Space Science Reviews

, 214:58 | Cite as

Partially Ionized Plasmas in Astrophysics

  • José Luis Ballester
  • Igor Alexeev
  • Manuel Collados
  • Turlough Downes
  • Robert F. Pfaff
  • Holly Gilbert
  • Maxim Khodachenko
  • Elena Khomenko
  • Ildar F. Shaikhislamov
  • Roberto Soler
  • Enrique Vázquez-Semadeni
  • Teimuraz Zaqarashvili
Article
  • 256 Downloads

Abstract

Partially ionized plasmas are found across the Universe in many different astrophysical environments. They constitute an essential ingredient of the solar atmosphere, molecular clouds, planetary ionospheres and protoplanetary disks, among other environments, and display a richness of physical effects which are not present in fully ionized plasmas. This review provides an overview of the physics of partially ionized plasmas, including recent advances in different astrophysical areas in which partial ionization plays a fundamental role. We outline outstanding observational and theoretical questions and discuss possible directions for future progress.

Keywords

Plasmas Magnetohydrodynamics Sun Molecular clouds Ionospheres Exoplanets 

Notes

Acknowledgements

JLB and RS want to acknowledge financial support from MINECO AYA2014-54485-P, MINECO AYA2017-85465-P and FEDER Funds, from The Leverhulme Trust under grant IN-2014-016, as well as financial support from “Conselleria d’Innovació, Recerca i Turisme del Govern Balear to IAC3. RS acknowledges the “Ministerio de Economía, Industria y Competitividad” and the “Conselleria d’Innovació, Recerca i Turisme del Govern Balear (Pla de ciència, tecnologia, innovació i emprenedoria 2013–2017)” for the “Ramón y Cajal” grant RYC-2014-14970. The results presented in this review by MK were obtained within the NFN project S116 “Pathways to Habitability” of the Austrian Science Foundation (FWF) and its related subprojects S11606-N16, S11607-N16. IA, IFS, and MK also acknowledge the support of the FWF projects P25587-N27, P25640-N27, and Leverhulme Trust grant IN-2014-016. IFS and MK acknowledge FWF project I2939-N27 and grant No. 16-52-14006 of the Russian Fund for Basic Research, as well as RAS SB research program (project II.10 No. 0307-2016-0002). IA was partially supported by Ministry of Education and Science of Russian Federation Grant RFMEFI61617X0084. TZ acknowledges support from FWF project P30695-N27 and from the Georgian Shota Rustaveli National Science Foundation projects DI-2016-17 and 217146. Parallel computations crucial for the present study have been performed at the Supercomputing Center of the Lomonosov Moscow State University and at the SB RAS Siberian Super-Computing Center (SSCC) and Computation Center of Novosibirsk State University. EK and MCV are grateful for support by the Spanish Ministry of Science through the project AYA2014-55078-P and by the European Research Council in the frame of the FP7 Specific Program IDEAS through the Starting Grant ERC-2011-StG 277829-SPIA. All the authors want to thank ISSI for the support to the ISSI team on “Partially Ionized Plasmas in Astrophysics (PIPA)” and providing a collaborative environment for research and communication.

References

  1. N. Achilleos, S. Miller, J. Tennyson, A.D. Aylward, I. Mueller-Wodarg, D. Rees, Jim: a time-dependent, three-dimensional model of Jupiter’s thermosphere and ionosphere. J. Geophys. Res., Planets 103(E9), 20089–20112 (1998).  https://doi.org/10.1029/98JE00947 ADSCrossRefGoogle Scholar
  2. F.C. Adams, Magnetically controlled outflows from Hot Jupiters. Astrophys. J. 730, 27 (2011).  https://doi.org/10.1088/0004-637X/730/1/27 ADSCrossRefGoogle Scholar
  3. S.-I. Akasofu, S. Chapman, Solar-Terrestrial Physics: An Account of the Wave and Particle Radiations from the Quiet and the Active Sun, and of the Consequent Terrestrial Phenomena (1972) Google Scholar
  4. I.I. Alexeev, E.S. Belenkaya, Modeling of the Jovian magnetosphere. Ann. Geophys. 23, 809–826 (2005).  https://doi.org/10.5194/angeo-23-809-2005 ADSCrossRefGoogle Scholar
  5. I.I. Alexeev, E.S. Belenkaya, S.Y. Bobrovnikov, V.V. Kalegaev, Modelling of the electromagnetic field in the interplanetary space and in the Earth’s magnetosphere. Space Sci. Rev. 107, 7–26 (2003).  https://doi.org/10.1023/A:1025542915800 ADSCrossRefGoogle Scholar
  6. I.I. Alexeev, V.V. Kalegaev, E.S. Belenkaya, S.Y. Bobrovnikov, E.J. Bunce, S.W.H. Cowley, J.D. Nichols, A global magnetic model of Saturn’s magnetosphere and a comparison with Cassini SOI data. Geophys. Res. Lett. 33, 08101 (2006).  https://doi.org/10.1029/2006GL025896 ADSCrossRefGoogle Scholar
  7. I.I. Alexeev, V.V. Kalegaev, E.S. Belenkaya, S.Y. Bobrovnikov, E.J. Bunce, S.W.H. Cowley, J.D. Nichols, A global magnetic model of Saturn’s magnetosphere and a comparison with Cassini SOI data. Geophys. Res. Lett. 33(8), L08101 (2006).  https://doi.org/10.1029/2006GL025896 ADSCrossRefGoogle Scholar
  8. I.I. Alexeev, M.S. Grygoryan, E.S. Belenkaya, V.V. Kalegaev, M. Khodachenko, Magnetosphere environment from solar system planets/moons to exoplanets, in Characterizing Stellar and Exoplanetary Environments, ed. by H. Lammer, M. Khodachenko. Astrophysics and Space Science Library, vol. 411 (2015), pp. 189–212.  https://doi.org/10.1007/978-3-319-09749-7-10 Google Scholar
  9. I. Alexeev, E. Belenkaya, M. Khodachenko, M. Grigoryan, Auroral ionosphere Joule heating as a reason of the upper thermosphere overheating in the Jupiter and Saturn systems, in 40th COSPAR Scientific Assembly. COSPAR Meeting, vol. 40 (2014) Google Scholar
  10. V. Alexiades, G. Amiez, P.-A. Gremaud, Super-time-stepping acceleration of explicit schemes for parabolic problems. Commun. Numer. Methods Eng. 12, 31–42 (1996).  https://doi.org/10.1002/(SICI)1099-0887(199601)12:1<31::AID-CNM950>3.0.CO;2-5 MATHCrossRefGoogle Scholar
  11. H. Alfven, The plasma universe. Phys. Today 39, 22–27 (1986).  https://doi.org/10.1063/1.881039 CrossRefGoogle Scholar
  12. C.E. Alissandrakis, S. Patsourakos, A. Nindos, T.S. Bastian, Center-to-limb observations of the Sun with ALMA. Implications for solar atmospheric models. Astron. Astrophys. 605, 78 (2017).  https://doi.org/10.1051/0004-6361/201730953 ADSCrossRefGoogle Scholar
  13. A. Allen, Z.-Y. Li, F.H. Shu, Collapse of magnetized singular isothermal toroids. II. Rotation and magnetic braking. Astrophys. J. 599, 363–379 (2003).  https://doi.org/10.1086/379243 ADSCrossRefGoogle Scholar
  14. A. Alvarez Laguna, A. Lani, N.N. Mansour, H. Deconinck, S. Poedts, Effect of radiation on chromospheric magnetic reconnection: reactive and collisional multi-fluid simulations. Astrophys. J. 842, 117 (2017).  https://doi.org/10.3847/1538-4357/aa7554 ADSCrossRefGoogle Scholar
  15. P. André, A. Men’shchikov, S. Bontemps, V. Könyves, F. Motte, N. Schneider, P. Didelon, V. Minier, P. Saraceno, D. Ward-Thompson, J. di Francesco, G. White, S. Molinari, L. Testi, A. Abergel, M. Griffin, T. Henning, P. Royer, B. Merín, R. Vavrek, M. Attard, D. Arzoumanian, C.D. Wilson, P. Ade, H. Aussel, J.-P. Baluteau, M. Benedettini, J.-P. Bernard, J.A.D.L. Blommaert, L. Cambrésy, P. Cox, A. di Giorgio, P. Hargrave, M. Hennemann, M. Huang, J. Kirk, O. Krause, R. Launhardt, S. Leeks, J. Le Pennec, J.Z. Li, P.G. Martin, A. Maury, G. Olofsson, A. Omont, N. Peretto, S. Pezzuto, T. Prusti, H. Roussel, D. Russeil, M. Sauvage, B. Sibthorpe, A. Sicilia-Aguilar, L. Spinoglio, C. Waelkens, A. Woodcraft, A. Zavagno, From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the Herschel Gould Belt Survey. Astron. Astrophys. 518, 102 (2010).  https://doi.org/10.1051/0004-6361/201014666 ADSCrossRefGoogle Scholar
  16. P. Antolin, T.J. Okamoto, B. De Pontieu, H. Uitenbroek, T. Van Doorsselaere, T. Yokoyama, Resonant absorption of transverse oscillations and associated heating in a solar prominence. II. Numerical aspects. Astrophys. J. 809, 72 (2015).  https://doi.org/10.1088/0004-637X/809/1/72 ADSCrossRefGoogle Scholar
  17. V.M. Antonov, E.L. Boyarinsev, A.A. Boyko, Y.P. Zakharov, A.V. Melekhov, A.G. Ponomarenko, V.G. Posukh, I.F. Shaikhislamov, M.L. Khodachenko, H. Lammer, Inflation of a dipole field in laboratory experiments: toward an understanding of magnetodisk formation in the magnetosphere of a Hot Jupiter. Astrophys. J. 769, 28 (2013).  https://doi.org/10.1088/0004-637X/769/1/28 ADSCrossRefGoogle Scholar
  18. T.D. Arber, C.S. Brady, S. Shelyag, Alfvén wave heating of the solar chromosphere: 1.5D models. Astrophys. J. 817, 94 (2016).  https://doi.org/10.3847/0004-637X/817/2/94 ADSCrossRefGoogle Scholar
  19. J. Arons, C.E. Max, Hydromagnetic waves in molecular clouds. Astrophys. J. Lett. 196, 77 (1975).  https://doi.org/10.1086/181748 ADSCrossRefGoogle Scholar
  20. I. Arregui, Wave heating of the solar atmosphere. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 373, 40261 (2015).  https://doi.org/10.1098/rsta.2014.0261 ADSCrossRefGoogle Scholar
  21. I. Arregui, R. Oliver, J.L. Ballester, Prominence oscillations. Living Rev. Sol. Phys. 9, 2 (2012).  https://doi.org/10.12942/lrsp-2012-2 ADSCrossRefGoogle Scholar
  22. D. Arzoumanian, P. André, P. Didelon, V. Könyves, N. Schneider, A. Men’shchikov, T. Sousbie, A. Zavagno, S. Bontemps, J. di Francesco, M. Griffin, M. Hennemann, T. Hill, J. Kirk, P. Martin, V. Minier, S. Molinari, F. Motte, N. Peretto, S. Pezzuto, L. Spinoglio, D. Ward-Thompson, G. White, C.D. Wilson, Characterizing interstellar filaments with Herschel in IC 5146. Astron. Astrophys. 529, 6 (2011).  https://doi.org/10.1051/0004-6361/201116596 ADSCrossRefGoogle Scholar
  23. E. Audit, P. Hennebelle, Thermal condensation in a turbulent atomic hydrogen flow. Astron. Astrophys. 433, 1–13 (2005).  https://doi.org/10.1051/0004-6361:20041474 ADSCrossRefGoogle Scholar
  24. E. Audit, P. Hennebelle, On the structure of the turbulent interstellar clouds. Influence of the equation of state on the dynamics of 3D compressible flows. Astron. Astrophys. 511, 76 (2010).  https://doi.org/10.1051/0004-6361/200912695 ADSCrossRefGoogle Scholar
  25. V. Avila-Reese, E. Vázquez-Semadeni, Turbulent dissipation in the interstellar medium: the coexistence of forced and decaying regimes and implications for galaxy formation and evolution. Astrophys. J. 553, 645–660 (2001).  https://doi.org/10.1086/320944 ADSCrossRefGoogle Scholar
  26. F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. Space Phys. 116(A5), A05209 (2011).  https://doi.org/10.1029/2010JA016294. ADSGoogle Scholar
  27. N.M. Bakhareva, V.V. Zaitsev, M.L. Khodachenko, Dynamic regimes of prominence evolution. Sol. Phys. 139, 299–314 (1992).  https://doi.org/10.1007/BF00159156 ADSCrossRefGoogle Scholar
  28. I. Ballai, R. Oliver, M. Alexandrou, Dissipative instability in partially ionised prominence plasmas. Astron. Astrophys. 577, 82 (2015).  https://doi.org/10.1051/0004-6361/201423973 ADSCrossRefGoogle Scholar
  29. J. Ballesteros-Paredes, E. Vázquez-Semadeni, J. Scalo, Clouds as turbulent density fluctuations: implications for pressure confinement and spectral line data interpretation. Astrophys. J. 515, 286–303 (1999).  https://doi.org/10.1086/307007 ADSCrossRefGoogle Scholar
  30. J. Ballesteros-Paredes, R.S. Klessen, M.-M. Mac Low, E. Vazquez-Semadeni, Molecular cloud turbulence and star formation, in Protostars and Planets V (2007), pp. 63–80 Google Scholar
  31. J. Ballesteros-Paredes, E. Vázquez-Semadeni, A. Gazol, L.W. Hartmann, F. Heitsch, P. Colín, Gravity or turbulence?—II. Evolving column density probability distribution functions in molecular clouds. Mon. Not. R. Astron. Soc. 416, 1436–1442 (2011a).  https://doi.org/10.1111/j.1365-2966.2011.19141.x ADSCrossRefGoogle Scholar
  32. J. Ballesteros-Paredes, L.W. Hartmann, E. Vázquez-Semadeni, F. Heitsch, M.A. Zamora-Avilés, Gravity or turbulence? Velocity dispersion-size relation. Mon. Not. R. Astron. Soc. 411, 65–70 (2011b).  https://doi.org/10.1111/j.1365-2966.2010.17657.x ADSCrossRefGoogle Scholar
  33. D.S. Balsara, Wave propagation in molecular clouds. Astrophys. J. 465, 775 (1996).  https://doi.org/10.1086/177462 ADSCrossRefGoogle Scholar
  34. P.M. Banks, G. Kockarts, Aeronomy (1973) Google Scholar
  35. S. Barceló, M. Carbonell, J.L. Ballester, Time damping of non-adiabatic magnetohydrodynamic waves in a partially ionised prominence medium: effect of a background flow. Astron. Astrophys. 525, 60 (2011).  https://doi.org/10.1051/0004-6361/201015499 ADSCrossRefGoogle Scholar
  36. N.M. Batalha, J.F. Rowe, S.T. Bryson, T. Barclay, C.J. Burke, D.A. Caldwell, J.L. Christiansen, F. Mullally, S.E. Thompson, T.M. Brown, A.K. Dupree, D.C. Fabrycky, E.B. Ford, J.J. Fortney, R.L. Gilliland, H. Isaacson, D.W. Latham, G.W. Marcy, S.N. Quinn, D. Ragozzine, A. Shporer, W.J. Borucki, D.R. Ciardi, T.N. Gautier III, M.R. Haas, J.M. Jenkins, D.G. Koch, J.J. Lissauer, W. Rapin, G.S. Basri, A.P. Boss, L.A. Buchhave, J.A. Carter, D. Charbonneau, J. Christensen-Dalsgaard, B.D. Clarke, W.D. Cochran, B.-O. Demory, J.-M. Desert, E. Devore, L.R. Doyle, G.A. Esquerdo, M. Everett, F. Fressin, J.C. Geary, F.R. Girouard, A. Gould, J.R. Hall, M.J. Holman, A.W. Howard, S.B. Howell, K.A. Ibrahim, K. Kinemuchi, H. Kjeldsen, T.C. Klaus, J. Li, P.W. Lucas, S. Meibom, R.L. Morris, A. Prša, E. Quintana, D.T. Sanderfer, D. Sasselov, S.E. Seader, J.C. Smith, J.H. Steffen, M. Still, M.C. Stumpe, J.C. Tarter, P. Tenenbaum, G. Torres, J.D. Twicken, K. Uddin, J. Van Cleve, L. Walkowicz, W.F. Welsh, Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. Astrophys. J. Suppl. Ser. 204, 24 (2013).  https://doi.org/10.1088/0067-0049/204/2/24 ADSCrossRefGoogle Scholar
  37. C. Battersby, A. Ginsburg, J. Bally, S. Longmore, M. Dunham, J. Darling, The onset of massive star formation: the evolution of temperature and density structure in an infrared dark cloud. Astrophys. J. 787, 113 (2014).  https://doi.org/10.1088/0004-637X/787/2/113 ADSCrossRefGoogle Scholar
  38. S.J. Bauer, Physics of Planetary Ionospheres (1973) CrossRefGoogle Scholar
  39. R. Beck, Magnetic fields in galaxies, in Magnetic Fields in Diffuse Media, ed. by A. Lazarian, E.M. de Gouveia Dal Pino, C. Melioli. Astrophysics and Space Science Library, vol. 407 (2015), p. 507.  https://doi.org/10.1007/978-3-662-44625-6-18 Google Scholar
  40. E.S. Belenkaya, S.Y. Bobrovnikov, I.I. Alexeev, V.V. Kalegaev, S.W.H. Cowley, A model of Jupiter’s magnetospheric magnetic field with variable magnetopause flaring. Planet. Space Sci. 53, 863–872 (2005).  https://doi.org/10.1016/j.pss.2005.03.004 ADSCrossRefGoogle Scholar
  41. T.E. Berger, R.A. Shine, G.L. Slater, T.D. Tarbell, A.M. Title, T.J. Okamoto, K. Ichimoto, Y. Katsukawa, Y. Suematsu, S. Tsuneta, B.W. Lites, T. Shimizu, Hinode SOT observations of solar quiescent prominence dynamics. Astrophys. J. Lett. 676, 89–92 (2008).  https://doi.org/10.1086/587171 ADSCrossRefGoogle Scholar
  42. T.E. Berger, G. Slater, N. Hurlburt, R. Shine, T. Tarbell, A. Title, B.W. Lites, T.J. Okamoto, K. Ichimoto, Y. Katsukawa, T. Magara, Y. Suematsu, T. Shimizu, Quiescent prominence dynamics observed with the Hinode Solar Optical Telescope. I. Turbulent upflow plumes. Astrophys. J. 716, 1288–1307 (2010).  https://doi.org/10.1088/0004-637X/716/2/1288 ADSCrossRefGoogle Scholar
  43. A. Bhardwaj, G.R. Gladstone, Auroras on Saturn, Uranus, and Neptune. Adv. Space Res. 26(10), 1551–1558 (2000) ADSCrossRefGoogle Scholar
  44. J.A. Bittencourt, Fundamentals of Plasma Physics (Pergamon Press, Oxford, 1986) MATHGoogle Scholar
  45. L. Blitz, F.H. Shu, The origin and lifetime of giant molecular cloud complexes. Astrophys. J. 238, 148–157 (1980).  https://doi.org/10.1086/157968 ADSCrossRefGoogle Scholar
  46. P. Bodenheimer, Angular momentum evolution of young stars and disks. Annu. Rev. Astron. Astrophys. 33, 199–238 (1995).  https://doi.org/10.1146/annurev.aa.33.090195.001215 ADSCrossRefGoogle Scholar
  47. X. Bonfils, X. Delfosse, S. Udry, T. Forveille, M. Mayor, C. Perrier, F. Bouchy, M. Gillon, C. Lovis, F. Pepe, D. Queloz, N.C. Santos, D. Ségransan, J.-L. Bertaux, The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. Astron. Astrophys. 549, 109 (2013).  https://doi.org/10.1051/0004-6361/201014704 ADSCrossRefGoogle Scholar
  48. T.J.M. Boyd, J.J. Sanderson, The Physics of Plasmas (2003), p. 544 MATHCrossRefGoogle Scholar
  49. S.J. Bradshaw, P.J. Cargill, Explosive heating of low-density coronal plasma. Astron. Astrophys. 458, 987–995 (2006).  https://doi.org/10.1051/0004-6361:20065691 ADSCrossRefGoogle Scholar
  50. S.J. Bradshaw, J.A. Klimchuk, What dominates the coronal emission spectrum during the cycle of impulsive heating and cooling? Astrophys. J. Suppl. Ser. 194, 26 (2011).  https://doi.org/10.1088/0067-0049/194/2/26 ADSCrossRefGoogle Scholar
  51. C.S. Brady, T.D. Arber, Simulations of Alfvén and kink wave driving of the solar chromosphere: efficient heating and spicule launching. Astrophys. J. 829, 80 (2016).  https://doi.org/10.3847/0004-637X/829/2/80 ADSCrossRefGoogle Scholar
  52. S.I. Braginskii, Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965) ADSGoogle Scholar
  53. R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10, 2 (2013).  https://doi.org/10.12942/lrsp-2013-2 ADSCrossRefGoogle Scholar
  54. O. Buneman, Excitation of field aligned sound waves by electron streams. Phys. Rev. Lett. 10, 285–287 (1963).  https://doi.org/10.1103/PhysRevLett.10.285 ADSCrossRefGoogle Scholar
  55. A. Burkert, L. Hartmann, Collapse and fragmentation in finite sheets. Astrophys. J. 616, 288–300 (2004).  https://doi.org/10.1086/424895 ADSCrossRefGoogle Scholar
  56. F.H. Busse, Generation planetary magnetism by convection. Phys. Earth Planet. Inter. 12, 350–358 (1976).  https://doi.org/10.1016/0031-9201(76)90030-3 ADSCrossRefGoogle Scholar
  57. P.S. Cally, Phase-mixing and surface waves: a new interpretation. J. Plasma Phys. 45, 453–479 (1991).  https://doi.org/10.1017/S002237780001583X ADSCrossRefGoogle Scholar
  58. M. Carbonell, R. Oliver, J.L. Ballester, Time damping of linear non-adiabatic magnetohydrodynamic waves in an unbounded plasma with solar coronal properties. Astron. Astrophys. 415, 739–750 (2004).  https://doi.org/10.1051/0004-6361:20034630 ADSCrossRefGoogle Scholar
  59. M. Carbonell, J. Terradas, R. Oliver, J.L. Ballester, Spatial damping of linear non-adiabatic magnetoacoustic waves in a prominence medium. Astron. Astrophys. 460, 573–581 (2006).  https://doi.org/10.1051/0004-6361:20065528 ADSCrossRefGoogle Scholar
  60. M. Carbonell, R. Oliver, J.L. Ballester, Time damping of non-adiabatic MHD slow and thermal waves in a prominence medium: effect of a background flow. Nature 14, 277–284 (2009).  https://doi.org/10.1016/j.newast.2008.09.001 Google Scholar
  61. M. Carbonell, P. Forteza, R. Oliver, J.L. Ballester, The spatial damping of magnetohydrodynamic waves in a flowing partially ionised prominence plasma. Astron. Astrophys. 515, 80 (2010).  https://doi.org/10.1051/0004-6361/200913024 ADSCrossRefGoogle Scholar
  62. P. Cargill, I. de Moortel, Solar physics: waves galore. Nature 475, 463–464 (2011).  https://doi.org/10.1038/475463a ADSCrossRefGoogle Scholar
  63. M. Carlsson, A computer program for solving multi-level non-LTE radiative transferproblems in moving or static atmospheres. Uppsala Astronomical Observatory Reports 33 (1986) Google Scholar
  64. M. Carlsson, R.F. Stein, Dynamic hydrogen ionization. Astrophys. J. 572, 626–635 (2002).  https://doi.org/10.1086/340293 ADSCrossRefGoogle Scholar
  65. S.E. Caunt, M.J. Korpi, A 3D MHD model of astrophysical flows: algorithms, tests and parallelisation. Astron. Astrophys. 369, 706–728 (2001).  https://doi.org/10.1051/0004-6361:20010157 ADSMATHCrossRefGoogle Scholar
  66. Z. Ceplecha, Influx of interplanetary bodies onto Earth. Astron. Astrophys. 263, 361–366 (1992) ADSGoogle Scholar
  67. J.M. Chadney, M. Galand, Y.C. Unruh, T.T. Koskinen, J. Sanz-Forcada, XUV-driven mass loss from extrasolar giant planets orbiting active stars. Icarus 250, 357–367 (2015).  https://doi.org/10.1016/j.icarus.2014.12.012 ADSCrossRefGoogle Scholar
  68. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (1961) MATHGoogle Scholar
  69. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (1970) MATHGoogle Scholar
  70. M.C.M. Cheung, R.H. Cameron, Magnetohydrodynamics of the weakly ionized solar photosphere. Astrophys. J. 750, 6 (2012).  https://doi.org/10.1088/0004-637X/750/1/6 ADSCrossRefGoogle Scholar
  71. J. Cho, A. Lazarian, E.T. Vishniac, Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium. Astrophys. J. 564, 291–301 (2002).  https://doi.org/10.1086/324186 ADSCrossRefGoogle Scholar
  72. L. Chomiuk, M.S. Povich, Toward a unification of star formation rate determinations in the Milky Way and other galaxies. Astrophys. J. 142, 197 (2011).  https://doi.org/10.1088/0004-6256/142/6/197 ADSGoogle Scholar
  73. U.R. Christensen, Dynamo scaling laws and applications to the planets. Space Sci. Rev. 152, 565–590 (2010).  https://doi.org/10.1007/s11214-009-9553-2 ADSCrossRefGoogle Scholar
  74. U.R. Christensen, J. Aubert, Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006).  https://doi.org/10.1111/j.1365-246X.2006.03009.x ADSCrossRefGoogle Scholar
  75. G.E. Ciolek, S. Basu, On the timescale for the formation of protostellar cores in magnetic interstellar clouds. Astrophys. J. 547, 272–279 (2001).  https://doi.org/10.1086/318348 ADSCrossRefGoogle Scholar
  76. G.E. Ciolek, W.G. Roberge, Time-dependent, multifluid, magnetohydrodynamic shock waves with grain dynamics. I. Formulation and numerical tests. Astrophys. J. 567, 947–961 (2002).  https://doi.org/10.1086/338591 ADSCrossRefGoogle Scholar
  77. P. Colín, E. Vázquez-Semadeni, G.C. Gómez, Molecular cloud evolution—V. Cloud destruction by stellar feedback. Mon. Not. R. Astron. Soc. 435, 1701–1714 (2013).  https://doi.org/10.1093/mnras/stt1409 ADSCrossRefGoogle Scholar
  78. S. Cowley, E. Bunce, R. Prangé, Saturn’s polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys. 22, 1379–1394 (2004).  https://doi.org/10.5194/angeo-22-1379-2004 ADSCrossRefGoogle Scholar
  79. S.W.H. Cowley, E.J. Bunce, J.M. O’Rourke, A simple quantitative model of plasma flows and currents in Saturn’s polar ionosphere. J. Geophys. Res. Space Phys. 109(A5), A05212 (2004).  https://doi.org/10.1029/2003JA010375 ADSGoogle Scholar
  80. S.W.H. Cowley, C.S. Arridge, E.J. Bunce, J.T. Clarke, A.J. Coates, M.K. Dougherty, J.-C. Gérard, D. Grodent, J.D. Nichols, D.L. Talboys, Auroral current systems in Saturn’s magnetosphere: comparison of theoretical models with Cassini and HST observations. Ann. Geophys. 26, 2613–2630 (2008).  https://doi.org/10.5194/angeo-26-2613-2008 ADSCrossRefGoogle Scholar
  81. S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49(10–11), 1067–1088 (2001). Magnetosphere of the Outer Planets Part II.  https://doi.org/10.1016/S0032-0633(00)00167-7 ADSCrossRefGoogle Scholar
  82. T.G. Cowling, Magnetohydrodynamics (Interscience, New York, 1957) MATHGoogle Scholar
  83. T.E. Cravens, Physics of Solar System Plasmas (Cambridge University Press, Cambridge, 1997) CrossRefGoogle Scholar
  84. R.M. Crutcher, Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012).  https://doi.org/10.1146/annurev-astro-081811-125514 ADSCrossRefGoogle Scholar
  85. R.M. Crutcher, N. Hakobian, T.H. Troland, Testing magnetic star formation theory. Astrophys. J. 692, 844–855 (2009).  https://doi.org/10.1088/0004-637X/692/1/844 ADSCrossRefGoogle Scholar
  86. R.M. Crutcher, N. Hakobian, T.H. Troland, Self-consistent analysis of OH Zeeman observations. Mon. Not. R. Astron. Soc. 402, 64–66 (2010).  https://doi.org/10.1111/j.1745-3933.2009.00802.x ADSCrossRefGoogle Scholar
  87. J.E. Dale, B. Ercolano, I.A. Bonnell, Ionizing feedback from massive stars in massive clusters—II. Disruption of bound clusters by photoionization. Mon. Not. R. Astron. Soc. 424, 377–392 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21205.x ADSCrossRefGoogle Scholar
  88. A. Dalgarno, M. Yan, W. Liu, Electron energy deposition in a gas mixture of atomic and molecular hydrogen and helium. Astrophys. J. Suppl. Ser. 125(1), 237 (1999). http://stacks.iop.org/0067-0049/125/i=1/a=237 ADSCrossRefGoogle Scholar
  89. W.B. Dapp, S. Basu, Averting the magnetic braking catastrophe on small scales: disk formation due to Ohmic dissipation. Astron. Astrophys. 521, 56 (2010).  https://doi.org/10.1051/0004-6361/201015700 ADSCrossRefGoogle Scholar
  90. W.B. Dapp, S. Basu, M.W. Kunz, Bridging the gap: disk formation in the Class 0 phase with ambipolar diffusion and Ohmic dissipation. Astron. Astrophys. 541, 35 (2012).  https://doi.org/10.1051/0004-6361/201117876 ADSCrossRefGoogle Scholar
  91. B. De Pontieu, G. Haerendel, Weakly damped Alfven waves as drivers for spicules. Astron. Astrophys. 338, 729–736 (1998) ADSGoogle Scholar
  92. B. De Pontieu, R. Erdélyi, S.P. James, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536–539 (2004).  https://doi.org/10.1038/nature02749 ADSCrossRefGoogle Scholar
  93. B. De Pontieu, P.C.H. Martens, H.S. Hudson, Chromospheric damping of Alfvén waves. Astrophys. J. 558, 859–871 (2001).  https://doi.org/10.1086/322408 ADSCrossRefGoogle Scholar
  94. B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, C.J. Schrijver, A.M. Title, R.A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, S. Nagata, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574 (2007).  https://doi.org/10.1126/science.1151747 ADSCrossRefGoogle Scholar
  95. B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, P. Boerner, J. Martinez-Sykora, C.J. Schrijver, A.M. Title, The origins of hot plasma in the solar corona. Science 331, 55 (2011).  https://doi.org/10.1126/science.1197738 ADSCrossRefGoogle Scholar
  96. B. De Pontieu, M. Carlsson, L.H.M. Rouppe van der Voort, R.J. Rutten, V.H. Hansteen, H. Watanabe, Ubiquitous torsional motions in type II spicules. Astrophys. J. Lett. 752, 12 (2012).  https://doi.org/10.1088/2041-8205/752/1/L12 ADSCrossRefGoogle Scholar
  97. B. De Pontieu, L. Rouppe van der Voort, S.W. McIntosh, T.M.D. Pereira, M. Carlsson, V. Hansteen, H. Skogsrud, J. Lemen, A. Title, P. Boerner, N. Hurlburt, T.D. Tarbell, J.P. Wuelser, E.E. De Luca, L. Golub, S. McKillop, K. Reeves, S. Saar, P. Testa, H. Tian, C. Kankelborg, S. Jaeggli, L. Kleint, J. Martinez-Sykora, On the prevalence of small-scale twist in the solar chromosphere and transition region. Science 346, 1255732 (2014).  https://doi.org/10.1126/science.1255732 CrossRefGoogle Scholar
  98. A.J. Díaz, R. Soler, J.L. Ballester, Rayleigh-Taylor instability in partially ionized compressible plasmas. Astrophys. J. 754, 41 (2012).  https://doi.org/10.1088/0004-637X/754/1/41 ADSCrossRefGoogle Scholar
  99. C.L. Dobbs, M.R. Krumholz, J. Ballesteros-Paredes, A.D. Bolatto, Y. Fukui, M. Heyer, M.-M.M. Low, E.C. Ostriker, E. Vázquez-Semadeni, Formation of molecular clouds and global conditions for star formation, in Protostars and Planets VI (2014), pp. 3–26.  https://doi.org/10.2458/azu-uapress-9780816531240-ch001 Google Scholar
  100. T.P. Downes, Driven multifluid magnetohydrodynamic molecular cloud turbulence. Mon. Not. R. Astron. Soc. 425, 2277–2286 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21577.x ADSCrossRefGoogle Scholar
  101. T.P. Downes, S. O’Sullivan, Multifluid magnetohydrodynamic turbulent decay. Astrophys. J. 730, 12 (2011).  https://doi.org/10.1088/0004-637X/730/1/12 ADSCrossRefGoogle Scholar
  102. B.T. Draine, Multicomponent, reacting MHD flows. Mon. Not. R. Astron. Soc. 220, 133–148 (1986) ADSMATHCrossRefGoogle Scholar
  103. B.T. Draine, W.G. Roberge, A. Dalgarno, Magnetohydrodynamic shock waves in molecular clouds. Astrophys. J. 264, 485–507 (1983).  https://doi.org/10.1086/160617 ADSCrossRefGoogle Scholar
  104. L.A. Dremukhina, Y.I. Feldstein, I.I. Alexeev, V.V. Kalegaev, M.E. Greenspan, Structure of the magnetospheric magnetic field during magnetic storms. J. Geophys. Res. 104, 28351–28360 (1999).  https://doi.org/10.1029/1999JA900261 ADSCrossRefGoogle Scholar
  105. R. Dunn, Photometry of the solar chromosphere. PhD thesis, Harvard University (1960) Google Scholar
  106. A. Ekenbäck, M. Holmström, P. Wurz, J.-M. Grießmeier, H. Lammer, F. Selsis, T. Penz, Energetic neutral atoms around HD 209458b: estimations of magnetospheric properties. Astrophys. J. 709, 670–679 (2010).  https://doi.org/10.1088/0004-637X/709/2/670 ADSCrossRefGoogle Scholar
  107. B.G. Elmegreen, Magnetic diffusion and ionization fractions in dense molecular clouds—the role of charged grains. Astrophys. J. 232, 729–739 (1979).  https://doi.org/10.1086/157333 ADSCrossRefGoogle Scholar
  108. B.G. Elmegreen, J. Scalo, Interstellar turbulence I: observations and processes. Annu. Rev. Astron. Astrophys. 42, 211–273 (2004).  https://doi.org/10.1146/annurev.astro.41.011802.094859 ADSCrossRefGoogle Scholar
  109. O. Engvold, Description and classification of prominences, in Astrophysics and Space Science Library, ed. by J.-C. Vial, O. Engvold. Astrophysics and Space Science Library, vol. 415 (2015), p. 31.  https://doi.org/10.1007/978-3-319-10416-4-2 Google Scholar
  110. R. Erdélyi, V. Fedun, Are there Alfvén waves in the solar atmosphere? Science 318, 1572 (2007).  https://doi.org/10.1126/science.1153006 ADSCrossRefGoogle Scholar
  111. R. Erdélyi, S.P. James, Can ion-neutral damping help to form spicules? II. Random driver. Astron. Astrophys. 427, 1055–1064 (2004).  https://doi.org/10.1051/0004-6361:20040345 ADSCrossRefGoogle Scholar
  112. N.V. Erkaev, T. Penz, H. Lammer, H.I.M. Lichtenegger, H.K. Biernat, P. Wurz, J.-M. Grießmeier, W.W. Weiss, Plasma and magnetic field parameters in the vicinity of short-periodic giant exoplanets. Astrophys. J. Suppl. Ser. 157, 396–401 (2005).  https://doi.org/10.1086/427904 ADSCrossRefGoogle Scholar
  113. N.V. Erkaev, H. Lammer, P. Odert, Y.N. Kulikov, K.G. Kislyakova, M.L. Khodachenko, M. Güdel, A. Hanslmeier, H. Biernat, XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape. Astrobiology 13, 1011–1029 (2013).  https://doi.org/10.1089/ast.2012.0957 ADSCrossRefGoogle Scholar
  114. S.A.E.G. Falle, A numerical scheme for multifluid magnetohydrodynamics. Mon. Not. R. Astron. Soc. 344, 1210–1218 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06908.x ADSCrossRefGoogle Scholar
  115. D.T. Farley Jr., A plasma instability resulting in field-aligned irregularities in the ionosphere. J. Geophys. Res. 68, 6083 (1963) ADSMATHCrossRefGoogle Scholar
  116. W.M. Farrell, M.D. Desch, P. Zarka, On the possibility of coherent cyclotron emission from extrasolar planets. J. Geophys. Res. 104, 14025–14032 (1999).  https://doi.org/10.1029/1998JE900050 ADSCrossRefGoogle Scholar
  117. M. Fatuzzo, F.C. Adams, Enhancement of ambipolar diffusion rates through field fluctuations. Astrophys. J. 570, 210–221 (2002).  https://doi.org/10.1086/339502 ADSCrossRefGoogle Scholar
  118. C. Federrath, On the universality of interstellar filaments: theory meets simulations and observations. ArXiv e-prints (2015) Google Scholar
  119. T. Felipe, E. Khomenko, Dependence of sunspot photospheric waves on the depth of the source of solar p-modes. Astron. Astrophys. 599, 2 (2017).  https://doi.org/10.1051/0004-6361/201630123 ADSCrossRefGoogle Scholar
  120. L. Feng, B. Inhester, W.Q. Gan, Kelvin-Helmholtz instability of a coronal streamer. Astrophys. J. 774, 141 (2013).  https://doi.org/10.1088/0004-637X/774/2/141 ADSCrossRefGoogle Scholar
  121. J.D. Fiege, R.E. Pudritz, Helical fields and filamentary molecular clouds—I. Mon. Not. R. Astron. Soc. 311, 85–104 (2000).  https://doi.org/10.1046/j.1365-8711.2000.03066.x ADSCrossRefGoogle Scholar
  122. J. Fischera, P.G. Martin, Physical properties of interstellar filaments. Astron. Astrophys. 542, 77 (2012).  https://doi.org/10.1051/0004-6361/201218961 ADSCrossRefGoogle Scholar
  123. J.M. Fontenla, Chromospheric plasma and the Farley-Buneman instability in solar magnetic regions. Astron. Astrophys. 442, 1099–1103 (2005).  https://doi.org/10.1051/0004-6361:20053669 ADSCrossRefGoogle Scholar
  124. J.M. Fontenla, E.H. Avrett, R. Loeser, Energy balance in the solar transition region. III—Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319–345 (1993).  https://doi.org/10.1086/172443 ADSCrossRefGoogle Scholar
  125. J.M. Fontenla, W.K. Peterson, J. Harder, Chromospheric heating by the Farley-Buneman instability. Astron. Astrophys. 480, 839–846 (2008).  https://doi.org/10.1051/0004-6361:20078517 ADSCrossRefGoogle Scholar
  126. P. Forteza, R. Oliver, J.L. Ballester, Time damping of non-adiabatic MHD waves in an unbounded partially ionised prominence plasma. Astron. Astrophys. 492, 223–231 (2008).  https://doi.org/10.1051/0004-6361:200810370 ADSCrossRefGoogle Scholar
  127. P. Forteza, R. Oliver, J.L. Ballester, M.L. Khodachenko, Damping of oscillations by ion-neutral collisions in a prominence plasma. Astron. Astrophys. 461, 731–739 (2007).  https://doi.org/10.1051/0004-6361:20065900 ADSCrossRefGoogle Scholar
  128. J.C. Foster, A.J. Coster, P.J. Erickson, J.M. Holt, F.D. Lind, W. Rideout, M. McCready, A. van Eyken, R.J. Barnes, R.A. Greenwald, F.J. Rich, Multiradar observations of the polar tongue of ionization. J. Geophys. Res. Space Phys. 110, 9–31 (2005).  https://doi.org/10.1029/2004JA010928 Google Scholar
  129. C. Foullon, E. Verwichte, V.M. Nakariakov, K. Nykyri, C.J. Farrugia, Magnetic Kelvin-Helmholtz instability at the Sun. Astrophys. J. Lett. 729, 8 (2011).  https://doi.org/10.1088/2041-8205/729/1/L8 ADSCrossRefGoogle Scholar
  130. J.L. Fox, M.I. Galand, R.E. Johnson, Energy deposition in planetary atmospheres by charged particles and solar photons. Space Sci. Rev. 139, 3–62 (2008).  https://doi.org/10.1007/s11214-008-9403-7 ADSCrossRefGoogle Scholar
  131. R.S. Furuya, Y. Kitamura, H. Shinnaga, A dynamically collapsing core and a precursor of a core in a filament supported by turbulent and magnetic pressures. Astrophys. J. 793, 94 (2014).  https://doi.org/10.1088/0004-637X/793/2/94 ADSCrossRefGoogle Scholar
  132. M. Galand, S. Chakrabarti, Auroral Processes in the Solar System. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 130 (2002), p. 55 Google Scholar
  133. M. Galand, L. Moore, I. Mueller-Wodarg, M. Mendillo, S. Miller, Response of Saturn’s auroral ionosphere to electron precipitation: electron density, electron temperature, and electrical conductivity. J. Geophys. Res. Space Phys. 116(A9), A09306 (2011).  https://doi.org/10.1029/2010JA016412 ADSGoogle Scholar
  134. D. Galli, S. Lizano, F.H. Shu, A. Allen, Gravitational collapse of magnetized clouds. I. Ideal magnetohydrodynamic accretion flow. Astrophys. J. 647, 374–381 (2006).  https://doi.org/10.1086/505257 ADSCrossRefGoogle Scholar
  135. R. Galván-Madrid, E. Keto, Q. Zhang, S. Kurtz, L.F. Rodríguez, P.T.P. Ho, Formation of an O-star cluster by hierarchical accretion in G20.08-0.14 N. Astrophys. J. 706, 1036–1053 (2009).  https://doi.org/10.1088/0004-637X/706/2/1036 ADSCrossRefGoogle Scholar
  136. A. García Muñoz, Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55, 1426–1455 (2007).  https://doi.org/10.1016/j.pss.2007.03.007 ADSCrossRefGoogle Scholar
  137. J.-C. Gérard, D. Grodent, J. Gustin, A. Saglam, J.T. Clarke, J.T. Trauger, Characteristics of Saturn’s FUV aurora observed with the Space Telescope Imaging Spectrograph. J. Geophys. Res. Space Phys. 109, 09207 (2004).  https://doi.org/10.1029/2004JA010513 ADSCrossRefGoogle Scholar
  138. J.-C. Gérard, B. Bonfond, J. Gustin, D. Grodent, J.T. Clarke, D. Bisikalo, V. Shematovich, Altitude of Saturn’s aurora and its implications for the characteristic energy of precipitated electrons. Geophys. Res. Lett. 36(2), L02202 (2009).  https://doi.org/10.1029/2008GL036554 ADSCrossRefGoogle Scholar
  139. J.-C. Gérard, J. Gustin, W.R. Pryor, D. Grodent, B. Bonfond, A. Radioti, G.R. Gladstone, J.T. Clarke, J.D. Nichols, Remote sensing of the energy of auroral electrons in Saturn’s atmosphere: Hubble and Cassini spectral observations. Icarus 223, 211–221 (2013).  https://doi.org/10.1016/j.icarus.2012.11.033 ADSCrossRefGoogle Scholar
  140. J.-C. Gérard, V. Singh, A model of energy deposition of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications. J. Geophys. Res. Space Phys. 87(A6), 4525–4532 (1982).  https://doi.org/10.1029/JA087iA06p04525 ADSCrossRefGoogle Scholar
  141. H. Gilbert, Energy balance, in Solar Prominences, ed. by J.-C. Vial, O. Engvold. Astrophysics and Space Science Library, vol. 415 (2015), p. 157.  https://doi.org/10.1007/978-3-319-10416-4-7 Google Scholar
  142. H.R. Gilbert, V.H. Hansteen, T.E. Holzer, Neutral atom diffusion in a partially ionized prominence plasma. Astrophys. J. 577, 464–474 (2002).  https://doi.org/10.1086/342165 ADSCrossRefGoogle Scholar
  143. H. Gilbert, G. Kilper, D. Alexander, T. Kucera, Comparing spatial distributions of solar prominence mass derived from coronal absorption. Astrophys. J. 727, 25 (2011).  https://doi.org/10.1088/0004-637X/727/1/25 ADSCrossRefGoogle Scholar
  144. G. Gogoberidze, Y. Voitenko, S. Poedts, M. Goossens, Farley-Buneman instability in the solar chromosphere. Astrophys. J. Lett. 706, 12–16 (2009).  https://doi.org/10.1088/0004-637X/706/1/L12 ADSCrossRefGoogle Scholar
  145. G. Gogoberidze, Y. Voitenko, S. Poedts, J. De Keyser, Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere. Mon. Not. R. Astron. Soc. 438, 3568–3576 (2014).  https://doi.org/10.1093/mnras/stt2469 ADSCrossRefGoogle Scholar
  146. N.J. Goldbaum, M.R. Krumholz, C.D. Matzner, C.F. McKee, The global evolution of giant molecular clouds. II. The role of accretion. Astrophys. J. 738, 101 (2011).  https://doi.org/10.1088/0004-637X/738/1/101 ADSCrossRefGoogle Scholar
  147. T.P. Golding, M. Carlsson, J. Leenaarts, Detailed and simplified nonequilibrium helium ionization in the solar atmosphere. Astrophys. J. 784, 30 (2014).  https://doi.org/10.1088/0004-637X/784/1/30 ADSCrossRefGoogle Scholar
  148. T.P. Golding, J. Leenaarts, M. Carlsson, Non-equilibrium helium ionization in an MHD simulation of the solar atmosphere. Astrophys. J. 817, 125 (2016).  https://doi.org/10.3847/0004-637X/817/2/125 ADSCrossRefGoogle Scholar
  149. T.P. Golding, J. Leenaarts, M. Carlsson, Formation of the helium extreme-UV resonance lines. Astron. Astrophys. 597, 102 (2017).  https://doi.org/10.1051/0004-6361/201629462 ADSCrossRefGoogle Scholar
  150. P. Goldreich, J. Kwan, Molecular clouds. Astrophys. J. 189, 441–454 (1974).  https://doi.org/10.1086/152821 ADSCrossRefGoogle Scholar
  151. G.C. Gómez, E. Vázquez-Semadeni, Filaments in simulations of molecular cloud formation. Astrophys. J. 791, 124 (2014).  https://doi.org/10.1088/0004-637X/791/2/124 ADSCrossRefGoogle Scholar
  152. M.L. Goodman, On the mechanism of chromospheric network heating and the condition for its onset in the Sun and other solar-type stars. Astrophys. J. 533, 501–522 (2000).  https://doi.org/10.1086/308635 ADSCrossRefGoogle Scholar
  153. M.L. Goodman, The necessity of using realistic descriptions of transport processes in modeling the solar atmosphere, and the importance of understanding chromospheric heating*. Space Sci. Rev. 95, 79–93 (2001) ADSCrossRefGoogle Scholar
  154. M.L. Goodman, Conditions for photospherically driven Alfvénic oscillations to heat the solar chromosphere by Pedersen current dissipation. Astrophys. J. 735, 45 (2011).  https://doi.org/10.1088/0004-637X/735/1/45 ADSCrossRefGoogle Scholar
  155. M. Goossens, M.S. Ruderman, Conservation laws and connection formulae for resonant MHD waves. Phys. Scr. T 60, 171–184 (1995).  https://doi.org/10.1088/0031-8949/1995/T60/021 ADSCrossRefGoogle Scholar
  156. M. Goossens, R. Erdélyi, M.S. Ruderman, Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 158, 289–338 (2011).  https://doi.org/10.1007/s11214-010-9702-7 ADSCrossRefGoogle Scholar
  157. M. Goossens, T. Van Doorsselaere, R. Soler, G. Verth, Energy content and propagation in transverse solar atmospheric waves. Astrophys. J. 768, 191 (2013).  https://doi.org/10.1088/0004-637X/768/2/191 ADSCrossRefGoogle Scholar
  158. P. Gouttebroze, N. Labrosse, Radiative transfer in cylindrical threads with incident radiation. VI. A hydrogen plus helium system. Astron. Astrophys. 503, 663–671 (2009).  https://doi.org/10.1051/0004-6361/200811483 ADSCrossRefGoogle Scholar
  159. O. Gressel, R.P. Nelson, N.J. Turner, U. Ziegler, Global hydromagnetic simulations of a planet embedded in a dead zone: gap opening, gas accretion, and formation of a protoplanetary jet. Astrophys. J. 779, 59 (2013).  https://doi.org/10.1088/0004-637X/779/1/59 ADSCrossRefGoogle Scholar
  160. O. Gressel, N.J. Turner, R.P. Nelson, C.P. McNally, Global simulations of protoplanetary disks with ohmic resistivity and ambipolar diffusion. Astrophys. J. 801, 84 (2015).  https://doi.org/10.1088/0004-637X/801/2/84 ADSCrossRefGoogle Scholar
  161. J.-M. Grießmeier, P. Zarka, H. Spreeuw, Predicting low-frequency radio fluxes of known extrasolar planets. Astron. Astrophys. 475, 359–368 (2007a).  https://doi.org/10.1051/0004-6361:20077397 ADSCrossRefGoogle Scholar
  162. J.-M. Grießmeier, S. Preusse, M. Khodachenko, U. Motschmann, G. Mann, H.O. Rucker, Exoplanetary radio emission under different stellar wind conditions. Planet. Space Sci. 55, 618–630 (2007b).  https://doi.org/10.1016/j.pss.2006.01.008 ADSCrossRefGoogle Scholar
  163. J.-M. Grießmeier, A. Stadelmann, T. Penz, H. Lammer, F. Selsis, I. Ribas, E.F. Guinan, U. Motschmann, H.K. Biernat, W.W. Weiss, The effect of tidal locking on the magnetospheric and atmospheric evolution of “Hot Jupiters”. Astron. Astrophys. 425, 753–762 (2004).  https://doi.org/10.1051/0004-6361:20035684 ADSCrossRefGoogle Scholar
  164. D. Grodent, J.H. Waite, J.-C. Gérard, A self-consistent model of the Jovian auroral thermal structure. J. Geophys. Res. Space Phys. 106(A7), 12933–12952 (2001).  https://doi.org/10.1029/2000JA900129 ADSCrossRefGoogle Scholar
  165. B.V. Gudiksen, M. Carlsson, V.H. Hansteen, W. Hayek, J. Leenaarts, J. Martínez-Sykora, The stellar atmosphere simulation code Bifrost. Code description and validation. Astron. Astrophys. 531, 154 (2011).  https://doi.org/10.1051/0004-6361/201116520 ADSCrossRefGoogle Scholar
  166. T. Guillot, A. Burrows, W.B. Hubbard, J.I. Lunine, D. Saumon, Giant planets at small orbital distances. Astrophys. J. Lett. 459, 35 (1996).  https://doi.org/10.1086/309935 ADSCrossRefGoogle Scholar
  167. J.H. Guo, Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen. Astrophys. J. 733, 98 (2011).  https://doi.org/10.1088/0004-637X/733/2/98 ADSCrossRefGoogle Scholar
  168. J.H. Guo, Escaping particle fluxes in the atmospheres of close-in exoplanets. II. Reduced mass-loss rates and anisotropic winds. Astrophys. J. 766, 102 (2013).  https://doi.org/10.1088/0004-637X/766/2/102 ADSCrossRefGoogle Scholar
  169. J. Gustin, J.-C. Gérard, W. Pryor, P.D. Feldman, D. Grodent, G. Holsclaw, Characteristics of Saturn’s polar atmosphere and auroral electrons derived from HST/STIS, FUSE and Cassini/UVIS spectra. Icarus 200, 176–187 (2009).  https://doi.org/10.1016/j.icarus.2008.11.013 ADSCrossRefGoogle Scholar
  170. G. Haerendel, Weakly damped Alfven waves as drivers of solar chromospheric spicules. Nature 360, 241–243 (1992).  https://doi.org/10.1038/360241a0 ADSCrossRefGoogle Scholar
  171. M. Hahn, D.W. Savin, Evidence for wave heating of the quiet-Sun corona. Astrophys. J. 795, 111 (2014).  https://doi.org/10.1088/0004-637X/795/2/111 ADSCrossRefGoogle Scholar
  172. J. Han, Magnetic fields in our Milky Way galaxy and nearby galaxies, in IAU Symposium, ed. by A.G. Kosovichev, E. de Gouveia Dal Pino, Y. Yan. IAU Symposium, vol. 294 (2013), pp. 213–224.  https://doi.org/10.1017/S1743921313002561 Google Scholar
  173. J.K. Hargreaves, The Solar-Terrestrial Environment. An Introduction to Geospace—The Science of the Terrestrial Upper Atmosphere, Ionosphere and Magnetosphere (1992) CrossRefGoogle Scholar
  174. V.H. Hansteen, B. De Pontieu, L. Rouppe van der Voort, M. van Noort, M. Carlsson, Dynamic fibrils are driven by magnetoacoustic shocks. Astrophys. J. Lett. 647, L73–L76 (2006).  https://doi.org/10.1086/507452 ADSCrossRefGoogle Scholar
  175. L. Hartmann, A. Burkert, On the structure of the Orion A Cloud and the formation of the Orion Nebula Cluster. Astrophys. J. 654, 988–997 (2007).  https://doi.org/10.1086/509321 ADSCrossRefGoogle Scholar
  176. L. Hartmann, J. Ballesteros-Paredes, E.A. Bergin, Rapid formation of molecular clouds and stars in the solar neighborhood. Astrophys. J. 562, 852–868 (2001).  https://doi.org/10.1086/323863 ADSCrossRefGoogle Scholar
  177. J.S. Heiner, E. Vázquez-Semadeni, J. Ballesteros-Paredes, Molecular cloud formation as seen in synthetic H I and molecular gas observations. Mon. Not. R. Astron. Soc. 452, 1353–1374 (2015).  https://doi.org/10.1093/mnras/stv1153 ADSCrossRefGoogle Scholar
  178. P. Heinzel, U. Anzer, Radiative equilibrium in solar prominences reconsidered. Astron. Astrophys. 539, 49 (2012).  https://doi.org/10.1051/0004-6361/200913537 ADSCrossRefGoogle Scholar
  179. P. Heinzel, U. Anzer, S. Gunár, Solar quiescent prominences. Filamentary structure and energetics. Mem. Soc. Astron. Ital. 81, 654 (2010) ADSGoogle Scholar
  180. P. Heinzel, S. Gunár, U. Anzer, Fast approximate radiative transfer method for visualizing the fine structure of prominences in the hydrogen \(\mbox{H}\alpha\) line. Astron. Astrophys. 579, 16 (2015).  https://doi.org/10.1051/0004-6361/201525716 ADSCrossRefGoogle Scholar
  181. F. Heitsch, Gravitational infall onto molecular filaments. II. Externally pressurized cylinders. Astrophys. J. 776, 62 (2013).  https://doi.org/10.1088/0004-637X/776/1/62 ADSCrossRefGoogle Scholar
  182. F. Heitsch, L. Hartmann, Rapid molecular cloud and star formation: mechanisms and movies. Astrophys. J. 689, 290–301 (2008).  https://doi.org/10.1086/592491 ADSCrossRefGoogle Scholar
  183. F. Heitsch, E.G. Zweibel, A.D. Slyz, J.E.G. Devriendt, Turbulent ambipolar diffusion: numerical studies in two dimensions. Astrophys. J. 603, 165–179 (2004).  https://doi.org/10.1086/381428 ADSMATHCrossRefGoogle Scholar
  184. F. Heitsch, A. Burkert, L.W. Hartmann, A.D. Slyz, J.E.G. Devriendt, Formation of structure in molecular clouds: a case study. Astrophys. J. Lett. 633, 113–116 (2005).  https://doi.org/10.1086/498413 ADSCrossRefGoogle Scholar
  185. F. Heitsch, A.D. Slyz, J.E.G. Devriendt, L.W. Hartmann, A. Burkert, The birth of molecular clouds: formation of atomic precursors in colliding flows. Astrophys. J. 648, 1052–1065 (2006).  https://doi.org/10.1086/505931 ADSCrossRefGoogle Scholar
  186. F. Heitsch, L.W. Hartmann, A.D. Slyz, J.E.G. Devriendt, A. Burkert, Cooling, gravity, and geometry: flow-driven massive core formation. Astrophys. J. 674, 316–328 (2008).  https://doi.org/10.1086/523697 ADSCrossRefGoogle Scholar
  187. P. Hennebelle, P. André, Ion-neutral friction and accretion-driven turbulence in self-gravitating filaments. Astron. Astrophys. 560, 68 (2013).  https://doi.org/10.1051/0004-6361/201321761 ADSCrossRefGoogle Scholar
  188. P. Hennebelle, M. Pérault, Dynamical condensation in a thermally bistable flow. Application to interstellar cirrus. Astron. Astrophys. 351, 309–322 (1999) ADSGoogle Scholar
  189. P. Hennebelle, M. Pérault, Dynamical condensation in a magnetized and thermally bistable flow. Application to interstellar cirrus. Astron. Astrophys. 359, 1124–1138 (2000) ADSGoogle Scholar
  190. V.M.J. Henriques, D. Kuridze, M. Mathioudakis, F.P. Keenan, Quiet-Sun \(\mbox{H}\alpha\) transients and corresponding small-scale transition region and coronal heating. Astrophys. J. 820, 124 (2016).  https://doi.org/10.3847/0004-637X/820/2/124 ADSCrossRefGoogle Scholar
  191. M. Heyer, C. Krawczyk, J. Duval, J.M. Jackson, Re-examining Larson’s scaling relationships in galactic molecular clouds. Astrophys. J. 699, 1092–1103 (2009).  https://doi.org/10.1088/0004-637X/699/2/1092 ADSCrossRefGoogle Scholar
  192. J. Heyvaerts, E.R. Priest, Coronal heating by phase-mixed shear Alfven waves. Astron. Astrophys. 117, 220–234 (1983) ADSMATHGoogle Scholar
  193. T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558 (1979).  https://doi.org/10.1029/JA084iA11p06554 ADSCrossRefGoogle Scholar
  194. T.W. Hill, The Jovian auroral oval. J. Geophys. Res. 106, 8101–8108 (2001).  https://doi.org/10.1029/2000JA000302 ADSCrossRefGoogle Scholar
  195. A. Hillier, T. Berger, H. Isobe, K. Shibata, Numerical simulations of the magnetic Rayleigh-Taylor instability in the Kippenhahn-Schlüter prominence model. I. Formation of upflows. Astrophys. J. 746, 120 (2012).  https://doi.org/10.1088/0004-637X/746/2/120 ADSCrossRefGoogle Scholar
  196. Y. Hiraki, C. Tao, Parameterization of ionization rate by auroral electron precipitation in Jupiter. Ann. Geophys. 26(1), 77–86 (2008).  https://doi.org/10.5194/angeo-26-77-2008 ADSCrossRefGoogle Scholar
  197. R. Hollerbach, G. Rüdiger, The influence of Hall drift on the magnetic fields of neutron stars. Mon. Not. R. Astron. Soc. 337, 216–224 (2002).  https://doi.org/10.1046/j.1365-8711.2002.05905.x ADSCrossRefGoogle Scholar
  198. R. Hollerbach, G. Rüdiger, Hall drift in the stratified crusts of neutron stars. Mon. Not. R. Astron. Soc. 347, 1273–1278 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07307.x ADSCrossRefGoogle Scholar
  199. J.V. Hollweg, G. Yang, Resonance absorption of compressible magnetohydrodynamic waves at thin ‘surfaces’. J. Geophys. Res. 93, 5423–5436 (1988).  https://doi.org/10.1029/JA093iA06p05423 ADSCrossRefGoogle Scholar
  200. J.V. Hollweg, S. Jackson, D. Galloway, Alfven waves in the solar atmosphere. III—Nonlinear waves on open flux tubes. Sol. Phys. 75, 35–61 (1982).  https://doi.org/10.1007/BF00153458 ADSCrossRefGoogle Scholar
  201. M. Holmström, A. Ekenbäck, F. Selsis, T. Penz, H. Lammer, P. Wurz, Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b. Nature 451, 970–972 (2008).  https://doi.org/10.1038/nature06600 ADSCrossRefGoogle Scholar
  202. F. Hoyle, On the structure of disk-shaped extragalactic nebulæ. II. On the condensation of stars the luminosity function, and the distribution of bright stars. Mon. Not. R. Astron. Soc. 105, 302 (1945).  https://doi.org/10.1093/MNRAS/105.5.302 ADSMathSciNetCrossRefGoogle Scholar
  203. J.D. Huba, NRL Plasma Formulary (United States Naval Research Laboratory, Washington, 1998) Google Scholar
  204. J.D. Huba, Hall magnetohydrodynamics—a tutorial, in Space Plasma Simulation, ed. by J. Büchner, C. Dum, M. Scholer. Lecture Notes in Physics, vol. 615 (Springer, Berlin, 2003), pp. 166–192 CrossRefGoogle Scholar
  205. I.C.F. Müller-Wodarg, L. Moore, M. Galand, S. Miller, M. Mendillo, Magnetosphere-atmosphere coupling at Saturn: 1—Response of thermosphere and ionosphere to steady state polar forcing. Icarus 221, 481–494 (2012).  https://doi.org/10.1016/j.icarus.2012.08.034 ADSCrossRefGoogle Scholar
  206. J.A. Ionson, Resonant absorption of Alfvenic surface waves and the heating of solar coronal loops. Astrophys. J. 226, 650–673 (1978).  https://doi.org/10.1086/156648 ADSCrossRefGoogle Scholar
  207. W.-H. Ip, A. Kopp, J.-H. Hu, On the star-magnetosphere interaction of close-in exoplanets. Astrophys. J. Lett. 602, 53–56 (2004).  https://doi.org/10.1086/382274 ADSCrossRefGoogle Scholar
  208. S.P. James, R. Erdélyi, Spicule formation by ion-neutral damping. Astron. Astrophys. 393, 11–14 (2002).  https://doi.org/10.1051/0004-6361:20021126 CrossRefGoogle Scholar
  209. S.P. James, R. Erdélyi, B. De Pontieu, Can ion-neutral damping help to form spicules? Astron. Astrophys. 406, 715–724 (2003).  https://doi.org/10.1051/0004-6361:20030685 ADSCrossRefGoogle Scholar
  210. A.-K. Jappsen, R.S. Klessen, Protostellar angular momentum evolution during gravoturbulent fragmentation. Astron. Astrophys. 423, 1–12 (2004).  https://doi.org/10.1051/0004-6361:20040220 ADSCrossRefGoogle Scholar
  211. J.H. Jeans, The stability of a spherical nebula. Philos. Trans. R. Soc. Lond. Ser. A 199, 1–53 (1902).  https://doi.org/10.1098/rsta.1902.0012 ADSMATHCrossRefGoogle Scholar
  212. D.B. Jess, R.J. Morton, G. Verth, V. Fedun, S.D.T. Grant, I. Giagkiozis, Multiwavelength studies of MHD waves in the solar chromosphere. An overview of recent results. Space Sci. Rev. 190, 103–161 (2015).  https://doi.org/10.1007/s11214-015-0141-3 ADSCrossRefGoogle Scholar
  213. J. Jijina, P.C. Myers, F.C. Adams, Dense cores mapped in ammonia: a database. Astrophys. J. Suppl. Ser. 125, 161–236 (1999).  https://doi.org/10.1086/313268 ADSCrossRefGoogle Scholar
  214. E.P.G. Johansson, T. Bagdonat, U. Motschmann, Consequences of expanding exoplanetary atmospheres for magnetospheres. Astron. Astrophys. 496, 869–877 (2009).  https://doi.org/10.1051/0004-6361/200810509 ADSMATHCrossRefGoogle Scholar
  215. A.C. Jones, T.P. Downes, The Kelvin-Helmholtz instability in weakly ionized plasmas: ambipolar-dominated and Hall-dominated flows. Mon. Not. R. Astron. Soc. 418, 390–400 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19491.x ADSCrossRefGoogle Scholar
  216. A.C. Jones, T.P. Downes, The Kelvin-Helmholtz instability in weakly ionized plasmas—II. Multifluid effects in molecular clouds. Mon. Not. R. Astron. Soc. 420, 817–828 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20095.x ADSCrossRefGoogle Scholar
  217. P.G. Judge, V. Hubeny, J.C. Brown, Fundamental limitations of emission-line spectra as diagnostics of plasma temperature and density structure. Astrophys. J. 475, 275–290 (1997).  https://doi.org/10.1086/303511 ADSCrossRefGoogle Scholar
  218. P.G. Judge, B. de Pontieu, S.W. McIntosh, K. Olluri, The connection of type II spicules to the corona. Astrophys. J. 746, 158 (2012).  https://doi.org/10.1088/0004-637X/746/2/158 ADSCrossRefGoogle Scholar
  219. B.-I. Jun, M.L. Norman, J.M. Stone, A numerical study of Rayleigh-Taylor instability in magnetic fluids. Astrophys. J. 453, 332 (1995).  https://doi.org/10.1086/176393 ADSCrossRefGoogle Scholar
  220. Y. Katsukawa, T.E. Berger, K. Ichimoto, B.W. Lites, S. Nagata, T. Shimizu, R.A. Shine, Y. Suematsu, T.D. Tarbell, A.M. Title, S. Tsuneta, Small-scale jetlike features in penumbral chromospheres. Science 318, 1594 (2007).  https://doi.org/10.1126/science.1146046 ADSCrossRefGoogle Scholar
  221. M.C. Kelley, The Earth’s Ionosphere: Plasma Physics and Electrodynamics. International Geophysics (Elsevier Science, Amsterdam, 2009). ISBN 9780080916576 Google Scholar
  222. M.L. Khodachenko, Modeling the dynamics of partially ionized plasma in solar magnetic tubes. Astron. Rep. 40, 273–285 (1996) ADSGoogle Scholar
  223. M.L. Khodachenko, V.V. Zaitsev, Formation of intensive magnetic flux tubes in a converging flow of partially ionized solar photospheric plasma. Astrophys. Space Sci. 279, 389–410 (2002).  https://doi.org/10.1023/A:1015162131331 ADSMATHCrossRefGoogle Scholar
  224. M.L. Khodachenko, T.D. Arber, H.O. Rucker, A. Hanslmeier, Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 422, 1073–1084 (2004).  https://doi.org/10.1051/0004-6361:20034207 ADSCrossRefGoogle Scholar
  225. M.L. Khodachenko, H.O. Rucker, R. Oliver, T.D. Arber, A. Hanslmeier, On the mechanisms of MHD wave damping in the partially ionized solar plasmas. Adv. Space Res. 37, 447–455 (2006).  https://doi.org/10.1016/j.asr.2005.02.025 ADSCrossRefGoogle Scholar
  226. M.L. Khodachenko, I. Ribas, H. Lammer, J.-M. Grießmeier, M. Leitner, F. Selsis, C. Eiroa, A. Hanslmeier, H.K. Biernat, C.J. Farrugia, H.O. Rucker, Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-Like exoplanets in close-in habitable zones. Astrobiology 7, 167–184 (2007a).  https://doi.org/10.1089/ast.2006.0127 ADSCrossRefGoogle Scholar
  227. M.L. Khodachenko, H. Lammer, H.I.M. Lichtenegger, D. Langmayr, N.V. Erkaev, J.-M. Grießmeier, M. Leitner, T. Penz, H.K. Biernat, U. Motschmann, H.O. Rucker, Mass loss of Hot Jupiters and implications for CoRoT discoveries. Part I: the importance of magnetospheric protection of a planet against ion loss caused by coronal mass ejections. Planet. Space Sci. 55, 631–642 (2007b).  https://doi.org/10.1016/j.pss.2006.07.010 ADSCrossRefGoogle Scholar
  228. M.L. Khodachenko, I. Alexeev, E. Belenkaya, H. Lammer, J.-M. Grießmeier, M. Leitzinger, P. Odert, T. Zaqarashvili, H.O. Rucker, Magnetospheres of “Hot Jupiters”: the importance of magnetodisks in shaping a magnetospheric obstacle. Astrophys. J. 744, 70 (2012).  https://doi.org/10.1088/0004-637X/744/1/70 ADSCrossRefGoogle Scholar
  229. M.L. Khodachenko, Y. Sasunov, O.V. Arkhypov, I.I. Alexeev, E.S. Belenkaya, H. Lammer, K.G. Kislyakova, P. Odert, M. Leitzinger, M. Güdel, Stellar CME activity and its possible influence on exoplanets’ environments: importance of magnetospheric protection, in IAU Symposium, ed. by B. Schmieder, J.-M. Malherbe, S.T. Wu. IAU Symposium, vol. 300 (2014), pp. 335–346.  https://doi.org/10.1017/S1743921313011174 Google Scholar
  230. M.L. Khodachenko, I.F. Shaikhislamov, H. Lammer, P.A. Prokopov, Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. II. Effects of planetary magnetic field; Structuring of inner magnetosphere. Astrophys. J. 813, 50 (2015).  https://doi.org/10.1088/0004-637X/813/1/50 ADSCrossRefGoogle Scholar
  231. E. Khomenko, M. Collados, Heating of the magnetized solar chromosphere by partial ionization effects. Astrophys. J. 747, 87 (2012).  https://doi.org/10.1088/0004-637X/747/2/87 ADSCrossRefGoogle Scholar
  232. E. Khomenko, M. Collados, A. Díaz, N. Vitas, Fluid description of multi-component solar partially ionized plasma. Phys. Plasmas 21(9), 092901 (2014a).  https://doi.org/10.1063/1.4894106 ADSCrossRefGoogle Scholar
  233. E. Khomenko, A. Díaz, A. de Vicente, M. Collados, M. Luna, Rayleigh-Taylor instability in prominences from numerical simulations including partial ionization effects. Astron. Astrophys. 565, 45 (2014b).  https://doi.org/10.1051/0004-6361/201322918 CrossRefGoogle Scholar
  234. T.L. Killeen, P.B. Hays, G.R. Carignan, R.A. Heelis, W.B. Hanson, N.W. Spencer, L.H. Brace, Ion-neutral coupling in the high-latitude F region Evaluation of ion heating terms from Dynamics Explorer 2. J. Geophys. Res. 89, 7495–7508 (1984).  https://doi.org/10.1029/JA089iA09p07495 ADSCrossRefGoogle Scholar
  235. Y.H. Kim, J.L. Fox, H.S. Porter, Densities and vibrational distribution of \(\mbox{H}_{3}^{+}\) in the Jovian auroral ionosphere. J. Geophys. Res. 97, 6093–6101 (1992).  https://doi.org/10.1029/92JE00454 ADSCrossRefGoogle Scholar
  236. R. Kippenhahn, A. Schlüter, Eine Theorie der solaren Filamente. Mit 7 Textabbildungen. Z. Astrophys. 43, 36 (1957) ADSMATHGoogle Scholar
  237. H. Kirk, P.C. Myers, T.L. Bourke, R.A. Gutermuth, A. Hedden, G.W. Wilson, Filamentary accretion flows in the embedded Serpens South protocluster. Astrophys. J. 766, 115 (2013).  https://doi.org/10.1088/0004-637X/766/2/115 ADSCrossRefGoogle Scholar
  238. H. Kirk, M. Klassen, R. Pudritz, S. Pillsworth, The role of turbulence and magnetic fields in simulated filamentary structure. Astrophys. J. 802, 75 (2015).  https://doi.org/10.1088/0004-637X/802/2/75 ADSCrossRefGoogle Scholar
  239. K.G. Kislyakova, H. Lammer, M. Holmström, M. Panchenko, P. Odert, N.V. Erkaev, M. Leitzinger, M.L. Khodachenko, Y.N. Kulikov, M. Güdel, A. Hanslmeier, XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape. Astrobiology 13, 1030–1048 (2013).  https://doi.org/10.1089/ast.2012.0958 ADSCrossRefGoogle Scholar
  240. K.G. Kislyakova, C.P. Johnstone, P. Odert, N.V. Erkaev, H. Lammer, T. Lüftinger, M. Holmström, M.L. Khodachenko, M. Güdel, Stellar wind interaction and pick-up ion escape of the Kepler-11 “super-Earths”. Astron. Astrophys. 562, 116 (2014).  https://doi.org/10.1051/0004-6361/201322933 ADSCrossRefGoogle Scholar
  241. R.S. Klessen, P. Hennebelle, Accretion-driven turbulence as universal process: galaxies, molecular clouds, and protostellar disks. Astron. Astrophys. 520, 17 (2010).  https://doi.org/10.1051/0004-6361/200913780 ADSCrossRefGoogle Scholar
  242. B. Körtgen, R. Banerjee, Impact of magnetic fields on molecular cloud formation and evolution. Mon. Not. R. Astron. Soc. 451, 3340–3353 (2015).  https://doi.org/10.1093/mnras/stv1200 ADSCrossRefGoogle Scholar
  243. T.T. Koskinen, R.V. Yelle, P. Lavvas, N.K. Lewis, Characterizing the thermosphere of HD209458b with UV transit observations. Astrophys. J. 723, 116–128 (2010).  https://doi.org/10.1088/0004-637X/723/1/116 ADSCrossRefGoogle Scholar
  244. T.T. Koskinen, M.J. Harris, R.V. Yelle, P. Lavvas, The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical-dynamical model of the thermosphere. Icarus 226, 1678–1694 (2013).  https://doi.org/10.1016/j.icarus.2012.09.027 ADSCrossRefGoogle Scholar
  245. H. Koyama, S.-i. Inutsuka, An origin of supersonic motions in interstellar clouds. Astrophys. J. Lett. 564, 97–100 (2002).  https://doi.org/10.1086/338978 ADSCrossRefGoogle Scholar
  246. N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (1973) Google Scholar
  247. R. Krasnopolsky, A. Königl, Self-similar collapse of rotating magnetic molecular cloud cores. Astrophys. J. 580, 987–1012 (2002).  https://doi.org/10.1086/343890 ADSCrossRefGoogle Scholar
  248. M.R. Krumholz, C.D. Matzner, C.F. McKee, The global evolution of giant molecular clouds. I. Model formulation and quasi-equilibrium behavior. Astrophys. J. 653, 361–382 (2006).  https://doi.org/10.1086/508679 ADSCrossRefGoogle Scholar
  249. T. Kudoh, K. Shibata, Alfvén wave model of spicules and coronal heating. Astrophys. J. 514, 493–505 (1999).  https://doi.org/10.1086/306930 ADSCrossRefGoogle Scholar
  250. V. Kukhianidze, T.V. Zaqarashvili, E. Khutsishvili, Observation of kink waves in solar spicules. Astron. Astrophys. 449, 35–38 (2006).  https://doi.org/10.1051/0004-6361:200600018 ADSCrossRefGoogle Scholar
  251. R. Kulsrud, W.P. Pearce, The effect of wave-particle interactions on the propagation of cosmic rays. Astrophys. J. 156, 445 (1969).  https://doi.org/10.1086/149981 ADSCrossRefGoogle Scholar
  252. D. Kuridze, R.J. Morton, R. Erdélyi, G.D. Dorrian, M. Mathioudakis, D.B. Jess, F.P. Keenan, Transverse oscillations in chromospheric mottles. Astrophys. J. 750, 51 (2012).  https://doi.org/10.1088/0004-637X/750/1/51 ADSCrossRefGoogle Scholar
  253. D. Kuridze, V. Henriques, M. Mathioudakis, R. Erdélyi, T.V. Zaqarashvili, S. Shelyag, P.H. Keys, F.P. Keenan, The dynamics of rapid redshifted and blueshifted excursions in the solar \(\mbox{H}\alpha\) line. Astrophys. J. 802, 26 (2015).  https://doi.org/10.1088/0004-637X/802/1/26 ADSCrossRefGoogle Scholar
  254. D. Kuridze, T.V. Zaqarashvili, V. Henriques, M. Mathioudakis, F.P. Keenan, A. Hanslmeier, Kelvin-Helmholtz instability in solar chromospheric jets: theory and observation. Astrophys. J. 830, 133 (2016).  https://doi.org/10.3847/0004-637X/830/2/133 ADSCrossRefGoogle Scholar
  255. N. Labrosse, P. Heinzel, J. Vial, T. Kucera, S. Parenti, S. Gunár, B. Schmieder, G. Kilper, Physics of solar prominences: I spectral diagnostics and non-LTE modelling. Space Sci. Rev. 151, 243–332 (2010).  https://doi.org/10.1007/s11214-010-9630-6 ADSCrossRefGoogle Scholar
  256. C.J. Lada, E.A. Lada, Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003).  https://doi.org/10.1146/annurev.astro.41.011802.094844 ADSCrossRefGoogle Scholar
  257. J.M. Laming, Non-WKB models of the first ionization potential effect: the role of slow mode waves. Astrophys. J. 744, 115 (2012).  https://doi.org/10.1088/0004-637X/744/2/115 ADSCrossRefGoogle Scholar
  258. J.M. Laming, The FIP and inverse FIP effects in solar and stellar coronae. Living Rev. Sol. Phys. 12, 2 (2015).  https://doi.org/10.1007/lrsp-2015-2 ADSCrossRefGoogle Scholar
  259. J.M. Laming, The first ionization potential effect from the ponderomotive force: on the polarization and coronal origin of Alfvén waves. Astrophys. J. 844, 153 (2017).  https://doi.org/10.3847/1538-4357/aa7cf1 ADSCrossRefGoogle Scholar
  260. J.M. Laming, J.J. Drake, K.G. Widing, Stellar coronal abundances. IV. Evidence of the FIP effect in the corona of \(\epsilon\) Eridani? Astrophys. J. 462, 948 (1996).  https://doi.org/10.1086/177208 ADSCrossRefGoogle Scholar
  261. H. Lammer, F. Selsis, I. Ribas, E.F. Guinan, S.J. Bauer, W.W. Weiss, Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. Astrophys. J. Lett. 598, 121–124 (2003).  https://doi.org/10.1086/380815 ADSCrossRefGoogle Scholar
  262. H. Lammer, H.I.M. Lichtenegger, Y.N. Kulikov, J.-M. Grießmeier, N. Terada, N.V. Erkaev, H.K. Biernat, M.L. Khodachenko, I. Ribas, T. Penz, F. Selsis, Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 185–207 (2007).  https://doi.org/10.1089/ast.2006.0128 ADSCrossRefGoogle Scholar
  263. H. Lammer, P. Odert, M. Leitzinger, M.L. Khodachenko, M. Panchenko, Y.N. Kulikov, T.L. Zhang, H.I.M. Lichtenegger, N.V. Erkaev, G. Wuchterl, G. Micela, T. Penz, H.K. Biernat, J. Weingrill, M. Steller, H. Ottacher, J. Hasiba, A. Hanslmeier, Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? Astron. Astrophys. 506, 399–410 (2009).  https://doi.org/10.1051/0004-6361/200911922 ADSCrossRefGoogle Scholar
  264. H. Lammer, N.V. Erkaev, P. Odert, K.G. Kislyakova, M. Leitzinger, M.L. Khodachenko, Probing the blow-off criteria of hydrogen-rich ‘super-Earths’. Mon. Not. R. Astron. Soc. 430, 1247–1256 (2013).  https://doi.org/10.1093/mnras/sts705 ADSCrossRefGoogle Scholar
  265. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (1959) MATHGoogle Scholar
  266. Ø. Langangen, B. De Pontieu, M. Carlsson, V.H. Hansteen, G. Cauzzi, K. Reardon, Search for high velocities in the disk counterpart of type II spicules. Astrophys. J. Lett. 679, 167–170 (2008).  https://doi.org/10.1086/589442 ADSCrossRefGoogle Scholar
  267. R.B. Larson, Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981) ADSCrossRefGoogle Scholar
  268. A.S. Lavrukhin, I.I. Alexeev, Aurora at high latitudes of Ganymede. Astron. Lett. 41(11), 687–692 (2015).  https://doi.org/10.1134/S1063773715110043 ADSCrossRefGoogle Scholar
  269. A. Lazarian, Reconnection diffusion in turbulent fluids and its implications for star formation. Space Sci. Rev. 181, 1–59 (2014).  https://doi.org/10.1007/s11214-013-0031-5 ADSCrossRefGoogle Scholar
  270. A. Lazarian, A. Esquivel, R. Crutcher, Magnetization of cloud cores and envelopes and other observational consequences of reconnection diffusion. Astrophys. J. 757, 154 (2012).  https://doi.org/10.1088/0004-637X/757/2/154 ADSCrossRefGoogle Scholar
  271. J.E. Leake, T.D. Arber, The emergence of magnetic flux through a partially ionised solar atmosphere. Astron. Astrophys. 450, 805–818 (2006).  https://doi.org/10.1051/0004-6361:20054099 ADSCrossRefGoogle Scholar
  272. J.E. Leake, T.D. Arber, M.L. Khodachenko, Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere. Astron. Astrophys. 442, 1091–1098 (2005).  https://doi.org/10.1051/0004-6361:20053427 ADSCrossRefGoogle Scholar
  273. J.E. Leake, V.S. Lukin, M.G. Linton, Magnetic reconnection in a weakly ionized plasma. Phys. Plasmas 20(6), 061202 (2013).  https://doi.org/10.1063/1.4811140 ADSCrossRefGoogle Scholar
  274. J.E. Leake, V.S. Lukin, M.G. Linton, E.T. Meier, Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. Astrophys. J. 760, 109 (2012).  https://doi.org/10.1088/0004-637X/760/2/109 ADSCrossRefGoogle Scholar
  275. J.E. Leake, C.R. DeVore, J.P. Thayer, A.G. Burns, G. Crowley, H.R. Gilbert, J.D. Huba, J. Krall, M.G. Linton, V.S. Lukin, W. Wang, Ionized plasma and neutral gas coupling in the Sun’s chromosphere and Earth’s ionosphere/thermosphere. Space Sci. Rev. 184, 107–172 (2014).  https://doi.org/10.1007/s11214-014-0103-1 ADSCrossRefGoogle Scholar
  276. C.W. Lee, P.C. Myers, A catalog of optically selected cores. Astrophys. J. Suppl. Ser. 123, 233–250 (1999).  https://doi.org/10.1086/313234 ADSCrossRefGoogle Scholar
  277. D. Lee, G. Xia, C. Daley, A. Dubey, S. Gopal, C. Graziani, D. Lamb, K. Weide, Progress in development of HEDP capabilities in FLASH’s Unsplit Staggered Mesh MHD solver. Astrophys. Space Sci. 336, 157–162 (2011).  https://doi.org/10.1007/s10509-011-0654-5 ADSCrossRefGoogle Scholar
  278. J. Leenaarts, M. Carlsson, V. Hansteen, R.J. Rutten, Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere. Astron. Astrophys. 473, 625–632 (2007).  https://doi.org/10.1051/0004-6361:20078161 ADSCrossRefGoogle Scholar
  279. P.S. Li, C.F. McKee, R.I. Klein, The heavy-ion approximation for ambipolar diffusion calculations for weakly ionized plasmas. Astrophys. J. 653, 1280–1291 (2006).  https://doi.org/10.1086/508977 ADSCrossRefGoogle Scholar
  280. P.S. Li, A. Myers, C.F. McKee, Ambipolar diffusion heating in turbulent systems. Astrophys. J. 760, 33 (2012).  https://doi.org/10.1088/0004-637X/760/1/33 ADSCrossRefGoogle Scholar
  281. P.S. Li, C.F. McKee, R.I. Klein, R.T. Fisher, Sub-Alfvénic nonideal MHD turbulence simulations with ambipolar diffusion. I. Turbulence statistics. Astrophys. J. 684, 380–394 (2008).  https://doi.org/10.1086/589874 ADSCrossRefGoogle Scholar
  282. Z.-Y. Li, R. Krasnopolsky, H. Shang, Non-ideal MHD effects and magnetic braking catastrophe in protostellar disk formation. Astrophys. J. 738, 180 (2011).  https://doi.org/10.1088/0004-637X/738/2/180 ADSCrossRefGoogle Scholar
  283. Z.-Y. Li, R. Banerjee, R.E. Pudritz, J.K. Jørgensen, H. Shang, R. Krasnopolsky, A. Maury, The earliest stages of star and planet formation: core collapse, and the formation of disks and outflows, in Protostars and Planets VI (2014), pp. 173–194.  https://doi.org/10.2458/azu-uapress-9780816531240-ch008 Google Scholar
  284. H.I.M. Lichtenegger, H. Gröller, H. Lammer, Y.N. Kulikov, V.I. Shematovich, On the elusive hot oxygen corona of Venus. Geophys. Res. Lett. 36, 10204 (2009).  https://doi.org/10.1029/2009GL037575 ADSCrossRefGoogle Scholar
  285. A.E. Lifschitz, Magnetohydrodynamics and Spectral Theory (Kluwer Academic Publisher, Dordrecht, 1989) MATHCrossRefGoogle Scholar
  286. Y. Lin, Magnetic field topology inferred from studies of fine threads in solar filaments. PhD thesis, University of Oslo, Norway (2004) Google Scholar
  287. Y. Lin, O.R. Engvold, J.E. Wiik, Counterstreaming in a large polar crown filament. Sol. Phys. 216, 109–120 (2003).  https://doi.org/10.1023/A:1026150809598 ADSCrossRefGoogle Scholar
  288. Y.E. Litvinenko, Photospheric magnetic reconnection and canceling magnetic features on the Sun. Astrophys. J. 515, 435–440 (1999).  https://doi.org/10.1086/307001 ADSCrossRefGoogle Scholar
  289. Z.W. Ma, A. Bhattacharjee, Hall magnetohydrodynamic reconnection: the geospace environment modeling challenge. J. Geophys. Res. Space Phys. 106(A3), 3773–3782 (2001).  https://doi.org/10.1029/1999JA001004 ADSCrossRefGoogle Scholar
  290. M.-M. Mac Low, R.S. Klessen, Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125–194 (2004).  https://doi.org/10.1103/RevModPhys.76.125 ADSCrossRefGoogle Scholar
  291. M.-M. Mac Low, R.S. Klessen, A. Burkert, M.D. Smith, Kinetic energy decay rates of supersonic and super-Alfvénic turbulence in star-forming clouds. Phys. Rev. Lett. 80, 2754–2757 (1998).  https://doi.org/10.1103/PhysRevLett.80.2754 ADSCrossRefGoogle Scholar
  292. D.H. Mackay, Formation and large-scale patterns of filament channels and filaments, in Solar Prominences, ed. by J.-C. Vial, O. Engvold. Astrophysics and Space Science Library, vol. 415 (Springer, Berlin, 2015), p. 355 Google Scholar
  293. D.H. Mackay, J.T. Karpen, J.L. Ballester, B. Schmieder, G. Aulanier, Physics of solar prominences: II magnetic structure and dynamics. Space Sci. Rev. 151, 333–399 (2010).  https://doi.org/10.1007/s11214-010-9628-0 ADSCrossRefGoogle Scholar
  294. R.J. Maddalena, P. Thaddeus, A large, cold, and unusual molecular cloud in Monoceros. Astrophys. J. 294, 231–237 (1985).  https://doi.org/10.1086/163291 ADSCrossRefGoogle Scholar
  295. C.A. Madsen, Y.S. Dimant, M.M. Oppenheim, J.M. Fontenla, The multi-species Farley-Buneman instability in the solar chromosphere. Astrophys. J. 783, 128 (2014).  https://doi.org/10.1088/0004-637X/783/2/128 ADSCrossRefGoogle Scholar
  296. Y.G. Maneva, A. Alvarez Laguna, A. Lani, S. Poedts, Multi-fluid modeling of magnetosonic wave propagation in the solar chromosphere: effects of impact ionization and radiative recombination. Astrophys. J. 836, 197 (2017).  https://doi.org/10.3847/1538-4357/aa5b83 ADSCrossRefGoogle Scholar
  297. G. Mann, Simple magnetohydrodynamic waves. J. Plasma Phys. 53, 109–125 (1995).  https://doi.org/10.1017/S0022377800018043 ADSCrossRefGoogle Scholar
  298. E. Marsch, Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1 (2006).  https://doi.org/10.12942/lrsp-2006-1 ADSCrossRefGoogle Scholar
  299. S.F. Martin, S.H.B. Livi, J. Wang, The cancellation of magnetic flux. II—in a decaying active region. Aust. J. Phys. 38, 929–959 (1985) ADSCrossRefGoogle Scholar
  300. D. Martínez-Gómez, R. Soler, J. Terradas, Onset of the Kelvin-Helmholtz instability in partially ionized magnetic flux tubes. Astron. Astrophys. 578, 104 (2015).  https://doi.org/10.1051/0004-6361/201525785 CrossRefGoogle Scholar
  301. D. Martínez-Gómez, R. Soler, J. Terradas, Multi-fluid approach to high-frequency waves in plasmas: I. Small-amplitude regime in fully ionized medium. Astrophys. J. 832, 101 (2016).  https://doi.org/10.3847/0004-637X/832/2/101 ADSCrossRefGoogle Scholar
  302. D. Martínez-Gómez, R. Soler, J. Terradas, Multi-fluid approach to high-frequency waves in plasmas. II. Small-amplitude regime in partially ionized media. Astrophys. J. 837(1), 80 (2017). http://stacks.iop.org/0004-637X/837/i=1/a=80 ADSCrossRefGoogle Scholar
  303. J. Martínez-Sykora, B. De Pontieu, V. Hansteen, Two-dimensional radiative magnetohydrodynamic simulations of the importance of partial ionization in the chromosphere. Astrophys. J. 753, 161 (2012).  https://doi.org/10.1088/0004-637X/753/2/161 ADSCrossRefGoogle Scholar
  304. J. Martínez-Sykora, B. De Pontieu, V. Hansteen, M. Carlsson, The role of partial ionization effects in the chromosphere. Philos. Trans. R. Soc. Lond., Ser. A 373, 20140268 (2015).  https://doi.org/10.1098/rsta.2014.0268 ADSCrossRefGoogle Scholar
  305. J. Martínez-Sykora, B. De Pontieu, V.H. Hansteen, L. Rouppe van der Voort, M. Carlsson, T.M.D. Pereira, On the generation of solar spicules and Alfvénic waves. Science 356, 1269–1272 (2017a).  https://doi.org/10.1126/science.aah5412 ADSCrossRefGoogle Scholar
  306. J. Martínez-Sykora, B. De Pontieu, M. Carlsson, V.H. Hansteen, D. Nóbrega-Siverio, B.V. Gudiksen, Two-dimensional radiative magnetohydrodynamic simulations of partial ionization in the chromosphere. II. Dynamics and energetics of the low solar atmosphere. Astrophys. J. 847, 36 (2017b).  https://doi.org/10.3847/1538-4357/aa8866 ADSCrossRefGoogle Scholar
  307. T. Matsakos, A. Uribe, A. Königl, Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows. Astron. Astrophys. 578, 6 (2015).  https://doi.org/10.1051/0004-6361/201425593 ADSCrossRefGoogle Scholar
  308. S. Matsushita, Global presentation of the external \(\mbox{S}_{q}\) and L current systems. J. Geophys. Res. 70, 4395–4398 (1965).  https://doi.org/10.1029/JZ070i017p04395 ADSCrossRefGoogle Scholar
  309. S.W. McIntosh, B. de Pontieu, M. Carlsson, V. Hansteen, P. Boerner, M. Goossens, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477–480 (2011).  https://doi.org/10.1038/nature10235 ADSCrossRefGoogle Scholar
  310. C.F. McKee, E.C. Ostriker, Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565–687 (2007).  https://doi.org/10.1146/annurev.astro.45.051806.110602 ADSCrossRefGoogle Scholar
  311. C.F. McKee, E.G. Zweibel, On the virial theorem for turbulent molecular clouds. Astrophys. J. 399, 551–562 (1992).  https://doi.org/10.1086/171946 ADSCrossRefGoogle Scholar
  312. C.F. McKee, E.G. Zweibel, Alfven waves in interstellar gasdynamics. Astrophys. J. 440, 686 (1995).  https://doi.org/10.1086/175306 ADSCrossRefGoogle Scholar
  313. C.F. McKee, P.S. Li, R.I. Klein, Sub-Alfvénic non-ideal MHD turbulence simulations with ambipolar diffusion. II. Comparison with observation, clump properties, and scaling to physical units. Astrophys. J. 720, 1612–1634 (2010).  https://doi.org/10.1088/0004-637X/720/2/1612 ADSCrossRefGoogle Scholar
  314. H. Menager, M. Barthélemy, J. Lilensten, H Lyman \(\alpha\) line in Jovian aurorae: electron transport and radiative transfer coupled modelling. Astron. Astrophys. 509, 56 (2010).  https://doi.org/10.1051/0004-6361/200912952 CrossRefGoogle Scholar
  315. M. Mendillo, A. Nagy, J.H. Waite, Atmospheres in the Solar System: Comparative Aeronomy. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 130 (2002) CrossRefGoogle Scholar
  316. C. Mercier, J. Heyvaerts, The downward motions in quiescent prominences. Astron. Astrophys. 61, 685–693 (1977) ADSGoogle Scholar
  317. L. Mestel, Magnetic braking by a stellar wind-I. Mon. Not. R. Astron. Soc. 138, 359 (1968).  https://doi.org/10.1093/mnras/138.3.359 ADSCrossRefGoogle Scholar
  318. L. Mestel, Magnetic fields, in Protostars and Planets II, ed. by D.C. Black, M.S. Matthews (1985), pp. 320–339 Google Scholar
  319. C.D. Meyer, D.S. Balsara, T.D. Aslam, A second-order accurate Super TimeStepping formulation for anisotropic thermal conduction. Mon. Not. R. Astron. Soc. 422, 2102–2115 (2012).  https://doi.org/10.1111/j.1365-2966.2012.20744.x ADSCrossRefGoogle Scholar
  320. A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, A. Ferrari, PLUTO: a numerical code for computational astrophysics. Astrophys. J. Suppl. Ser. 170, 228–242 (2007).  https://doi.org/10.1086/513316 ADSCrossRefGoogle Scholar
  321. D. Mihalas, Stellar Atmospheres (Pergamon Press, Oxford, 1986) Google Scholar
  322. S. Miller, A. Aylward, G. Millward, Giant planet ionospheres and thermospheres: the importance of ion-neutral coupling. Space Sci. Rev. 116, 319–343 (2005).  https://doi.org/10.1007/s11214-005-1960-4 ADSCrossRefGoogle Scholar
  323. G. Millward, S. Miller, T. Stallard, A.D. Aylward, N. Achilleos, On the dynamics of the Jovian ionosphere and thermosphere. III. The modelling of auroral conductivity. Icarus 160, 95–107 (2002).  https://doi.org/10.1006/icar.2002.6951 ADSCrossRefGoogle Scholar
  324. H. Mizutani, T. Yamamoto, A. Fujimura, A new scaling law of the planetary magnetic fields. Adv. Space Res. 12, 265–279 (1992).  https://doi.org/10.1016/0273-1177(92)90397-G ADSCrossRefGoogle Scholar
  325. S. Molinari, B. Swinyard, J. Bally, M. Barlow, J.-P. Bernard, P. Martin, T. Moore, A. Noriega-Crespo, R. Plume, L. Testi, A. Zavagno, A. Abergel, B. Ali, L. Anderson, P. André, J.-P. Baluteau, C. Battersby, M.T. Beltrán, M. Benedettini, N. Billot, J. Blommaert, S. Bontemps, F. Boulanger, J. Brand, C. Brunt, M. Burton, L. Calzoletti, S. Carey, P. Caselli, R. Cesaroni, J. Cernicharo, S. Chakrabarti, A. Chrysostomou, M. Cohen, M. Compiegne, P. de Bernardis, G. de Gasperis, A.M. di Giorgio, D. Elia, F. Faustini, N. Flagey, Y. Fukui, G.A. Fuller, K. Ganga, P. Garcia-Lario, J. Glenn, P.F. Goldsmith, M. Griffin, M. Hoare, M. Huang, D. Ikhenaode, C. Joblin, G. Joncas, M. Juvela, J.M. Kirk, G. Lagache, J.Z. Li, T.L. Lim, S.D. Lord, M. Marengo, D.J. Marshall, S. Masi, F. Massi, M. Matsuura, V. Minier, M.-A. Miville-Deschênes, L.A. Montier, L. Morgan, F. Motte, J.C. Mottram, T.G. Müller, P. Natoli, J. Neves, L. Olmi, R. Paladini, D. Paradis, H. Parsons, N. Peretto, M. Pestalozzi, S. Pezzuto, F. Piacentini, L. Piazzo, D. Polychroni, M. Pomarès, C.C. Popescu, W.T. Reach, I. Ristorcelli, J.-F. Robitaille, T. Robitaille, J.A. Rodón, A. Roy, P. Royer, D. Russeil, P. Saraceno, M. Sauvage, P. Schilke, E. Schisano, N. Schneider, F. Schuller, B. Schulz, B. Sibthorpe, H.A. Smith, M.D. Smith, L. Spinoglio, D. Stamatellos, F. Strafella, G.S. Stringfellow, E. Sturm, R. Taylor, M.A. Thompson, A. Traficante, R.J. Tuffs, G. Umana, L. Valenziano, R. Vavrek, M. Veneziani, S. Viti, C. Waelkens, D. Ward-Thompson, G. White, L.A. Wilcock, F. Wyrowski, H.W. Yorke, Q. Zhang, Clouds, filaments, and protostars: the Herschel Hi-GAL Milky Way. Astron. Astrophys. 518, 100 (2010).  https://doi.org/10.1051/0004-6361/201014659 ADSCrossRefGoogle Scholar
  326. S. Molinari, J. Bally, S. Glover, T. Moore, A. Noreiga-Crespo, R. Plume, L. Testi, E. Vázquez-Semadeni, A. Zavagno, J.-P. Bernard, P. Martin, The Milky Way as a star formation engine, in Protostars and Planets VI (2014), pp. 125–148.  https://doi.org/10.2458/azu-uapress-9780816531240-ch006 Google Scholar
  327. R. Molowny-Horas, E. Wiehr, H. Balthasar, R. Oliver, J.L. Ballester, Prominence Doppler oscillations, in JOSO Annu. Rep., 1998 (1999), pp. 126–127 Google Scholar
  328. R.J. Morton, G. Verth, V. Fedun, S. Shelyag, R. Erdélyi, Evidence for the photospheric excitation of incompressible chromospheric waves. Astrophys. J. 768, 17 (2013).  https://doi.org/10.1088/0004-637X/768/1/17 ADSCrossRefGoogle Scholar
  329. J.I. Moses, B. Bézard, E. Lellouch, G.R. Gladstone, H. Feuchtgruber, M. Allen, Photochemistry of Saturn’s atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus 143, 244–298 (2000).  https://doi.org/10.1006/icar.1999.6270 ADSCrossRefGoogle Scholar
  330. U.V. Möstl, M. Temmer, A.M. Veronig, The Kelvin-Helmholtz instability at coronal mass ejection boundaries in the solar corona: observations and 2.5D MHD simulations. Astrophys. J. Lett. 766, 12 (2013).  https://doi.org/10.1088/2041-8205/766/1/L12 ADSCrossRefGoogle Scholar
  331. T.C. Mouschovias, Nonhomologous contraction and equilibria of self-gravitating, magnetic interstellar clouds embedded in an intercloud medium: star formation. II—Results. Astrophys. J. 207, 141–158 (1976).  https://doi.org/10.1086/154478 ADSCrossRefGoogle Scholar
  332. T.C. Mouschovias, A connection between the rate of rotation of interstellar clouds, magnetic fields, ambipolar diffusion, and the periods of binary stars. Astrophys. J. 211, 147–151 (1977).  https://doi.org/10.1086/154912 ADSCrossRefGoogle Scholar
  333. T.C. Mouschovias, Single-stage fragmentation and a modern theory of star formation, in NATO Advanced Science Institutes (ASI) Series C, ed. by C.J. Lada, N.D. Kylafis. NATO Advanced Science Institutes (ASI) Series C, vol. 342 (1991), p. 449 Google Scholar
  334. T.C. Mouschovias, K. Tassis, Self-consistent analysis of OH-Zeeman observations: too much noise about noise. Mon. Not. R. Astron. Soc. 409, 801–807 (2010).  https://doi.org/10.1111/j.1365-2966.2010.17345.x ADSCrossRefGoogle Scholar
  335. T.C. Mouschovias, G.E. Ciolek, S.A. Morton, Hydromagnetic waves in weakly-ionized media—I. Basic theory, and application to interstellar molecular clouds. Mon. Not. R. Astron. Soc. 415, 1751–1782 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18817.x ADSCrossRefGoogle Scholar
  336. L.G. Mundy, L.W. Looney, W.J. Welch, The structure and evolution of envelopes and disks in young stellar systems, in Protostars and Planets IV (2000), p. 355 Google Scholar
  337. K. Murawski, T.V. Zaqarashvili, Numerical simulations of spicule formation in the solar atmosphere. Astron. Astrophys. 519, 8 (2010).  https://doi.org/10.1051/0004-6361/201014128 ADSCrossRefGoogle Scholar
  338. N.A. Murphy, V.S. Lukin, Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas. Astrophys. J. 805, 134 (2015).  https://doi.org/10.1088/0004-637X/805/2/134 ADSCrossRefGoogle Scholar
  339. P.C. Myers, Filamentary structure of star-forming complexes. Astrophys. J. 700, 1609–1625 (2009).  https://doi.org/10.1088/0004-637X/700/2/1609 ADSCrossRefGoogle Scholar
  340. P.C. Myers, A.A. Goodman, Evidence for magnetic and virial equilibrium in molecular clouds. Astrophys. J. Lett. 326, 27–30 (1988).  https://doi.org/10.1086/185116 ADSCrossRefGoogle Scholar
  341. A.F. Nagy, A. Balogh, T.E. Cravens, M. Mendillo, I. Müller-Wodarg, Comparative Aeronomy. Space Sciences Series of ISSI (Springer, New York, 2008). ISBN 9780387878256 Google Scholar
  342. G. Newkirk Jr., Solar variability on time scales of 10 to the 5th years to 10 to the 9.6th years, in The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites, ed. by R.O. Pepin, J.A. Eddy, R.B. Merrill (1980), pp. 293–320 Google Scholar
  343. L. Ni, Z. Yang, H. Wang, Fast magnetic reconnection with Cowling’s conductivity. Astrophys. Space Sci. 312, 139–144 (2007).  https://doi.org/10.1007/s10509-007-9662-x ADSMATHCrossRefGoogle Scholar
  344. L. Ofman, Wave modeling of the solar wind. Living Rev. Sol. Phys. 7, 4 (2010).  https://doi.org/10.12942/lrsp-2010-4 ADSCrossRefGoogle Scholar
  345. L. Ofman, B.J. Thompson, SDO/AIA observation of Kelvin-Helmholtz instability in the solar corona. Astrophys. J. Lett. 734, 11 (2011).  https://doi.org/10.1088/2041-8205/734/1/L11 ADSCrossRefGoogle Scholar
  346. T.J. Okamoto, B. De Pontieu, Propagating waves along spicules. Astrophys. J. Lett. 736, 24 (2011).  https://doi.org/10.1088/2041-8205/736/2/L24 ADSCrossRefGoogle Scholar
  347. T.J. Okamoto, S. Tsuneta, T.E. Berger, K. Ichimoto, Y. Katsukawa, B.W. Lites, S. Nagata, K. Shibata, T. Shimizu, R.A. Shine, Y. Suematsu, T.D. Tarbell, A.M. Title, Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318, 1577 (2007).  https://doi.org/10.1126/science.1145447 ADSCrossRefGoogle Scholar
  348. T.J. Okamoto, P. Antolin, B. De Pontieu, H. Uitenbroek, T. Van Doorsselaere, T. Yokoyama, Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects. Astrophys. J. 809, 71 (2015).  https://doi.org/10.1088/0004-637X/809/1/71 ADSCrossRefGoogle Scholar
  349. R. Oliver, J.L. Ballester, Oscillations in quiescent solar prominences observations and theory (invited review). Sol. Phys. 206, 45–67 (2002).  https://doi.org/10.1023/A:1014915428440 ADSCrossRefGoogle Scholar
  350. R. Oliver, R. Soler, J. Terradas, T.V. Zaqarashvili, M.L. Khodachenko, Dynamics of coronal rain and descending plasma blobs in solar prominences. I. Fully ionized case. Astrophys. J. 784, 21 (2014).  https://doi.org/10.1088/0004-637X/784/1/21 ADSCrossRefGoogle Scholar
  351. R. Oliver, R. Soler, J. Terradas, T.V. Zaqarashvili, Dynamics of coronal rain and descending plasma blobs in solar prominences. II. Partially ionized case. Astrophys. J. 818, 128 (2016).  https://doi.org/10.3847/0004-637X/818/2/128 ADSCrossRefGoogle Scholar
  352. K. Olluri, B.V. Gudiksen, V.H. Hansteen, B. De Pontieu, Synthesized spectra of optically thin emission lines. Astrophys. J. 802, 5 (2015).  https://doi.org/10.1088/0004-637X/802/1/5 ADSCrossRefGoogle Scholar
  353. D.E. Osterbrock, On ambipolar diffusion in H I regions. Astrophys. J. 134, 270–272 (1961).  https://doi.org/10.1086/147155 ADSCrossRefGoogle Scholar
  354. E.C. Ostriker, C.F. Gammie, J.M. Stone, Kinetic and structural evolution of self-gravitating, magnetized clouds: 2.5-dimensional simulations of decaying turbulence. Astrophys. J. 513, 259–274 (1999).  https://doi.org/10.1086/306842 ADSCrossRefGoogle Scholar
  355. E.C. Ostriker, J.M. Stone, C.F. Gammie, Density, velocity, and magnetic field structure in turbulent molecular cloud models. Astrophys. J. 546, 980–1005 (2001).  https://doi.org/10.1086/318290 ADSCrossRefGoogle Scholar
  356. J. Ostriker, The equilibrium of polytropic and isothermal cylinders. Astrophys. J. 140, 1056 (1964).  https://doi.org/10.1086/148005 ADSMathSciNetCrossRefGoogle Scholar
  357. S. O’Sullivan, T.P. Downes, An explicit scheme for multifluid magnetohydrodynamics. Mon. Not. R. Astron. Soc. 366, 1329–1336 (2006).  https://doi.org/10.1111/j.1365-2966.2005.09898.x ADSCrossRefGoogle Scholar
  358. S. O’Sullivan, T.P. Downes, A three-dimensional numerical method for modelling weakly ionized plasmas. Mon. Not. R. Astron. Soc. 376, 1648–1658 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11429.x ADSCrossRefGoogle Scholar
  359. J.E. Owen, F.C. Adams, Magnetically controlled mass-loss from extrasolar planets in close orbits. Mon. Not. R. Astron. Soc. 444, 3761–3779 (2014).  https://doi.org/10.1093/mnras/stu1684 ADSCrossRefGoogle Scholar
  360. P. Padoan, Å. Nordlund, A super-Alfvénic model of dark clouds. Astrophys. J. 526, 279–294 (1999).  https://doi.org/10.1086/307956 ADSCrossRefGoogle Scholar
  361. A. Palau, J. Ballesteros-Paredes, E. Vazquez-Semadeni, A. Sanchez-Monge, R. Estalella, S.M. Fall, L.A. Zapata, V. Camacho, L. Gomez, R. Naranjo-Romero, G. Busquet, F. Fontani, Gravity or turbulence?—III. Evidence of pure thermal Jeans fragmentation at \(\sim0.1~\mbox{pc}\) scales. ArXiv e-prints (2015) Google Scholar
  362. B.P. Pandey, M. Wardle, Hall magnetohydrodynamics of partially ionized plasmas. Mon. Not. R. Astron. Soc. 385, 2269–2278 (2008) ADSCrossRefGoogle Scholar
  363. G.V. Panopoulou, K. Tassis, P.F. Goldsmith, M.H. Heyer, 13CO filaments in the Taurus molecular cloud. Mon. Not. R. Astron. Soc. 444, 2507–2524 (2014).  https://doi.org/10.1093/mnras/stu1601 ADSCrossRefGoogle Scholar
  364. E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957).  https://doi.org/10.1029/JZ062i004p00509 ADSCrossRefGoogle Scholar
  365. E.N. Parker, The solar-flare phenomenon and the theory of reconnection and annihiliation of magnetic fields. Astrophys. J. Suppl. Ser. 8, 177 (1963).  https://doi.org/10.1086/190087 ADSCrossRefGoogle Scholar
  366. E.N. Parker, Conversations on Electric and Magnetic Fields in the Cosmos (Princeton University Press, Princeton, 2007) Google Scholar
  367. T. Passot, E. Vázquez-Semadeni, The correlation between magnetic pressure and density in compressible MHD turbulence. Astron. Astrophys. 398, 845–855 (2003).  https://doi.org/10.1051/0004-6361:20021665 ADSMATHCrossRefGoogle Scholar
  368. T. Passot, E. Vazquez-Semadeni, A. Pouquet, A turbulent model for the interstellar medium. II. Magnetic fields and rotation. Astrophys. J. 455, 536 (1995).  https://doi.org/10.1086/176603 ADSCrossRefGoogle Scholar
  369. S. Patsourakos, J.-C. Vial, Soho contribution to prominence science. Sol. Phys. 208, 253–281 (2002).  https://doi.org/10.1023/A:1020510120772 ADSCrossRefGoogle Scholar
  370. H. Pécseli, O. Engvold, Modeling of prominence threads in magnetic fields: levitation by incompressible MHD waves. Sol. Phys. 194, 73–86 (2000).  https://doi.org/10.1023/A:1005242609261 ADSCrossRefGoogle Scholar
  371. T. Penz, N.V. Erkaev, Y.N. Kulikov, D. Langmayr, H. Lammer, G. Micela, C. Cecchi-Pestellini, H.K. Biernat, F. Selsis, P. Barge, M. Deleuil, A. Léger, Mass loss from Hot Jupiters: implications for CoRoT discoveries, part II: long time thermal atmospheric evaporation modeling. Planet. Space Sci. 56, 1260–1272 (2008).  https://doi.org/10.1016/j.pss.2008.04.005 ADSCrossRefGoogle Scholar
  372. T.M.D. Pereira, B. De Pontieu, M. Carlsson, V. Hansteen, T.D. Tarbell, J. Lemen, A. Title, P. Boerner, N. Hurlburt, J.P. Wülser, J. Martínez-Sykora, L. Kleint, L. Golub, S. McKillop, K.K. Reeves, S. Saar, P. Testa, H. Tian, S. Jaeggli, C. Kankelborg, An interface region imaging spectrograph first view on solar spicules. Astrophys. J. Lett. 792, 15 (2014).  https://doi.org/10.1088/2041-8205/792/1/L15 ADSCrossRefGoogle Scholar
  373. N. Peretto, P. Hennebelle, P. André, Probing the formation of intermediate- to high-mass stars in protoclusters. II. Comparison between millimeter interferometric observations of NGC 2264-C and SPH simulations of a collapsing clump. Astron. Astrophys. 464, 983–994 (2007).  https://doi.org/10.1051/0004-6361:20065653 ADSCrossRefGoogle Scholar
  374. N. Peretto, G.A. Fuller, A. Duarte-Cabral, A. Avison, P. Hennebelle, J.E. Pineda, P. André, S. Bontemps, F. Motte, N. Schneider, S. Molinari, Global collapse of molecular clouds as a formation mechanism for the most massive stars. Astron. Astrophys. 555, 112 (2013).  https://doi.org/10.1051/0004-6361/201321318 ADSCrossRefGoogle Scholar
  375. J.J. Perry, Y.H. Kim, J.L. Fox, H.S. Porter, Chemistry of the Jovian auroral ionosphere. J. Geophys. Res. 104, 16541–16566 (1999).  https://doi.org/10.1029/1999JE900022 ADSCrossRefGoogle Scholar
  376. R.F. Pfaff, The Near-Earth plasma environment. Space Sci. Rev. 168, 23–112 (2012).  https://doi.org/10.1007/s11214-012-9872-6 ADSCrossRefGoogle Scholar
  377. J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 107, 1468 (2002).  https://doi.org/10.1029/2002JA009430 ADSGoogle Scholar
  378. J.H. Piddington, Solar atmospheric heating by hydromagnetic waves. Mon. Not. R. Astron. Soc. 116, 314 (1956) ADSMathSciNetCrossRefGoogle Scholar
  379. S. Poedts, M. Goossens, W. Kerner, Numerical simulation of coronal heating by resonant absorption of Alfven waves. Sol. Phys. 123, 83–115 (1989).  https://doi.org/10.1007/BF00150014 ADSCrossRefGoogle Scholar
  380. S. Poedts, M. Goossens, W. Kerner, On the efficiency of coronal loop heating by resonant absorption. Astrophys. J. 360, 279–287 (1990).  https://doi.org/10.1086/169118 ADSMATHCrossRefGoogle Scholar
  381. R. Prange, D. Rego, J.-C. Gérard, Auroral Lyman \(\alpha\) and H2 bands from the giant planets: 2. Effect of the anisotropy of the precipitating particles on the interpretation of the “color ratio”. J. Geophys. Res., Planets 100(E4), 7513–7521 (1995).  https://doi.org/10.1029/94JE03176 ADSCrossRefGoogle Scholar
  382. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C. The Art of Scientific Computing (1992) MATHGoogle Scholar
  383. S. Preusse, A. Kopp, J. Büchner, U. Motschmann, Stellar wind regimes of close-in extrasolar planets. Astron. Astrophys. 434, 1191–1200 (2005).  https://doi.org/10.1051/0004-6361:20041680 ADSCrossRefGoogle Scholar
  384. E. Priest, T. Forbes (eds.), Magnetic Reconnection: MHD Theory and Applications (Cambridge University Press, New York, 2000) MATHGoogle Scholar
  385. G.W. Prölss, Physics of the Earth’s Space Environment: An Introduction (Springer, Berlin, 2004) MATHCrossRefGoogle Scholar
  386. A. Radioti, D. Grodent, J.-C. Gérard, E. Roussos, C. Paranicas, B. Bonfond, D.G. Mitchell, N. Krupp, S. Krimigis, J.T. Clarke, Transient auroral features at Saturn: signatures of energetic particle injections in the magnetosphere. J. Geophys. Res. Space Phys. 114(A3), A03210 (2009).  https://doi.org/10.1029/2008JA013632 ADSGoogle Scholar
  387. L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: effect of field-aligned potentials on angular momentum transport. J. Geophys. Res. Space Phys. 115(A9), A09211 (2010).  https://doi.org/10.1029/2010JA015423 ADSGoogle Scholar
  388. L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: a parameter space study. J. Geophys. Res. Space Phys. 117(A1), A01205 (2012).  https://doi.org/10.1029/2011JA016899 ADSGoogle Scholar
  389. M.H. Rees, D. Lummerzheim, Characteristics of auroral electron precipitation derived from optical spectroscopy. J. Geophys. Res. Space Phys. 94(A6), 6799–6815 (1989).  https://doi.org/10.1029/JA094iA06p06799 ADSCrossRefGoogle Scholar
  390. D. Rego, R. Prange, J.C. Gerard, Auroral Lyman \(\alpha\) and H2 bands from the giant planets: 1. Excitation by proton precipitation in the Jovian atmosphere. J. Geophys. Res., Planets 99(E8), 17075–17094 (1994).  https://doi.org/10.1029/93JE03432 ADSCrossRefGoogle Scholar
  391. A. Reiners, U.R. Christensen, A magnetic field evolution scenario for brown dwarfs and giant planets. Astron. Astrophys. 522, 13 (2010).  https://doi.org/10.1051/0004-6361/201014251 ADSCrossRefGoogle Scholar
  392. M. Rempel, Extension of the MURaM radiative MHD code for coronal simulations. Astrophys. J. 834, 10 (2017).  https://doi.org/10.3847/1538-4357/834/1/10 ADSCrossRefGoogle Scholar
  393. M. Rempel, M. Schüssler, M. Knölker, Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys. J. 691, 640–649 (2009).  https://doi.org/10.1088/0004-637X/691/1/640 ADSCrossRefGoogle Scholar
  394. H. Rishbeth, O.K. Garriott, Introduction to Ionospheric Physics (1969) Google Scholar
  395. L. Rouppe van der Voort, J. Leenaarts, B. de Pontieu, M. Carlsson, G. Vissers, On-disk counterparts of type II spicules in the Ca II 854.2 nm and \(\mbox{H}\alpha\) lines. Astrophys. J. 705, 272–284 (2009).  https://doi.org/10.1088/0004-637X/705/1/272 ADSCrossRefGoogle Scholar
  396. V.A. Rozhansky, L.D. Tsedin, Transport Phenomena in Partially Ionized Plasma (Taylor & Francis, London/New York, 2001) Google Scholar
  397. M.S. Ruderman, A.N. Wright, Structure of driven Alfvén waves with oblique magnetic field and dissipation. Phys. Plasmas 6, 649–659 (1999).  https://doi.org/10.1063/1.873300 ADSMathSciNetCrossRefGoogle Scholar
  398. A.J.B. Russell, L. Fletcher, Propagation of Alfvénic waves from corona to chromosphere and consequences for solar flares. Astrophys. J. 765, 81 (2013).  https://doi.org/10.1088/0004-637X/765/2/81 ADSCrossRefGoogle Scholar
  399. R.J. Rutten, Radiative Transfer in Stellar Atmospheres. Lecture Notes (Utrecht University, Utrecht, 2003) Google Scholar
  400. D. Ryu, T.W. Jones, A. Frank, Numerical magnetohydrodynamics in astrophysics: algorithm and tests for multidimensional flow. Astrophys. J. 452, 785 (1995).  https://doi.org/10.1086/176347 ADSCrossRefGoogle Scholar
  401. M. Ryutova, T. Berger, Z. Frank, T. Tarbell, A. Title, Observation of plasma instabilities in quiescent prominences. Sol. Phys. 267, 75–94 (2010).  https://doi.org/10.1007/s11207-010-9638-9 ADSCrossRefGoogle Scholar
  402. J.I. Sakai, P.D. Smith, Two-fluid simulations of coalescing penumbra filaments driven by neutral-hydrogen flows. Astrophys. J. Lett. 691, L45–L48 (2009).  https://doi.org/10.1088/0004-637X/691/1/L45 ADSCrossRefGoogle Scholar
  403. H. Sakai, J. Washimi, A dynamical model of solar prominences with current sheet. Joint US-Japan Seminar, Kyoto, Japan (1984) Google Scholar
  404. T. Sakurai, M. Goossens, J.V. Hollweg, Resonant behaviour of MHD waves on magnetic flux tubes. I—Connection formulae at the resonant surfaces. Sol. Phys. 133, 227–245 (1991).  https://doi.org/10.1007/BF00149888 ADSCrossRefGoogle Scholar
  405. A. Sánchez-Lavega, The magnetic field in giant extrasolar planets. Astrophys. J. Lett. 609, 87–90 (2004).  https://doi.org/10.1086/422840 ADSCrossRefGoogle Scholar
  406. Y. Sano, The magnetic fields of the planets: a new scaling law of the dipole moments of the planetary magnetism. J. Geomagn. Geoelectr. 45, 65–77 (1993).  https://doi.org/10.5636/jgg.45.65 ADSCrossRefGoogle Scholar
  407. T. Sano, J. Stone, The effect of the Hall term on the nonlinear evolution of the magnetorotational instability. II. Saturation level and critical magnetic Reynolds number. Astrophys. J. 577, 534–553 (2002a).  https://doi.org/10.1086/342172 ADSCrossRefGoogle Scholar
  408. T. Sano, J.M. Stone, The effect of the Hall term on the nonlinear evolution of the magnetorotational instability. I. Local axisymmetric simulations. Astrophys. J. 570, 314–328 (2002b).  https://doi.org/10.1086/339504 ADSCrossRefGoogle Scholar
  409. R. Santos-Lima, E.M. de Gouveia Dal Pino, A. Lazarian, The role of turbulent magnetic reconnection in the formation of rotationally supported protostellar disks. Astrophys. J. 747, 21 (2012).  https://doi.org/10.1088/0004-637X/747/1/21 ADSCrossRefGoogle Scholar
  410. G.B. Scharmer, K. Bjelksjo, T.K. Korhonen, B. Lindberg, B. Petterson, The 1-meter Swedish solar telescope, in Innovative Telescopes and Instrumentation for Solar Astrophysics, vol. 4853, ed. by S.L. Keil, S.V. Avakyan (2003), pp. 341–350 CrossRefGoogle Scholar
  411. N. Schneider, T. Csengeri, S. Bontemps, F. Motte, R. Simon, P. Hennebelle, C. Federrath, R. Klessen, Dynamic star formation in the massive DR21 filament. Astron. Astrophys. 520, 49 (2010).  https://doi.org/10.1051/0004-6361/201014481 ADSCrossRefGoogle Scholar
  412. R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge Atmospheric and Space Science Series (Cambridge University Press, Cambridge, 2004). ISBN 9780521607704 Google Scholar
  413. D. Seifried, R. Banerjee, R.E. Pudritz, R.S. Klessen, Disc formation in turbulent massive cores: circumventing the magnetic braking catastrophe. Mon. Not. R. Astron. Soc. 423, 40–44 (2012).  https://doi.org/10.1111/j.1745-3933.2012.01253.x ADSCrossRefGoogle Scholar
  414. H.K. Sen, M.L. White, A physical mechanism for the production of solar flares. Sol. Phys. 23, 146–154 (1972).  https://doi.org/10.1007/BF00153898 ADSCrossRefGoogle Scholar
  415. I.F. Shaikhislamov, M.L. Khodachenko, Y.L. Sasunov, H. Lammer, K.G. Kislyakova, N.V. Erkaev, Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material. Astrophys. J. 795, 132 (2014).  https://doi.org/10.1088/0004-637X/795/2/132 ADSCrossRefGoogle Scholar
  416. S. Shelyag, E. Khomenko, A. de Vicente, D. Przybylski, Heating of the partially ionized solar chromosphere by waves in magnetic structures. Astrophys. J. Lett. 819, 11 (2016).  https://doi.org/10.3847/2041-8205/819/1/L11 ADSCrossRefGoogle Scholar
  417. V.I. Shematovich, Formation of complex chemical species in astrochemistry (a review). Sol. Syst. Res. 46, 391–407 (2012).  https://doi.org/10.1134/S0038094612060068 ADSCrossRefGoogle Scholar
  418. K. Shibata, T. Nakamura, T. Matsumoto, K. Otsuji, T.J. Okamoto, N. Nishizuka, T. Kawate, H. Watanabe, S. Nagata, S. UeNo, R. Kitai, S. Nozawa, S. Tsuneta, Y. Suematsu, K. Ichimoto, T. Shimizu, Y. Katsukawa, T.D. Tarbell, T.E. Berger, B.W. Lites, R.A. Shine, A.M. Title, Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591 (2007).  https://doi.org/10.1126/science.1146708 ADSCrossRefGoogle Scholar
  419. A.P. Showman, T. Guillot, Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astron. Astrophys. 385, 166–180 (2002).  https://doi.org/10.1051/0004-6361:20020101 ADSCrossRefGoogle Scholar
  420. F.H. Shu, Ambipolar diffusion in self-gravitating isothermal layers. Astrophys. J. 273, 202–213 (1983).  https://doi.org/10.1086/161359 ADSCrossRefGoogle Scholar
  421. F.H. Shu, The Physics of Astrophysics. Volume II: Gas Dynamics (1992) Google Scholar
  422. F.H. Shu, F.C. Adams, S. Lizano, Star formation in molecular clouds—observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987).  https://doi.org/10.1146/annurev.aa.25.090187.000323 ADSCrossRefGoogle Scholar
  423. R.P. Singhal, S.C. Chakravarty, A. Bhardwaj, B. Prasad, Energetic electron precipitation in Jupiter’s upper atmosphere. J. Geophys. Res., Planets 97(E11), 18245–18256 (1992).  https://doi.org/10.1029/92JE01894 ADSCrossRefGoogle Scholar
  424. T.G. Slanger, T.E. Cravens, J. Crovisier, S. Miller, D.F. Strobel, Photoemission phenomena in the solar system. Space Sci. Rev. 139, 267–310 (2008).  https://doi.org/10.1007/s11214-008-9387-3 ADSCrossRefGoogle Scholar
  425. P.D. Smith, J.I. Sakai, Chromospheric magnetic reconnection: two-fluid simulations of coalescing current loops. Astron. Astrophys. 486, 569–575 (2008).  https://doi.org/10.1051/0004-6361:200809624 ADSMATHCrossRefGoogle Scholar
  426. R. Soler, J. Terradas, Magnetohydrodynamic kink waves in nonuniform solar flux tubes: phase mixing and energy cascade to small scales. Astrophys. J. 803, 43 (2015).  https://doi.org/10.1088/0004-637X/803/1/43 ADSCrossRefGoogle Scholar
  427. R. Soler, J. Andries, M. Goossens, Resonant Alfvén waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 537, 84 (2012a).  https://doi.org/10.1051/0004-6361/201118235 ADSCrossRefGoogle Scholar
  428. R. Soler, A.J. Díaz, J.L. Ballester, M. Goossens, Kelvin-Helmholtz instability in partially ionized compressible plasmas. Astrophys. J. 749, 163 (2012b).  https://doi.org/10.1088/0004-637X/749/2/163 ADSCrossRefGoogle Scholar
  429. R. Soler, M. Carbonell, J.L. Ballester, J. Terradas, Alfvén waves in a partially ionized two-fluid plasma. Astrophys. J. 767, 171 (2013a).  https://doi.org/10.1088/0004-637X/767/2/171 ADSCrossRefGoogle Scholar
  430. R. Soler, M. Carbonell, J.L. Ballester, Magnetoacoustic waves in a partially ionized two-fluid plasma. Astrophys. J. Suppl. Ser. 209, 16 (2013b).  https://doi.org/10.1088/0067-0049/209/1/16 ADSCrossRefGoogle Scholar
  431. R. Soler, J.L. Ballester, T.V. Zaqarashvili, Overdamped Alfvén waves due to ion-neutral collisions in the solar chromosphere. Astron. Astrophys. 573, 79 (2015a).  https://doi.org/10.1051/0004-6361/201423930 ADSCrossRefGoogle Scholar
  432. R. Soler, M. Carbonell, J.L. Ballester, On the spatial scales of wave heating in the solar chromosphere. Astrophys. J. 810, 146 (2015b).  https://doi.org/10.1088/0004-637X/810/2/146 ADSCrossRefGoogle Scholar
  433. R. Soler, R. Oliver, J.L. Ballester, Nonadiabatic magnetohydrodynamic waves in a cylindrical prominence thread with mass flow. Astrophys. J. 684, 725–735 (2008).  https://doi.org/10.1086/590244 ADSCrossRefGoogle Scholar
  434. R. Soler, R. Oliver, J.L. Ballester, Magnetohydrodynamic waves in a partially ionized filament thread. Astrophys. J. 699, 1553–1562 (2009a).  https://doi.org/10.1088/0004-637X/699/2/1553 ADSCrossRefGoogle Scholar
  435. R. Soler, R. Oliver, J.L. Ballester, Resonantly damped kink magnetohydrodynamic waves in a partially ionized filament thread. Astrophys. J. 707, 662–670 (2009b).  https://doi.org/10.1088/0004-637X/707/1/662 ADSCrossRefGoogle Scholar
  436. R. Soler, R. Oliver, J.L. Ballester, Time damping of non-adiabatic magnetohydrodynamic waves in a partially ionized prominence plasma: effect of helium. Astron. Astrophys. 512, 28 (2010).  https://doi.org/10.1051/0004-6361/200913478 ADSCrossRefGoogle Scholar
  437. R. Soler, R. Oliver, J.L. Ballester, Spatial damping of propagating kink waves in prominence threads. Astrophys. J. 726, 102 (2011).  https://doi.org/10.1088/0004-637X/726/2/102 ADSCrossRefGoogle Scholar
  438. R. Soler, J. Terradas, R. Oliver, J.L. Ballester, The role of Alfvén wave heating in solar prominences. Astron. Astrophys. 592, A28 (2016)  https://doi.org/10.1051/0004-6361/201628722 ADSCrossRefGoogle Scholar
  439. R. Soler, J. Terradas, R. Oliver, J.L. Ballester, Propagation of torsional Alfvén waves from the photosphere to the corona: reflection, transmission, and heating in expanding flux tubes. Astrophys. J. 840, 20 (2017).  https://doi.org/10.3847/1538-4357/aa6d7f ADSCrossRefGoogle Scholar
  440. P. Song, V.M. Vasyliūnas, Heating of the solar atmosphere by strong damping of Alfvén waves. J. Geophys. Res. Space Phys. 116, 9104 (2011).  https://doi.org/10.1029/2011JA016679 ADSGoogle Scholar
  441. P. Song, T.I. Gombosi, A.J. Ridley, Three-fluid Ohm’s law. J. Geophys. Res. 106, 8149–8156 (2001).  https://doi.org/10.1029/2000JA000423 ADSCrossRefGoogle Scholar
  442. A.K. Srivastava, J. Shetye, K. Murawski, J.G. Doyle, M. Stangalini, E. Scullion, T. Ray, D.P. Wójcik, B.N. Dwivedi, High-frequency torsional Alfvén waves as an energy source for coronal heating. Sci. Rep. 7, 43147 (2017).  https://doi.org/10.1038/srep43147 ADSCrossRefGoogle Scholar
  443. R.F. Stein, Å. Nordlund, Simulations of solar granulation. I. General properties. Astrophys. J. 499, 914–933 (1998).  https://doi.org/10.1086/305678 ADSCrossRefGoogle Scholar
  444. A.C. Sterling, Solar spicules: a review of recent models and targets for future observations (invited review). Sol. Phys. 196, 79–111 (2000).  https://doi.org/10.1023/A:1005213923962 ADSCrossRefGoogle Scholar
  445. D.J. Stevenson, Planetary magnetic fields. Rep. Prog. Phys. 46, 555–557 (1983).  https://doi.org/10.1088/0034-4885/46/5/001 ADSCrossRefGoogle Scholar
  446. D.J. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003).  https://doi.org/10.1016/S0012-821X(02)01126-3 ADSCrossRefGoogle Scholar
  447. J.M. Stone, T. Gardiner, Nonlinear evolution of the magnetohydrodynamic Rayleigh-Taylor instability. Phys. Fluids 19(9), 094104 (2007).  https://doi.org/10.1063/1.2767666 ADSMATHCrossRefGoogle Scholar
  448. J.M. Stone, E.C. Ostriker, C.F. Gammie, Dissipation in compressible magnetohydrodynamic turbulence. Astrophys. J. Lett. 508, 99–102 (1998).  https://doi.org/10.1086/311718 ADSCrossRefGoogle Scholar
  449. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968).  https://doi.org/10.1137/0705041 ADSMathSciNetMATHCrossRefGoogle Scholar
  450. D.J. Strickland, R.E. Daniell Jr., J.R. Jasperse, B. Basu, Transport-theoretic model for the electron-proton-hydrogen atom aurora. 2: Model results. J. Geophys. Res. 98, 21 (1993).  https://doi.org/10.1029/93JA01645 CrossRefGoogle Scholar
  451. A. Strugarek, A.S. Brun, S.P. Matt, V. Réville, Magnetic games between a planet and its host star: the key role of topology. Astrophys. J. 815, 111 (2015).  https://doi.org/10.1088/0004-637X/815/2/111 ADSCrossRefGoogle Scholar
  452. Y. Suematsu, K. Shibata, T. Neshikawa, R. Kitai, Numerical hydrodynamics of the jet phenomena in the solar atmosphere. I—Spicules. Sol. Phys. 75, 99–118 (1982).  https://doi.org/10.1007/BF00153464 ADSCrossRefGoogle Scholar
  453. P.A. Sweet, The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, ed. by B. Lehnert. IAU Symposium, vol. 6 (1958), p. 123 Google Scholar
  454. C. Tao, S.V. Badman, M. Fujimoto, UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus 213, 581–592 (2011).  https://doi.org/10.1016/j.icarus.2011.04.001 ADSCrossRefGoogle Scholar
  455. J.A. Tataronis, Energy absorption in the continuous spectrum of ideal MHD. J. Plasma Phys. 13, 87–105 (1975).  https://doi.org/10.1017/S0022377800025897 ADSCrossRefGoogle Scholar
  456. J. Terradas, R. Oliver, J.L. Ballester, Damped coronal loop oscillations: time-dependent results. Astrophys. J. 642, 533–540 (2006).  https://doi.org/10.1086/500730 ADSCrossRefGoogle Scholar
  457. J. Terradas, R. Molowny-Horas, E. Wiehr, H. Balthasar, R. Oliver, J.L. Ballester, Two-dimensional distribution of oscillations in a quiescent solar prominence. Astron. Astrophys. 393, 637–647 (2002).  https://doi.org/10.1051/0004-6361:20020967 ADSCrossRefGoogle Scholar
  458. J. Terradas, R. Soler, A.J. Díaz, R. Oliver, J.L. Ballester, Magnetohydrodynamic waves in two-dimensional prominences embedded in coronal arcades. Astrophys. J. 778, 49 (2013).  https://doi.org/10.1088/0004-637X/778/1/49 ADSCrossRefGoogle Scholar
  459. J. Terradas, R. Soler, R. Oliver, J.L. Ballester, On the support of neutrals against gravity in solar prominences. Astrophys. J. Lett. 802, 28 (2015).  https://doi.org/10.1088/2041-8205/802/2/L28 ADSCrossRefGoogle Scholar
  460. J.P. Thayer, High-latitude currents and their energy exchange with the ionosphere-thermosphere system. J. Geophys. Res. 105, 23015–23024 (2000).  https://doi.org/10.1029/1999JA000409 ADSCrossRefGoogle Scholar
  461. F. Tian, O.B. Toon, A.A. Pavlov, H. De Sterck, Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. Astrophys. J. 621, 1049–1060 (2005).  https://doi.org/10.1086/427204 ADSCrossRefGoogle Scholar
  462. W.J. Tirry, M. Goossens, Quasi-modes as dissipative magnetohydrodynamic eigenmodes: results for one-dimensional equilibrium states. Astrophys. J. 471, 501 (1996).  https://doi.org/10.1086/177986 ADSCrossRefGoogle Scholar
  463. G.Z. Tóth, Test of the weak cosmic censorship conjecture with a charged scalar field and dyonic Kerr-Newman black holes. Gen. Relativ. Gravit. 44, 2019–2035 (2012).  https://doi.org/10.1007/s10714-012-1374-z ADSMathSciNetMATHCrossRefGoogle Scholar
  464. G. Tóth, Y. Ma, T.I. Gombosi, Hall magnetohydrodynamics on block-adaptive grids. J. Comput. Phys. P227(14), 6967–6984 (2008).  https://doi.org/10.1016/j.jcp.2008.04.010 ADSMathSciNetMATHCrossRefGoogle Scholar
  465. G.B. Trammell, P. Arras, Z.-Y. Li, Hot Jupiter magnetospheres. Astrophys. J. 728, 152 (2011).  https://doi.org/10.1088/0004-637X/728/2/152 ADSCrossRefGoogle Scholar
  466. G.B. Trammell, Z.-Y. Li, P. Arras, Magnetohydrodynamic simulations of Hot Jupiter upper atmospheres. Astrophys. J. 788, 161 (2014).  https://doi.org/10.1088/0004-637X/788/2/161 ADSCrossRefGoogle Scholar
  467. Y.T. Tsap, A.V. Stepanov, Y.G. Kopylova, Energy flux of Alfvén waves in weakly ionized plasma and coronal heating of the Sun. Sol. Phys. 270, 205–211 (2011).  https://doi.org/10.1007/s11207-011-9727-4 ADSCrossRefGoogle Scholar
  468. G. Tsiropoula, K. Tziotziou, I. Kontogiannis, M.S. Madjarska, J.G. Doyle, Y. Suematsu, Solar fine-scale structures. I. Spicules and other small-scale, jet-like events at the chromospheric level: observations and physical parameters. Space Sci. Rev. 169, 181–244 (2012).  https://doi.org/10.1007/s11214-012-9920-2 ADSCrossRefGoogle Scholar
  469. Y. Tsukamoto, K. Iwasaki, S.-i. Inutsuka, An explicit scheme for ohmic dissipation with smoothed particle magnetohydrodynamics. Mon. Not. R. Astron. Soc. 434, 2593–2599 (2013).  https://doi.org/10.1093/mnras/stt1205 ADSCrossRefGoogle Scholar
  470. A.V. Usmanov, W.H. Matthaeus, B.A. Breech, M.L. Goldstein, Solar wind modeling with turbulence transport and heating. Astrophys. J. 727, 84 (2011).  https://doi.org/10.1088/0004-637X/727/2/84 ADSCrossRefGoogle Scholar
  471. A. Vanderburg, D.W. Latham, L.A. Buchhave, A. Bieryla, P. Berlind, M.L. Calkins, G.A. Esquerdo, S. Welsh, J.A. Johnson, Planetary candidates from the first year of the K2 mission. ArXiv e-prints (2015) Google Scholar
  472. K. Vanninathan, M.S. Madjarska, E. Scullion, J.G. Doyle, Off-limb (spicule) DEM distribution from SoHO/SUMER observations. Sol. Phys. 280, 425–434 (2012).  https://doi.org/10.1007/s11207-012-9986-8 ADSCrossRefGoogle Scholar
  473. B.J. Vasquez, Resonant absorption of an Alfvén wave: hybrid simulations. J. Geophys. Res. Space Phys. 110, A10S02 (2005).  https://doi.org/10.1029/2004JA010872 Google Scholar
  474. V.M. Vasyliūnas, The physical basis of ionospheric electrodynamics. Ann. Geophys. 30, 357–369 (2012).  https://doi.org/10.5194/angeo-30-357-2012 ADSCrossRefGoogle Scholar
  475. V.M. Vasyliūnas, P. Song, Meaning of ionospheric Joule heating. J. Geophys. Res. 110, 20302 (2005).  https://doi.org/10.1029/2004JA010615 CrossRefGoogle Scholar
  476. E. Vázquez-Semadeni, Energy budget and the virial theorem in interstellar clouds, in Millimeter-Wave Astronomy: Molecular Chemistry & Physics in Space, ed. by W.F. Wall, A. Carramiñana, L. Carrasco. Astrophysics and Space Science Library, vol. 241 (1999), p. 143.  https://doi.org/10.1007/978-94-011-4714-9-8 CrossRefGoogle Scholar
  477. E. Vázquez-Semadeni, E.C. Ostriker, T. Passot, C.F. Gammie, J.M. Stone, Compressible MHD turbulence: implications for molecular cloud and star formation, in Protostars and Planets IV (2000), p. 3 Google Scholar
  478. E. Vázquez-Semadeni, J. Kim, M. Shadmehri, J. Ballesteros-Paredes, The lifetimes and evolution of molecular cloud cores. Astrophys. J. 618, 344–359 (2005).  https://doi.org/10.1086/425951 ADSCrossRefGoogle Scholar
  479. E. Vázquez-Semadeni, D. Ryu, T. Passot, R.F. González, A. Gazol, Molecular cloud evolution. I. Molecular cloud and thin cold neutral medium sheet formation. Astrophys. J. 643, 245–259 (2006).  https://doi.org/10.1086/502710 ADSCrossRefGoogle Scholar
  480. E. Vázquez-Semadeni, G.C. Gómez, A.K. Jappsen, J. Ballesteros-Paredes, R.F. González, R.S. Klessen, Molecular cloud evolution. II. From cloud formation to the early stages of star formation in decaying conditions. Astrophys. J. 657, 870–883 (2007).  https://doi.org/10.1086/510771 ADSCrossRefGoogle Scholar
  481. E. Vázquez-Semadeni, G.C. Gómez, A.-K. Jappsen, J. Ballesteros-Paredes, R.S. Klessen, High- and low-mass star-forming regions from hierarchical gravitational fragmentation. High local star formation rates with low global efficiencies. Astrophys. J. 707, 1023–1033 (2009).  https://doi.org/10.1088/0004-637X/707/2/1023 ADSCrossRefGoogle Scholar
  482. E. Vázquez-Semadeni, P. Colín, G.C. Gómez, J. Ballesteros-Paredes, A.W. Watson, Molecular cloud evolution. III. Accretion versus stellar feedback. Astrophys. J. 715, 1302–1317 (2010).  https://doi.org/10.1088/0004-637X/715/2/1302 ADSCrossRefGoogle Scholar
  483. E. Vázquez-Semadeni, R. Banerjee, G.C. Gómez, P. Hennebelle, D. Duffin, R.S. Klessen, Molecular cloud evolution—IV. Magnetic fields, ambipolar diffusion and the star formation efficiency. Mon. Not. R. Astron. Soc. 414, 2511–2527 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18569.x ADSCrossRefGoogle Scholar
  484. J.-C. Vial, O. Engvold (eds.), Solar Prominences. Astrophysics and Space Science Library, vol. 415 (2015).  https://doi.org/10.1007/978-3-319-10416-4 Google Scholar
  485. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G.E. Ballester, R. Ferlet, G. Hébrard, M. Mayor, An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).  https://doi.org/10.1038/nature01448 ADSCrossRefGoogle Scholar
  486. A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, G. Hébrard, G.E. Ballester, D. Ehrenreich, R. Ferlet, J.C. McConnell, M. Mayor, C.D. Parkinson, Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. Astrophys. J. Lett. 604, 69–72 (2004).  https://doi.org/10.1086/383347 ADSCrossRefGoogle Scholar
  487. A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, T. Linde, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351 (2005).  https://doi.org/10.1051/0004-6361:20041507 ADSCrossRefGoogle Scholar
  488. J. Vranjes, P.S. Krstic, Collisions, magnetization, and transport coefficients in the lower solar atmosphere. Astron. Astrophys. 554, 22 (2013) ADSCrossRefGoogle Scholar
  489. J. Vranjes, S. Poedts, B.P. Pandey, B. de Pontieu, Energy flux of Alfvén waves in weakly ionized plasma. Astron. Astrophys. 478, 553–558 (2008).  https://doi.org/10.1051/0004-6361:20078274 ADSMATHCrossRefGoogle Scholar
  490. J.H. Waite, T.E. Cravens, J. Kozyra, A.F. Nagy, S.K. Atreya, R.H. Chen, Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. J. Geophys. Res. Space Phys. 88(A8), 6143–6163 (1983).  https://doi.org/10.1029/JA088iA08p06143 ADSCrossRefGoogle Scholar
  491. M. Wardle, C. Ng, The conductivity of dense molecular gas. Mon. Not. R. Astron. Soc. 303, 239–246 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02211.x ADSCrossRefGoogle Scholar
  492. A.J. Watson, T.M. Donahue, J.C.G. Walker, The dynamics of a rapidly escaping atmosphere—applications to the evolution of Earth and Venus. Icarus 48, 150–166 (1981).  https://doi.org/10.1016/0019-1035(81)90101-9 ADSCrossRefGoogle Scholar
  493. C. Watson, E.G. Zweibel, F. Heitsch, E. Churchwell, Kelvin-Helmholtz instability in a weakly ionized medium. Astrophys. J. 608, 274–281 (2004).  https://doi.org/10.1086/392500 ADSCrossRefGoogle Scholar
  494. R.W. Wilson, K.B. Jefferts, A.A. Penzias, Carbon monoxide in the orion nebula. Astrophys. J. Lett. 161, 43 (1970).  https://doi.org/10.1086/180567 ADSCrossRefGoogle Scholar
  495. B.E. Wood, H.-R. Müller, G.P. Zank, J.L. Linsky, Measured mass-loss rates of solar-like stars as a function of age and activity. Astrophys. J. 574, 412–425 (2002).  https://doi.org/10.1086/340797 ADSCrossRefGoogle Scholar
  496. B.E. Wood, H.-R. Müller, G.P. Zank, J.L. Linsky, S. Redfield, New mass-loss measurements from astrospheric \(\mbox{Ly}\alpha \) absorption. Astrophys. J. Lett. 628, 143–146 (2005).  https://doi.org/10.1086/432716 ADSCrossRefGoogle Scholar
  497. T.I. Woodward, J.F. McKenzie, Stationary incompressible MHD perturbations generated by a current source in a moving plasma. Planet. Space Sci. 47, 545–555 (1999).  https://doi.org/10.1016/S0032-0633(98)00134-2 ADSCrossRefGoogle Scholar
  498. R.V. Yelle, Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170, 167–179 (2004).  https://doi.org/10.1016/j.icarus.2004.02.008 ADSCrossRefGoogle Scholar
  499. R.V. Yelle, S. Miller, in Jupiter’s Thermosphere and Ionosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (2004), pp. 185–218 Google Scholar
  500. L. Yin, D. Winske, S.P. Gary, J. Birn, Hybrid and hall-mhd simulations of collisionless reconnection: dynamics of the electron pressure tensor. J. Geophys. Res. Space Phys. 106(A6), 10761–10775 (2001).  https://doi.org/10.1029/2000JA000398 ADSCrossRefGoogle Scholar
  501. V.V. Zaitsev, M.L. Khodachenko, Dynamical regimes and the possibility of microflares in a prominence. Sov. Astron. 36, 81 (1992) ADSMATHGoogle Scholar
  502. M. Zamora-Avilés, E. Vázquez-Semadeni, An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate. Astrophys. J. 793, 84 (2014).  https://doi.org/10.1088/0004-637X/793/2/84 ADSCrossRefGoogle Scholar
  503. M. Zamora-Avilés, E. Vázquez-Semadeni, P. Colín, An evolutionary model for collapsing molecular clouds and their star formation activity. Astrophys. J. 751, 77 (2012).  https://doi.org/10.1088/0004-637X/751/1/77 ADSCrossRefGoogle Scholar
  504. T.V. Zaqarashvili, Solar spicules: recent challenges in observations and theory, in American Institute of Physics Conference Series, ed. by I. Zhelyazkov, T. Mishonov American Institute of Physics Conference Series, vol. 1356 (2011), pp. 106–116.  https://doi.org/10.1063/1.3598099 Google Scholar
  505. T.V. Zaqarashvili, R. Erdélyi, Oscillations and waves in solar spicules. Space Sci. Rev. 149, 355–388 (2009).  https://doi.org/10.1007/s11214-009-9549-y ADSCrossRefGoogle Scholar
  506. T.V. Zaqarashvili, M.L. Khodachenko, H.O. Rucker, Damping of Alfvén waves in solar partially ionized plasmas: effect of neutral helium in multi-fluid approach. Astron. Astrophys. 534, 93 (2011a).  https://doi.org/10.1051/0004-6361/201117380 ADSCrossRefGoogle Scholar
  507. T.V. Zaqarashvili, M.L. Khodachenko, H.O. Rucker, Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astron. Astrophys. 529, 82 (2011b).  https://doi.org/10.1051/0004-6361/201016326 ADSCrossRefGoogle Scholar
  508. T.V. Zaqarashvili, M.L. Khodachenko, R. Soler, Torsional Alfvén waves in partially ionized solar plasma: effects of neutral helium and stratification. Astron. Astrophys. 549, 113 (2013).  https://doi.org/10.1051/0004-6361/201220272 ADSCrossRefGoogle Scholar
  509. T.V. Zaqarashvili, Z. Vörös, I. Zhelyazkov, Kelvin-Helmholtz instability of twisted magnetic flux tubes in the solar wind. Astron. Astrophys. 561, 62 (2014).  https://doi.org/10.1051/0004-6361/201322808 CrossRefGoogle Scholar
  510. T.V. Zaqarashvili, I. Zhelyazkov, L. Ofman, Stability of rotating magnetized jets in the solar atmosphere. I. Kelvin-Helmholtz instability. Astrophys. J. 813, 123 (2015).  https://doi.org/10.1088/0004-637X/813/2/123 ADSCrossRefGoogle Scholar
  511. T.V. Zaqarashvili, E. Khutsishvili, V. Kukhianidze, G. Ramishvili, Doppler-shift oscillations in solar spicules. Astron. Astrophys. 474, 627–632 (2007).  https://doi.org/10.1051/0004-6361:20077661 ADSCrossRefGoogle Scholar
  512. T.V. Zaqarashvili, A.J. Díaz, R. Oliver, J.L. Ballester, Instability of twisted magnetic tubes with axial mass flows. Astron. Astrophys. 516, 84 (2010).  https://doi.org/10.1051/0004-6361/200913874 ADSMATHCrossRefGoogle Scholar
  513. T.V. Zaqarashvili, M. Carbonell, J.L. Ballester, M.L. Khodachenko, Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 544, 143 (2012).  https://doi.org/10.1051/0004-6361/201219763 ADSCrossRefGoogle Scholar
  514. J.B. Zirker, O. Engvold, S.F. Martin, Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature 396, 440–441 (1998).  https://doi.org/10.1038/24798 ADSCrossRefGoogle Scholar
  515. B. Zuckerman, N.J. Evans II, Models of massive molecular clouds. Astrophys. J. Lett. 192, 149–152 (1974).  https://doi.org/10.1086/181613 ADSCrossRefGoogle Scholar
  516. B. Zuckerman, P. Palmer, Radio radiation from interstellar molecules. Annu. Rev. Astron. Astrophys. 12, 279–313 (1974).  https://doi.org/10.1146/annurev.aa.12.090174.001431 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • José Luis Ballester
    • 1
  • Igor Alexeev
    • 2
  • Manuel Collados
    • 3
  • Turlough Downes
    • 4
  • Robert F. Pfaff
    • 5
  • Holly Gilbert
    • 6
  • Maxim Khodachenko
    • 7
  • Elena Khomenko
    • 3
  • Ildar F. Shaikhislamov
    • 8
  • Roberto Soler
    • 1
  • Enrique Vázquez-Semadeni
    • 9
  • Teimuraz Zaqarashvili
    • 10
    • 7
  1. 1.Departament de Física & Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3)Universitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Skobeltsyn Institute of Nuclear Physics (MSU SINP)Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Instituto de Astrofísica de CanariasLa LagunaSpain
  4. 4.Centre for Astrophysics & Relativity, School of Mathematical SciencesDublin City UniversityDublin 9Ireland
  5. 5.NASA/Goddard Space Flight CenterGreenbeltUSA
  6. 6.Solar Physics Laboratory, Heliophysics Science DivisionGoddard Space Flight CenterGreenbeltUSA
  7. 7.Space Research InstituteAustrian Academy of SciencesGrazAustria
  8. 8.Institute of Laser Physics SB RASNovosibirskRussia
  9. 9.Instituto de Radioastronomia y Astrofísica (IRyA)UNAMMoreliaMéxico
  10. 10.Abastumani Astrophysical ObservatoryIlia State UniversityTbilisiGeorgia

Personalised recommendations