Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Identification of Pre-flare Processes and Their Possible Role in Driving a Large-scale Flux Rope Eruption with Complex M-class Flare in the Active Region NOAA 12371


In this article, we study the origin of precursor flare activity and investigate its role towards triggering the eruption of a flux rope which resulted into a dual-peak M-class flare (SOL2015-06-21T02:36) in the active region NOAA 12371. The flare evolved in two distinct phases with peak flux levels of M2.1 and M2.6 at an interval of \(\approx 54\) min. The active region exhibited striking moving magnetic features (MMFs) along with sunspot rotation. Nonlinear force-free field (NLFFF) modelling of the active region corona reveals a magnetic flux rope along the polarity inversion line in the trailing sunspot group which is observationally manifested by the co-spatial structures of an active region filament and a hot channel identified in the 304 and 94 Å images, respectively, from the Atmospheric Imaging Assembly (AIA). The active region underwent a prolonged phase of flux enhancement followed by a relatively shorter period of flux cancellation prior to the onset of the flare which led to the build up and activation of the flux rope. Extreme ultra-violet (EUV) images reveal localised and structured pre-flare emission, from the region of MMFs, adjacent to the location of the main flare. Our analysis reveals strong, localised regions of photospheric currents of opposite polarities at the precursor location, thereby making the region susceptible to small-scale magnetic reconnection. Precursor reconnection activity from this location most likely induced a slipping reconnection towards the northern leg of the hot channel which led to the destabilisation of the flux rope. The application of magnetic virial theorem suggests that there was an overall growth of magnetic free energy in the active region during the prolonged pre-flare phase which decayed rapidly after the hot channel eruption and its successful transformation into a halo coronal mass ejection (CME).

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14


  1. 1.

    See https://www.swpc.noaa.gov/products/solar-region-summary.

  2. 2.

    See https://cdaw.gsfc.nasa.gov/CME_list/index.html.

  3. 3.

    See https://www.swpc.noaa.gov/products/solar-and-geophysical-activity-summary.


  1. Awasthi, A.K., Liu, R., Wang, H., Wang, Y., Shen, C.: 2018, Pre-eruptive magnetic reconnection within a multi-flux-rope system in the solar corona. Astrophys. J.857(2), 124. DOI . ADS .

  2. Benz, A.O.: 2017, Flare observations. Living Rev. Solar Phys.14, 2. DOI . ADS .

  3. Bi, Y., Yang, J., Jiang, Y., Hong, J., Xu, Z., Qu, Z., Ji, K.: 2017, The photospheric vortex flows during a solar flare. Astrophys. J. Lett.849(2), L35. DOI . ADS .

  4. Carmichael, H.: 1964, A process for flares. NASA Spec. Publ.50, 451. ADS .

  5. Cheng, X., Ding, M.D.: 2016, Spectroscopic diagnostics of solar magnetic flux ropes using iron forbidden line. Astrophys. J. Lett.823(1), L4. DOI . ADS .

  6. Cheng, X., Zhang, J., Ding, M.D., Liu, Y., Poomvises, W.: 2013, The driver of coronal mass ejections in the low corona: a flux rope. Astrophys. J.763, 43. DOI . ADS .

  7. Cheng, X., Ding, M.D., Zhang, J., Sun, X.D., Guo, Y., Wang, Y.M., Kliem, B., Deng, Y.Y.: 2014a, Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520. Astrophys. J.789(2), 93. DOI . ADS .

  8. Cheng, X., Ding, M.D., Zhang, J., Srivastava, A.K., Guo, Y., Chen, P.F., Sun, J.Q.: 2014b, On the relationship between a hot-channel-like solar magnetic flux rope and its embedded prominence. Astrophys. J. Lett.789, L35. DOI . ADS .

  9. Chifor, C., Mason, H.E., Tripathi, D., Isobe, H., Asai, A.: 2006, The early phases of a solar prominence eruption and associated flare: a multi-wavelength analysis. Astron. Astrophys.458, 965. DOI . ADS .

  10. Chifor, C., Tripathi, D., Mason, H.E., Dennis, B.R.: 2007, X-ray precursors to flares and filament eruptions. Astron. Astrophys.472, 967. DOI . ADS .

  11. Clyne, J., Mininni, P., Norton, A., Rast, M.: 2007, Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys.9(8), 301. http://stacks.iop.org/1367-2630/9/i=8/a=301 .

  12. Craig, I.J.D., Effenberger, F.: 2014, Current singularities at quasi-separatrix layers and three-dimensional magnetic nulls. Astrophys. J.795(2), 129. DOI . ADS .

  13. Démoulin, P., Bagala, L.G., Mandrini, C.H., Henoux, J.C., Rovira, M.G.: 1997, Quasi-separatrix layers in solar flares. II. Observed magnetic configurations. Astron. Astrophys.325, 305. ADS .

  14. Dhara, S.K., Belur, R., Kumar, P., Banyal, R.K., Mathew, S.K., Joshi, B.: 2017, Trigger of successive filament eruptions observed by sdo and stereo. Solar Phys.292(10), 145. DOI .

  15. Engvold, O.: 1997, In: Mouradian, Z., Stavinschi, M. (eds.) Filament Channels in the Corona, Springer, Dordrecht, 125. 978-94-011-5492-5. DOI .

  16. Fárník, F., Hudson, H., Watanabe, T.: 1996, Spatial relations between preflares and flares. Solar Phys.165, 169. DOI . ADS .

  17. Fárník, F., Savy, S.K.: 1998, Soft X-ray pre-flare emission studied in Yohkoh-SXT images. Solar Phys.183, 339. DOI . ADS .

  18. Fárník, F., Hudson, H.S., Karlický, M., Kosugi, T.: 2003, X-ray and radio observations of the activation stages of an X-class solar flare. Astron. Astrophys.399, 1159. DOI . ADS .

  19. Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev.159, 19. DOI . ADS .

  20. Gaizauskas, V., Zirker, J.B., Sweetland, C., Kovacs, A.: 1997, Formation of a solar filament channel. Astrophys. J.479(1), 448. DOI .

  21. Gibson, S.E., Fan, Y.: 2006, Coronal prominence structure and dynamics: a magnetic flux rope interpretation. J. Geophys. Res.111, A12103. DOI . ADS .

  22. Gopalswamy, N., Mäkelä, P., Akiyama, S., Yashiro, S., Xie, H., Thakur, N.: 2018, Sun-to-Earth propagation of the 2015 June 21 coronal mass ejection revealed by optical, EUV, and radio observations. J. Atmos. Solar-Terr. Phys.179, 225. DOI . ADS .

  23. Hernandez-Perez, A., Su, Y., Veronig, A.M., Thalmann, J., Gömöry, P., Joshi, B.: 2019, Pre-eruption processes: heating, particle acceleration, and the formation of a hot channel before the 2012 October 20 M9.0 limb flare. Astrophys. J.874, 122. DOI . ADS .

  24. Hirayama, T.: 1974, Theoretical model of flares and prominences. Solar Phys.34(2), 323. DOI .

  25. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., McTiernan, J., Metcalf, T.R., Sato, J., Smith, D.M.: 2002, The RHESSI imaging concept. Solar Phys.210(1), 61. DOI . ADS .

  26. Janvier, M., Savcheva, A., Pariat, E., Tassev, S., Millholland, S., Bommier, V., McCauley, P., McKillop, S., Dougan, F.: 2016, Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare. Astron. Astrophys.591, A141. DOI . ADS .

  27. Jing, J., Liu, R., Cheung, M.C.M., Lee, J., Xu, Y., Liu, C., Zhu, C., Wang, H.: 2017, Witnessing a large-scale slipping magnetic reconnection along a dimming channel during a solar flare. Astrophys. J. Lett.842(2), L18. DOI . ADS .

  28. Joshi, B., Veronig, A.M., Lee, J., Bong, S.-C., Tiwari, S.K., Cho, K.-S.: 2011, Pre-flare activity and magnetic reconnection during the evolutionary stages of energy release in a solar eruptive flare. Astrophys. J.743, 195. DOI . ADS .

  29. Joshi, B., Kushwaha, U., Veronig, A.M., Cho, K.-S.: 2016, Pre-flare coronal jet and evolutionary phases of a solar eruptive prominence associated with the M1.8 flare: SDO and RHESSI observations. Astrophys. J.832, 130. DOI . ADS .

  30. Joshi, B., Kushwaha, U., Veronig, A.M., Dhara, S.K., Shanmugaraju, A., Moon, Y.-J.: 2017, Formation and eruption of a flux rope from the sigmoid active region NOAA 11719 and associated M6.5 flare: a multi-wavelength study. Astrophys. J.834, 42. DOI . ADS .

  31. Joshi, B., Ibrahim, M.S., Shanmugaraju, A., Chakrabarty, D.: 2018, A major geoeffective CME from NOAA 12371: initiation, CME-CME interactions, and interplanetary consequences. Solar Phys.293, 107. DOI . ADS .

  32. Kim, S., Moon, Y.-J., Kim, Y.-H., Park, Y.-D., Kim, K.-S., Choe, G.S., Kim, K.-H.: 2008, Preflare eruption triggered by a tether-cutting process. Astrophys. J.683(1), 510. DOI . ADS .

  33. Klimchuk, J.A., Canfield, R.C., Rhoads, J.E.: 1992, The practical application of the magnetic virial theorem. Astrophys. J.385, 327. DOI . ADS .

  34. Kontogiannis, I., Georgoulis, M.K., Park, S.-H., Guerra, J.A.: 2017, Non-neutralized electric currents in solar active regions and flare productivity. Solar Phys.292(11), 159. DOI .

  35. Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys.50, 85. DOI . ADS .

  36. Kuroda, N., Gary, D.E., Wang, H., Fleishman, G.D., Nita, G.M., Jing, J.: 2018, Three-dimensional forward-fit modeling of the hard X-ray and microwave emissions of the 2015 June 22 M6.5 flare. Astrophys. J.852(1), 32. DOI . ADS .

  37. Kusano, K., Bamba, Y., Yamamoto, T.T., Iida, Y., Toriumi, S., Asai, A.: 2012, Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J.760(1), 31. DOI . ADS .

  38. Lee, J., White, S.M., Jing, J., Liu, C., Masuda, S., Chae, J.: 2017, Thermal and nonthermal emissions of a composite flare derived from NoRH and SDO observations. Astrophys. J.850(2), 124. DOI . ADS .

  39. Lee, J., White, S.M., Liu, C., Kliem, B., Masuda, S.: 2018, Magnetic structure of a composite solar microwave burst. Astrophys. J.856(1), 70. DOI . ADS .

  40. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275, 17. DOI . ADS .

  41. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys.210, 3. DOI . ADS .

  42. Liu, W., Wang, T.-J., Dennis, B.R., Holman, G.D.: 2009, Episoidic X-ray emmision accompanying the activation of an eruptive prominence: evidence of episodic magnetic reconnection. Astrophys. J.698(1), 632. DOI .

  43. Liu, R., Kliem, B., Titov, V.S., Chen, J., Wang, Y., Wang, H., Liu, C., Xu, Y., Wiegelmann, T.: 2016, Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. Astrophys. J.818(2), 148. DOI . ADS .

  44. Liu, R., Wang, Y., Lee, J., Shen, C.: 2019, Impacts of EUV wavefronts on coronal structures in homologous coronal mass ejections. Astrophys. J.870(1), 15. DOI . ADS .

  45. Manoharan, P.K., van Driel-Gesztelyi, L., Pick, M., Démoulin, P.: 1996, Evidence for large-scale solar magnetic reconnection from radio and X-ray measurements. Astrophys. J. Lett.468, L73. DOI . ADS .

  46. Manoharan, P.K., Maia, D., Johri, A., Induja, M.S.: 2016, Interplanetary consequences of coronal mass ejection events occurred during 18 – 25 June 2015. In: Dorotovic, I., Fischer, C.E., Temmer, M. (eds.) Coimbra Solar Physics Meeting: Ground-Based Solar Observations in the Space Instrumentation Era, Astronomical Society of the Pacific Conference Series504, 59. ADS .

  47. Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments (Invited Review). Solar Phys.182(1), 107. DOI . ADS .

  48. Martres, M., Michard, R.: 1966, Soru-iscovici. Ann. Astrophys.29, 249.

  49. Mitra, P.K., Joshi, B.: 2019, Preflare processes, flux rope activation, large-scale eruption, and associated X-class flare from the active region NOAA 11875. Astrophys. J.884(1), 46. DOI . ADS .

  50. Mitra, P.K., Joshi, B., Prasad, A., Veronig, A.M., Bhattacharyya, R.: 2018, Successive flux rope eruptions from \(\delta\)-sunspots region of NOAA 12673 and associated X-class eruptive flares on 2017 September 6. Astrophys. J.869(1), 69.

  51. Moore, R.L., Roumeliotis, G.: 1992, Triggering of eruptive flares – destabilization of the preflare magnetic field configuration. In: Svestka, Z., Jackson, B.V., Machado, M.E. (eds.) IAU Colloq. 133: Eruptive Solar Flares, Lecture Notes in Physics, Berlin Springer Verlag399, 69. DOI . ADS .

  52. Nindos, A., Patsourakos, S., Vourlidas, A., Tagikas, C.: 2015, How common are hot magnetic flux ropes in the low solar corona? A statistical study of EUV observations. Astrophys. J.808(2), 117. DOI .

  53. Parenti, S.: 2014, Solar prominences: observations. Living Rev. Solar Phys.11(1), 1. DOI .

  54. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys.275(1), 3. DOI .

  55. Piersanti, M., Alberti, T., Bemporad, A., Berrilli, F., Bruno, R., Capparelli, V., Carbone, V., Cesaroni, C., Consolini, G., Cristaldi, A., Del Corpo, A., Del Moro, D., Di Matteo, S., Ermolli, I., Fineschi, S., Giannattasio, F., Giorgi, F., Giovannelli, L., Guglielmino, S.L., Laurenza, M., Lepreti, F., Marcucci, M.F., Martucci, M., Mergè, M., Pezzopane, M., Pietropaolo, E., Romano, P., Sparvoli, R., Spogli, L., Stangalini, M., Vecchio, A., Vellante, M., Villante, U., Zuccarello, F., Heilig, B., Reda, J., Lichtenberger, J.: 2017, Comprehensive analysis of the geoeffective solar event of 21 June 2015: effects on the magnetosphere, plasmasphere, and ionosphere systems. Solar Phys.292(11), 169. DOI . ADS .

  56. Priest, E.R., Démoulin, P.: 1995, Three-dimensional magnetic reconnection without null points: 1. Basic theory of magnetic flipping. J. Geophys. Res.100(A12), 23443. DOI .

  57. Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett.464, L199. DOI . ADS .

  58. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys.275, 229. DOI . ADS .

  59. Shibata, K.: 1996, New observational facts about solar flares from YOHKOH studies – evidence of magnetic reconnection and a unified model of flares. Adv. Space Res.17(4-5), 9. DOI . ADS .

  60. Sterling, A.C., Harra, L.K., Moore, R.L.: 2007, New evidence for the role of emerging flux in a solar filament’s slow rise preceding its CME-producing fast eruption. Astrophys. J.669(2), 1359. DOI . ADS .

  61. Sterling, A.C., Moore, R.L.: 2005, Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset. Astrophys. J.630(2), 1148. DOI .

  62. Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature211, 695. DOI . ADS .

  63. Tan, B., Ji, H., Huang, G., Zhou, T., Song, Q., Huang, Y.: 2006, Evolution of electric currents associated with two m-class flares. Solar Phys.239(1), 137. DOI .

  64. Tandberg-Hanssen, E.: 1995, Physical Parameters of the Prominence Plasma, Springer, Dordrecht, 81. 978-94-017-3396-0. DOI .

  65. van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J.343, 971. DOI . ADS .

  66. Vemareddy, P.: 2017, Successive homologous coronal mass ejections driven by shearing and converging motions in solar active region NOAA 12371. Astrophys. J.845(1), 59. DOI . ADS .

  67. Wang, H., Liu, C., Ahn, K., Xu, Y., Jing, J., Deng, N., Huang, N., Liu, R., Kusano, K., Fleishman, G.D., Gary, D.E., Cao, W.: 2017, High-resolution observations of flare precursors in the low solar atmosphere. Nat. Astron.1, 0085. DOI . ADS .

  68. Wang, J., Liu, C., Deng, N., Wang, H.: 2018, Evolution of photospheric flow and magnetic fields associated with the 2015 June 22 M6.5 flare. Astrophys. J.853(2), 143. DOI . ADS .

  69. Warren, H.P., Warshall, A.D.: 2001, Ultraviolet flare ribbon brightenings and the onset of hard X-ray emission. Astrophys. J.560(1), L87. DOI .

  70. Wiegelmann, T., Inhester, B.: 2010, How to deal with measurement errors and lacking data in nonlinear force-free coronal magnetic field modelling? Astron. Astrophys.516, A107. DOI . ADS .

  71. Wiegelmann, T., Inhester, B., Sakurai, T.: 2006, Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Solar Phys.233(2), 215. DOI .

  72. Wiegelmann, T., Thalmann, J.K., Inhester, B., Tadesse, T., Sun, X., Hoeksema, J.T.: 2012, How should one optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms? Solar Phys.281, 37. DOI . ADS .

  73. Woods, M.M., Harra, L.K., Matthews, S.A., Mackay, D.H., Dacie, S., Long, D.M.: 2017, Observations and modelling of the pre-flare period of the 29 March 2014 X1 flare. Solar Phys.292(2), 38. DOI . ADS .

  74. Woods, M.M., Inoue, S., Harra, L.K., Matthews, S.A., Kusano, K., Kalmoni, N.M.E.: 2018, The triggering of the 2014 March 29 filament eruption. Astrophys. J.860(2), 163. DOI . ADS .

  75. Yang, B., Chen, H.: 2019, Filament eruption and its reformation caused by emerging magnetic flux. Astrophys. J.874(1), 96. DOI . ADS .

  76. Zhang, H.: 1995, Formation of magnetic shear and an electric current system in an emerging flux region. Astron. Astrophys.304, 541. ADS .

  77. Zhang, J., Cheng, X., Ding, M.-D.: 2012, Observation of an evolving magnetic flux rope before and during a solar eruption. Nat. Commun.3, 747. DOI . ADS .

  78. Zirin, H.: 1988, Astrophysics of the Sun. ADS .

  79. Zuccarello, F., Romano, P., Farnik, F., Karlicky, M., Contarino, L., Battiato, V., Guglielmino, S.L., Comparato, M., Ugarte-Urra, I.: 2009, The X17.2 flare occurred in NOAA 10486: an example of filament destabilization caused by a domino effect. Astron. Astrophys.493(2), 629. DOI .

Download references


The authors would like to thank the SDO and RHESSI teams for their open data policy. SDO is NASA’s mission under the Living With a Star (LWS) program. RHESSI was the sixth mission in the SMall EXplorer (SMEX) program of NASA. The authors are also thankful to Dr. Thomas Wiegelmann for providing the NLFFF code. AP acknowledges partial support of NASA grant 80NSSC17K0016 and NSF award AGS-1650854. We also acknowledge the constructive comments and useful suggestions of the anonymous referee, which improved the presentation and scientific content of the article.

Author information

Correspondence to Prabir K. Mitra.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MP4 2.8 MB)

(MP4 63.1 MB)

(MP4 5.4 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mitra, P.K., Joshi, B. & Prasad, A. Identification of Pre-flare Processes and Their Possible Role in Driving a Large-scale Flux Rope Eruption with Complex M-class Flare in the Active Region NOAA 12371. Sol Phys 295, 29 (2020). https://doi.org/10.1007/s11207-020-1596-2

Download citation


  • Active Regions, Magnetic Fields
  • Flares, Dynamics, Pre-Flare Phenomena, Relation to Magnetic Field
  • Magnetic fields, Models
  • X-Ray Bursts, Association with Flares