADSCrossRefGoogle Scholar
  32. S. Gärtner, B. Gundlach, T.F. Headen, J. Ratte, J. Oesert, S.N. Gorb, T.G.A. Youngs, D.T. Bowron, J. Blum, H.J. Fraser, Micrometer-sized water ice particles for planetary science experiments: influence of surface structure on collisional properties. Astrophys. J. 848, 96 (2017).  https://doi.org/10.3847/1538-4357/aa8c7f ADSCrossRefGoogle Scholar
  33. B. Gundlach, J. Blum, Outgassing of icy bodies in the Solar System—II: Heat transport in dry, porous surface dust layers. Icarus 219, 618–629 (2012).  https://doi.org/10.1016/j.icarus.2012.03.013 ADSCrossRefGoogle Scholar
  34. B. Gundlach, J. Blum, The stickiness of micrometer-sized water-ice particles. Astrophys. J. 798, 34 (2015).  https://doi.org/10.1088/0004-637X/798/1/34 ADSCrossRefGoogle Scholar
  35. B. Gundlach, J. Blum, Why are Jupiter-family comets active and asteroids in cometary-like orbits inactive? How hydrostatic compression leads to inactivity. Astron. Astrophys. 589, 111 (2016).  https://doi.org/10.1051/0004-6361/201527260 ADSCrossRefGoogle Scholar
  36. B. Gundlach, Y.V. Skorov, J. Blum, Outgassing of icy bodies in the Solar System—I. The sublimation of hexagonal water ice through dust layers. Icarus 213, 710–719 (2011).  https://doi.org/10.1016/j.icarus.2011.03.022 ADSCrossRefGoogle Scholar
  37. B. Gundlach, J. Blum, H.U. Keller, Y.V. Skorov, What drives the dust activity of comet 67P/Churyumov-Gerasimenko? Astron. Astrophys. 583, 12 (2015).  https://doi.org/10.1051/0004-6361/201525828 ADSCrossRefGoogle Scholar
  38. C. Güttler, J. Blum, A. Zsom, C.W. Ormel, C.P. Dullemond, The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments. Astron. Astrophys. 513, 56 (2010).  https://doi.org/10.1051/0004-6361/200912852 CrossRefGoogle Scholar
  39. D. Heißelmann, J. Blum, H.J. Fraser, Experimental studies on the aggregation properties of ice and dust in planet-forming regions, in Proc. 58th Int. Astronautical Congress 2007 (Int. Astronautical Federation, Paris, 2007), IAC-07-A2.1.02 Google Scholar
  40. A. Johansen, J.S. Oishi, M.-M. Mac Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).  https://doi.org/10.1038/nature06086 ADSCrossRefGoogle Scholar
  41. A. Johansen, J. Blum, H. Tanaka, C. Ormel, M. Bizzarro, H. Rickman, The multifaceted planetesimal formation process, in Protostars and Planets VI (2014), pp. 547–570 Google Scholar
  42. A. Kataoka, H. Tanaka, S. Okuzumi, K. Wada, Fluffy dust forms icy planetesimals by static compression. Astron. Astrophys. 557, 4 (2013).  https://doi.org/10.1051/0004-6361/201322151 ADSCrossRefGoogle Scholar
  43. S. Kempf, S. Pfalzner, T.K. Henning, N-particle-simulations of dust growth. I. Growth driven by Brownian motion. Icarus 141, 388–398 (1999).  https://doi.org/10.1006/icar.1999.6171 ADSCrossRefGoogle Scholar
  44. W. Kofman, A. Herique, Y. Barbin, J.-P. Barriot, V. Ciarletti, S. Clifford, P. Edenhofer, C. Elachi, C. Eyraud, J.-P. Goutail, E. Heggy, L. Jorda, J. Lasue, A.-C. Levasseur-Regourd, E. Nielsen, P. Pasquero, F. Preusker, P. Puget, D. Plettemeier, Y. Rogez, H. Sierks, C. Statz, H. Svedhem, I. Williams, S. Zine, J. Van Zyl, Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar. Science 349(2), 0639 (2015).  https://doi.org/10.1126/science.aab0639 Google Scholar
  45. S. Kothe, Mikrogravitationsexperimente zur Entwicklung eines empirischen Stoßmodells für protoplanetare Staubagglomerate. Ph.D. thesis, TU Braunschweig, 2016 Google Scholar
  46. S. Kothe, C. Güttler, J. Blum, The physics of protoplanetesimal dust agglomerates. V. Multiple impacts of dusty agglomerates at velocities above the fragmentation threshold. Astrophys. J. 725, 1242–1251 (2010).  https://doi.org/10.1088/0004-637X/725/1/1242 ADSCrossRefGoogle Scholar
  47. S. Kothe, J. Blum, R. Weidling, C. Güttler, Free collisions in a microgravity many-particle experiment. III. The collision behavior of sub-millimeter-sized dust aggregates. Icarus 225, 75–85 (2013).  https://doi.org/10.1016/j.icarus.2013.02.034 ADSCrossRefGoogle Scholar
  48. A. Kouchi, T. Kudo, H. Nakano, M. Arakawa, N. Watanabe, S.-i. Sirono, M. Higa, N. Maeno, Rapid growth of asteroids owing to very sticky interstellar organic grains. Astrophys. J. Lett. 566, 121–124 (2002).  https://doi.org/10.1086/339618 ADSCrossRefGoogle Scholar
  49. M. Krause, J. Blum, Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment. Phys. Rev. Lett. 93(2), 021103 (2004).  https://doi.org/10.1103/PhysRevLett.93.021103 ADSCrossRefGoogle Scholar
  50. K.A. Kretke, H.F. Levison, Evidence for pebbles in comets. Icarus 262, 9–13 (2015).  https://doi.org/10.1016/j.icarus.2015.08.017 ADSCrossRefGoogle Scholar
  51. S. Krijt, C.W. Ormel, C. Dominik, A.G.G.M. Tielens, Erosion and the limits to planetesimal growth. Astron. Astrophys. 574, 83 (2015).  https://doi.org/10.1051/0004-6361/201425222 ADSCrossRefGoogle Scholar
  52. A.V. Krivov, A. Ide, T. Löhne, A. Johansen, J. Blum, Debris disc constraints on planetesimal formation. Mon. Not. R. Astron. Soc. 474, 2564–2575 (2018).  https://doi.org/10.1093/mnras/stx2932 ADSCrossRefGoogle Scholar
  53. T. Kudo, A. Kouchi, M. Arakawa, H. Nakano, The role of sticky interstellar organic material in the formation of asteroids. Meteorit. Planet. Sci. 37, 1975–1983 (2002).  https://doi.org/10.1111/j.1945-5100.2002.tb01178.x ADSCrossRefGoogle Scholar
  54. E. Kührt, H.U. Keller, The formation of cometary surface crusts. Icarus 109, 121–132 (1994).  https://doi.org/10.1006/icar.1994.1080 ADSCrossRefGoogle Scholar
  55. E.K. Kührt, H.U. Keller, On the importance of dust in cometary nuclei. Earth Moon Planets 72, 79–89 (1996).  https://doi.org/10.1007/BF00117506 ADSCrossRefGoogle Scholar
  56. A. Landeck, Stöße zwischen hochporösen Staubagglomeraten im Laborfallturm. Bachelor Thesis, TU Braunschweig, 2016 Google Scholar
  57. D. Langkowski, J. Teiser, J. Blum, The physics of protoplanetesimal dust agglomerates. II. Low-velocity collision properties. Astrophys. J. 675, 764–776 (2008).  https://doi.org/10.1086/525841 ADSCrossRefGoogle Scholar
  58. Y. Liu, T. Henning, C. Carrasco-González, C.J. Chandler, H. Linz, T. Birnstiel, R. van Boekel, L.M. Pérez, M. Flock, L. Testi, L.F. Rodríguez, R. Galván-Madrid, The properties of the inner disk around HL Tau: multi-wavelength modeling of the dust emission. Astron. Astrophys. 607, 74 (2017).  https://doi.org/10.1051/0004-6361/201629786 CrossRefGoogle Scholar
  59. S. Lorek, P. Lacerda, J. Blum, Local growth of dust- and ice-mixed aggregates as cometary building blocks in the solar nebula. Astron. Astrophys. (2018, in press).  https://doi.org/10.1051/0004-6361/201630175 Google Scholar
  60. T. Mannel, M.S. Bentley, R. Schmied, H. Jeszenszky, A.C. Levasseur-Regourd, J. Romstedt, K. Torkar, Fractal cometary dust—a window into the early Solar system. Mon. Not. R. Astron. Soc. 462, 304–311 (2016).  https://doi.org/10.1093/mnras/stw2898 ADSCrossRefGoogle Scholar
  61. T. Meisner, G. Wurm, J. Teiser, M. Schywek, Preplanetary scavengers: growing tall in dust collisions. Astron. Astrophys. 559, 123 (2013).  https://doi.org/10.1051/0004-6361/201322083 ADSCrossRefGoogle Scholar
  62. A. Morbidelli, H. Rickman, Comets as collisional fragments of a primordial planetesimal disk. Astron. Astrophys. 583, 43 (2015).  https://doi.org/10.1051/0004-6361/201526116 ADSCrossRefGoogle Scholar
  63. A. Morbidelli, W.F. Bottke, D. Nesvorný, H.F. Levison, Asteroids were born big. Icarus 204, 558–573 (2009).  https://doi.org/10.1016/j.icarus.2009.07.011 ADSCrossRefGoogle Scholar
  64. G. Musiolik, J. Teiser, T. Jankowski, G. Wurm, Collisions of CO2 ice grains in planet formation. Astrophys. J. 818, 16 (2016a).  https://doi.org/10.3847/0004-637X/818/1/16 ADSCrossRefGoogle Scholar
  65. G. Musiolik, J. Teiser, T. Jankowski, G. Wurm, Ice grain collisions in comparison: \(\mbox{CO}_{2}\), \(\mbox{H}_{2}\mbox{O}\), and their mixtures. Astrophys. J. 827, 63 (2016b).  https://doi.org/10.3847/0004-637X/827/1/63 ADSCrossRefGoogle Scholar
  66. A. Natta, L. Testi, N. Calvet, T. Henning, R. Waters, D. Wilner, Dust in protoplanetary disks: properties and evolution, in Protostars and Planets V (2007), pp. 767–781 Google Scholar
  67. S. Okuzumi, H. Tanaka, H. Kobayashi, K. Wada, Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophys. J. 752, 106 (2012).  https://doi.org/10.1088/0004-637X/752/2/106 ADSCrossRefGoogle Scholar
  68. G.Y. Onoda, E.G. Liniger, Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727–2730 (1990).  https://doi.org/10.1103/PhysRevLett.64.2727 ADSCrossRefGoogle Scholar
  69. G.B. Paraskov, G. Wurm, O. Krauss, Impacts into weak dust targets under microgravity and the formation of planetesimals. Icarus 191, 779–789 (2007).  https://doi.org/10.1016/j.icarus.2007.05.008 ADSCrossRefGoogle Scholar
  70. D. Paszun, C. Dominik, The influence of grain rotation on the structure of dust aggregates. Icarus 182, 274–280 (2006).  https://doi.org/10.1016/j.icarus.2005.12.018 ADSCrossRefGoogle Scholar
  71. D. Paszun, C. Dominik, Collisional evolution of dust aggregates. From compaction to catastrophic destruction. Astron. Astrophys. 507, 1023–1040 (2009).  https://doi.org/10.1051/0004-6361/200810682 ADSCrossRefGoogle Scholar
  72. M. Pätzold, T. Andert, M. Hahn, S.W. Asmar, J.-P. Barriot, M.K. Bird, B. Häusler, K. Peter, S. Tellmann, E. Grün, P.R. Weissman, H. Sierks, L. Jorda, R. Gaskell, F. Preusker, F. Scholten, A homogeneous nucleus for comet 67P/Churyumov-Gerasimenko from its gravity field. Nature 530, 63–65 (2016).  https://doi.org/10.1038/nature16535 ADSCrossRefGoogle Scholar
  73. L.M. Pérez, J.M. Carpenter, C.J. Chandler, A. Isella, S.M. Andrews, L. Ricci, N. Calvet, S.A. Corder, A.T. Deller, C.P. Dullemond, J.S. Greaves, R.J. Harris, T. Henning, W. Kwon, J. Lazio, H. Linz, L.G. Mundy, A.I. Sargent, S. Storm, L. Testi, D.J. Wilner, Constraints on the radial variation of grain growth in the AS 209 circumstellar disk. Astrophys. J. Lett. 760, 17 (2012).  https://doi.org/10.1088/2041-8205/760/1/L17 ADSMATHCrossRefGoogle Scholar
  74. L.M. Pérez, C.J. Chandler, A. Isella, J.M. Carpenter, S.M. Andrews, N. Calvet, S.A. Corder, A.T. Deller, C.P. Dullemond, J.S. Greaves, R.J. Harris, T. Henning, W. Kwon, J. Lazio, H. Linz, L.G. Mundy, L. Ricci, A.I. Sargent, S. Storm, M. Tazzari, L. Testi, D.J. Wilner, Grain growth in the circumstellar disks of the young stars CY Tau and DoAr 25. Astrophys. J. 813, 41 (2015).  https://doi.org/10.1088/0004-637X/813/1/41 ADSMATHCrossRefGoogle Scholar
  75. L. Ricci, L. Testi, A. Natta, K.J. Brooks, Dust grain growth in \(\rho\)-Ophiuchi protoplanetary disks. Astron. Astrophys. 521, 66 (2010).  https://doi.org/10.1051/0004-6361/201015039 ADSCrossRefGoogle Scholar
  76. U. Schäfer, C.-C. Yang, A. Johansen, Initial mass function of planetesimals formed by the streaming instability. Astron. Astrophys. 597, 69 (2017).  https://doi.org/10.1051/0004-6361/201629561 CrossRefGoogle Scholar
  77. R. Schräpler, J. Blum, The physics of protoplanetesimal dust agglomerates. VI. Erosion of large aggregates as a source of micrometer-sized particles. Astrophys. J. 734, 108 (2011).  https://doi.org/10.1088/0004-637X/734/2/108 ADSCrossRefGoogle Scholar
  78. R. Schräpler, J. Blum, A. Seizinger, W. Kley, The physics of protoplanetesimal dust agglomerates. VII. The low-velocity collision behavior of large dust agglomerates. Astrophys. J. 758, 35 (2012).  https://doi.org/10.1088/0004-637X/758/1/35 ADSCrossRefGoogle Scholar
  79. R. Schräpler, J. Blum, S. Krijt, J.-H. Raabe, The physics of protoplanetesimal dust agglomerates. X. High-velocity collisions between small and large dust agglomerates as growth barrier. Astrophys. J. 853, 74 (2018).  https://doi.org/10.3847/1538-4357/aaa0d2 ADSCrossRefGoogle Scholar
  80. A. Seizinger, S. Krijt, W. Kley, Erosion of dust aggregates. Astron. Astrophys. 560, 45 (2013).  https://doi.org/10.1051/0004-6361/201322773 ADSCrossRefGoogle Scholar
  81. K. Shariff, J.N. Cuzzi, The spherically symmetric gravitational collapse of a clump of solids in a gas. Astrophys. J. 805, 42 (2015).  https://doi.org/10.1088/0004-637X/805/1/42 ADSCrossRefGoogle Scholar
  82. J.B. Simon, P.J. Armitage, R. Li, A.N. Youdin, The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016).  https://doi.org/10.3847/0004-637X/822/1/55 ADSCrossRefGoogle Scholar
  83. J.B. Simon, P.J. Armitage, A.N. Youdin, R. Li, Evidence for universality in the initial planetesimal mass function. Astrophys. J. Lett. 847, 12 (2017).  https://doi.org/10.3847/2041-8213/aa8c79 ADSCrossRefGoogle Scholar
  84. Y. Skorov, J. Blum, Dust release and tensile strength of the non-volatile layer of cometary nuclei. Icarus 221, 1–11 (2012).  https://doi.org/10.1016/j.icarus.2012.01.012 ADSCrossRefGoogle Scholar
  85. R.H. Soja, M. Sommer, J. Herzog, J. Agarwal, J. Rodmann, R. Srama, J. Vaubaillon, P. Strub, A. Hornig, L. Bausch, E. Grün, Characteristics of the dust trail of 67P/Churyumov-Gerasimenko: an application of the IMEX model. Astron. Astrophys. 583, 18 (2015).  https://doi.org/10.1051/0004-6361/201526184 ADSCrossRefGoogle Scholar
  86. M. Tazzari, L. Testi, B. Ercolano, A. Natta, A. Isella, C.J. Chandler, L.M. Pérez, S. Andrews, D.J. Wilner, L. Ricci, T. Henning, H. Linz, W. Kwon, S.A. Corder, C.P. Dullemond, J.M. Carpenter, A.I. Sargent, L. Mundy, S. Storm, N. Calvet, J.A. Greaves, J. Lazio, A.T. Deller, Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks. Radial constraints on the dust properties and the disk structure. Astron. Astrophys. 588, 53 (2016).  https://doi.org/10.1051/0004-6361/201527423 ADSMATHCrossRefGoogle Scholar
  87. J. Teiser, G. Wurm, Decimetre dust aggregates in protoplanetary discs. Astron. Astrophys. 505, 351–359 (2009a).  https://doi.org/10.1051/0004-6361/200912027 ADSCrossRefGoogle Scholar
  88. J. Teiser, G. Wurm, High-velocity dust collisions: forming planetesimals in a fragmentation cascade with final accretion. Mon. Not. R. Astron. Soc. 393, 1584–1594 (2009b).  https://doi.org/10.1111/j.1365-2966.2008.14289.x ADSCrossRefGoogle Scholar
  89. J. Teiser, M. Küpper, G. Wurm, Impact angle influence in high velocity dust collisions during planetesimal formation. Icarus 215, 596–598 (2011).  https://doi.org/10.1016/j.icarus.2011.07.036 ADSCrossRefGoogle Scholar
  90. L. Testi, T. Birnstiel, L. Ricci, S. Andrews, J. Blum, J. Carpenter, C. Dominik, A. Isella, A. Natta, J.P. Williams, D.J. Wilner, Dust evolution in protoplanetary disks, in Protostars and Planets VI (2014), pp. 339–361 Google Scholar
  91. F. Trotta, L. Testi, A. Natta, A. Isella, L. Ricci, Constraints on the radial distribution of the dust properties in the CQ Tauri protoplanetary disk. Astron. Astrophys. 558, 64 (2013).  https://doi.org/10.1051/0004-6361/201321896 ADSCrossRefGoogle Scholar
  92. R. van Boekel, M. Min, C. Leinert, L.B.F.M. Waters, A. Richichi, O. Chesneau, C. Dominik, W. Jaffe, A. Dutrey, U. Graser, T. Henning, J. de Jong, R. Köhler, A. de Koter, B. Lopez, F. Malbet, S. Morel, F. Paresce, G. Perrin, T. Preibisch, F. Przygodda, M. Schöller, M. Wittkowski, The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks. Nature 432, 479–482 (2004).  https://doi.org/10.1038/nature03088 ADSCrossRefGoogle Scholar
  93. R. Visser, E.F. van Dishoeck, S.D. Doty, C.P. Dullemond, The chemical history of molecules in circumstellar disks. I. Ices. Astron. Astrophys. 495, 881–897 (2009).  https://doi.org/10.1051/0004-6361/200810846 ADSCrossRefGoogle Scholar
  94. K. Wada, H. Tanaka, T. Suyama, H. Kimura, T. Yamamoto, Numerical simulation of dust aggregate collisions. II. Compression and disruption of three-dimensional aggregates in head-on collisions. Astrophys. J. 677, 1296–1308 (2008).  https://doi.org/10.1086/529511 ADSCrossRefGoogle Scholar
  95. K. Wada, H. Tanaka, T. Suyama, H. Kimura, T. Yamamoto, Collisional growth conditions for dust aggregates. Astrophys. J. 702, 1490–1501 (2009).  https://doi.org/10.1088/0004-637X/702/2/1490 ADSCrossRefGoogle Scholar
  96. K. Wahlberg Jansson, A. Johansen, Formation of pebble-pile planetesimals. Astron. Astrophys. 570, 47 (2014).  https://doi.org/10.1051/0004-6361/201424369 ADSCrossRefGoogle Scholar
  97. K. Wahlberg Jansson, A. Johansen, M. Bukhari Syed, J. Blum, The role of pebble fragmentation in planetesimal formation. II. Numerical simulations. Astrophys. J. 835, 109 (2017).  https://doi.org/10.3847/1538-4357/835/1/109 ADSCrossRefGoogle Scholar
  98. S.J. Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977).  https://doi.org/10.1093/mnras/180.1.57 ADSCrossRefGoogle Scholar
  99. S.J. Weidenschilling, Initial sizes of planetesimals and accretion of the asteroids. Icarus 214, 671–684 (2011).  https://doi.org/10.1016/j.icarus.2011.05.024 ADSCrossRefGoogle Scholar
  100. S.J. Weidenschilling, J.N. Cuzzi, Formation of planetesimals in the solar nebula, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine, 1993, pp. 1031–1060 Google Scholar
  101. R. Weidling, J. Blum, Free collisions in a microgravity many-particle experiment. IV.—Three-dimensional analysis of collision properties. Icarus 253, 31–39 (2015).  https://doi.org/10.1016/j.icarus.2014.12.010 ADSCrossRefGoogle Scholar
  102. R. Weidling, C. Güttler, J. Blum, F. Brauer, The physics of protoplanetesimal dust agglomerates. III. Compaction in multiple collisions. Astrophys. J. 696, 2036–2043 (2009).  https://doi.org/10.1088/0004-637X/696/2/2036 ADSCrossRefGoogle Scholar
  103. R. Weidling, C. Güttler, J. Blum, Free collisions in a microgravity many-particle experiment. I. Dust aggregate sticking at low velocities. Icarus 218, 688–700 (2012).  https://doi.org/10.1016/j.icarus.2011.10.002 ADSCrossRefGoogle Scholar
  104. A.D. Whizin, J. Blum, J.E. Colwell, The physics of protoplanetesimal dust agglomerates. VIII. Microgravity collisions between porous \(\mbox{SiO}_{2}\) aggregates and loosely bound agglomerates. Astrophys. J. 836, 94 (2017).  https://doi.org/10.3847/1538-4357/836/1/94 ADSCrossRefGoogle Scholar
  105. F. Windmark, T. Birnstiel, C.W. Ormel, C.P. Dullemond, Breaking through: the effects of a velocity distribution on barriers to dust growth. Astron. Astrophys. 544, 16 (2012a).  https://doi.org/10.1051/0004-6361/201220004 ADSCrossRefGoogle Scholar
  106. F. Windmark, T. Birnstiel, C. Güttler, J. Blum, C.P. Dullemond, T. Henning, Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. Astron. Astrophys. 540, 73 (2012b).  https://doi.org/10.1051/0004-6361/201118475 ADSCrossRefGoogle Scholar
  107. G. Wurm, J. Blum, Experiments on preplanetary dust aggregation. Icarus 132, 125–136 (1998).  https://doi.org/10.1006/icar.1998.5891 ADSCrossRefGoogle Scholar
  108. G. Wurm, G. Paraskov, O. Krauss, Ejection of dust by elastic waves in collisions between millimeter- and centimeter-sized dust aggregates at 16.5 to \(37.5~\mbox{m}/\mbox{s}\) impact velocities. Phys. Rev. E 71(2), 021304 (2005a).  https://doi.org/10.1103/PhysRevE.71.021304 ADSGoogle Scholar
  109. G. Wurm, G. Paraskov, O. Krauss, Growth of planetesimals by impacts at \(\sim25~\mbox{m}/\mbox{s}\). Icarus 178, 253–263 (2005b).  https://doi.org/10.1016/j.icarus.2005.04.002 ADSCrossRefGoogle Scholar
  110. C.-C. Yang, A. Johansen, D. Carrera, Concentrating small particles in protoplanetary disks through the streaming instability. Astron. Astrophys. 606, 80 (2017).  https://doi.org/10.1051/0004-6361/201630106 CrossRefGoogle Scholar
  111. A.N. Youdin, J. Goodman, Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005).  https://doi.org/10.1086/426895 ADSCrossRefGoogle Scholar
  112. A. Zsom, C.W. Ormel, C. Güttler, J. Blum, C.P. Dullemond, The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys. 513, 57 (2010).  https://doi.org/10.1051/0004-6361/200912976 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Geophysik und extraterrestrische PhysikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations