Solar Physics

, 294:152 | Cite as

Chromospheric Synoptic Maps of Polar Crown Filaments

  • A. DierckeEmail author
  • C. Denker
Part of the following topical collections:
  1. Irradiance Variations of the Sun and Sun-like Stars


Polar crown filaments form above the polarity inversion line between the old magnetic flux of the previous cycle and the new magnetic flux of the current cycle. Studying their appearance and their properties can lead to a better understanding of the solar cycle. We use full-disk data of the Chromospheric Telescope (ChroTel) at the Observatorio del Teide, Tenerife, Spain, which were taken in three different chromospheric absorption lines (H\(\upalpha\)\(\lambda\)6563 Å, Ca ii K \(\lambda\)3933 Å, and He i \(\lambda\)10830 Å), and we create synoptic maps. In addition, the spectroscopic He i data allow us to compute Doppler velocities and to create synoptic Doppler maps. ChroTel data cover the rising and decaying phase of Solar Cycle 24 on about 1000 days between 2012 and 2018. Based on these data, we automatically extract polar crown filaments with image-processing tools and study their properties. We compare contrast maps of polar crown filaments with those of quiet-Sun filaments. Furthermore, we present a super-synoptic map summarizing the entire ChroTel database. In summary, we provide statistical properties, i.e. number and location of filaments, area, and tilt angle for both the maximum and the declining phase of Solar Cycle 24. This demonstrates that ChroTel provides a promising data set to study the solar cycle.


Chromosphere, quiet Prominences, quiescent Prominences, magnetic field Solar Cycle, observations Instrumentation and data management 



The Chromospheric Telescope (ChroTel) is operated by the Leibniz Institute for Solar Physics (KIS) in Freiburg, Germany, at the Spanish Observatorio del Teide on Tenerife (Spain). The ChroTel filtergraph was developed by KIS in cooperation with the High Altitude Observatory (HAO) in Boulder, Colorado. This study was supported by grant DE 787/5-1 of the Deutsche Forschungsgemeinschaft (DFG) and by the European Commission’s Horizon 2020 Program under grant agreements 824064 (ESCAPE – European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures) and 824135 (SOLARNET – Integrating High Resolution Solar Physics). A. Diercke thanks Christoph Kuckein, Stefan Hofmeister, and Ioannis Kontogiannis for their helpful comments. The authors thank the reviewer for constructive criticism and helpful suggestions improving the manuscript.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Bentely, R.D., Freeland, S.L.: 1998, SOLARSOFT – an analysis environment for solar physics. In: Crossroads for European Solar and Heliospheric Physics. Recent Achievements and Future Mission PossibilitiesSP-417, ESA, Noordwijk, 225. Google Scholar
  2. Bethge, C., Peter, H., Kentischer, T.J., Halbgewachs, C., Elmore, D.F., Beck, C.: 2011, The Chromospheric Telescope. Astron. Astrophys.534, A105. DOI. ADSCrossRefGoogle Scholar
  3. Brault, J.W.: 1985, Fourier transform spectroscopy. In: Benz, A.O., Huber, M., Mayer, M. (eds.) High Resolution in Astronomy, Fifteenth Advanced Course of the Swiss Society of Astronomy and Astrophysics, Geneva Observatory, Sauverny, Switzerland, 3. Google Scholar
  4. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys.162, 357. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Cameron, R.H., Dikpati, M., Brandenburg, A.: 2017, The global solar dynamo. Space Sci. Rev.210, 367. DOI. ADSCrossRefGoogle Scholar
  6. Carrington, R.C.: 1858, On the distribution of the solar spots in latitudes since the beginning of the year 1854, with a map. Mon. Not. Roy. Astron. Soc.19, 1. DOI. ADSCrossRefGoogle Scholar
  7. Chatterjee, S., Hegde, M., Banerjee, D., Ravindra, B.: 2017, Long-term study of the solar filaments from the synoptic maps as derived from H\(\upalpha\) spectroheliograms of the Kodaikanal Observatory. Astrophys. J.849, 44. DOI. ADSCrossRefGoogle Scholar
  8. Cliver, E.W.: 2014, The extended cycle of solar activity and the Sun’s 22-year magnetic cycle. Space Sci. Rev.186, 169. DOI. ADSCrossRefGoogle Scholar
  9. Cortes, C., Vapnik, V.: 1995, Support-vector networks. Mach. Learn.20, 273. zbMATHGoogle Scholar
  10. Deng, H., Zhang, D., Wang, T., Ji, K., Wang, F., Liu, Z., Xiang, Y., Jin, Z., Cao, W.: 2015, Objective image-quality assessment for high-resolution photospheric images by median filter-gradient similarity. Solar Phys.290, 1479. DOI. ADSCrossRefGoogle Scholar
  11. Denker, C., Johannesson, A., Marquette, W., Goode, P.R., Wang, H., Zirin, H.: 1999, Synoptic H\(\upalpha\) full-disk observations of the Sun from BigBear Solar Observatory – I. Instrumentation, image processing, data products, and first results. Solar Phys.184, 87. DOI. ADSCrossRefGoogle Scholar
  12. Denker, C., Dineva, E., Balthasar, H., Verma, M., Kuckein, C., Diercke, A., González Manrique, S.J.: 2018, Image quality in high-resolution and high-cadence solar images. Solar Phys.5, 236. DOI. CrossRefGoogle Scholar
  13. Diercke, A., Arlt, R., Denker, C.: 2015, Digitization of sunspot drawings by Spörer made in 1861 – 1894. Astron. Nachr.336, 53. DOI. ADSCrossRefGoogle Scholar
  14. Diercke, A., Kuckein, C., Verma, M., Denker, C.: 2018, Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet. Astron. Astrophys.611, A64. DOI. ADSCrossRefGoogle Scholar
  15. Evershed, J., Evershed, M.A.: 1917, Results of Prominence Observations1, Kodaikanal, India, 55. Google Scholar
  16. Fanning, D.W.: 2011, Coyote’s Guide to Traditional IDL Graphics, Coyote, Fort Collins. Google Scholar
  17. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys.182, 497. DOI. ADSCrossRefGoogle Scholar
  18. Gibson, S.E., Webb, D., Hewins, I.M., McFadden, R.H., Emery, B.A., Denig, W., McIntosh, P.S.: 2017, Beyond sunspots: studies using the McIntosh Archive of Global Solar Magnetic Field Patterns. In: Nandy, D., Valio, A., Petit, P. (eds.) Living Around Active Stars, Proc. IAU12(S328), Cambridge University Press, Cambridge, 93. DOI. CrossRefGoogle Scholar
  19. Gonzalez, R.C., Woods, R.E.: 2002, Digital Image Processing, Prentice Hall, Upper Saddle River. Google Scholar
  20. Goodfellow, I., Bengio, Y., Courville, A.: 2016, Deep Learning, MIT Press, Cambridge. zbMATHGoogle Scholar
  21. Hanisch, R.J., Farris, A., Greisen, E.W., Pence, W.D., Schlesinger, B.M., Teuben, P.J., Thompson, R.W., Warnock, A.: 2001, Definition of the Flexible Image Transport System (FITS). Astron. Astrophys.376, 359. DOI. ADSCrossRefGoogle Scholar
  22. Hao, Q., Fang, C., Cao, W., Chen, P.F.: 2015, Statistical analysis of filament features based on the H\(\upalpha\) solar images from 1988 to 2013 by computer automated detection method. Astrophys. J. Suppl.221, 33. DOI. ADSCrossRefGoogle Scholar
  23. Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., Noyes, R.W., Title, A.M., Toomre, J., Ulrich, R.K., Bhatnagar, A., Kennewell, J.A., Marquette, W., Patron, J., Saa, O., Yasukawa, E.: 1996, The Global Oscillation Network Group (GONG) project. Science272, 1284. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Kentischer, T.J., Bethge, C., Elmore, D.F., Friedlein, R., Halbgewachs, C., Knölker, M., Peter, H., Schmidt, W., Sigwarth, M., Streander, K.: 2008, ChroTel: a robotic telescope to observe the chromosphere of the Sun. In: McLean, I.S., Casali, M.M. (eds.) Ground-based and Airborne Instrumentation for Astronomy II, Proc. SPIE7014, 701413. DOI. CrossRefGoogle Scholar
  25. Kuckein, C., Denker, C., Verma, M., Balthasar, H., González Manrique, S.J., Louis, R.E., Diercke, A.: 2017, sTools – a data reduction pipeline for the GREGOR Fabry-Pérot Interferometer and the High-resolution Fast Imager at the GREGOR Solar Telescope. In: Vargas Domínguez, S., Kosovichev, A.G., Antolin, P., Harra, L. (eds.) Fine Structure and Dynamics of the Solar Atmosphere, IAU Symp.327, Cambridge University Press, Cambridge, 20. DOI. ADS. CrossRefGoogle Scholar
  26. Leroy, J.L., Bommier, V., Sahal-Brechot, S.: 1983, The magnetic field in the prominences of the polar crown. Solar Phys.83, 135. DOI. ADSCrossRefGoogle Scholar
  27. Leroy, J.L., Bommier, V., Sahal-Brechot, S.: 1984, New data on the magnetic structure of quiescent prominences. Astron. Astrophys.131, 33. ADSGoogle Scholar
  28. Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences. II. Magnetic structure and dynamics. Space Sci. Rev.151, 333. DOI. ADSCrossRefGoogle Scholar
  29. Marshall, S., Fletcher, L., Hough, K.: 2006, Optimal filtering of solar images using soft morphological processing techniques. Astron. Astrophys.457(2), 729. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments. Solar Phys.182, 107. DOI. ADSCrossRefGoogle Scholar
  31. McIntosh, P.S.: 2005, Motions and interactions among large-scale solar structures on H-alpha synoptic charts. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (eds.) Large-Scale Structures and Their Role in Solar ActivityCS-346, Astron. Soc. Pacific, San Francisco, 193. ADS. Google Scholar
  32. Perona, P., Malik, J.: 1990, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell.12(7), 629. CrossRefGoogle Scholar
  33. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys.275, 3. DOI. ADSCrossRefGoogle Scholar
  34. Pevtsov, A.A.: 2016, The need for synoptic solar observations from the ground. In: Dorotovic, I., Fischer, C.E., Temmer, M. (eds.) Coimbra Solar Physics Meeting: Ground-Based Solar Observations in the Space Instrumentation EraCS-504, Astron. Soc. Pacific, San Francisco, 71. ADS. Google Scholar
  35. Qu, M., Shih, F.Y., Jing, J., Wang, H.: 2005, Automatic solar filament detection using image processing techniques. Solar Phys.228, 119. DOI. ADSCrossRefGoogle Scholar
  36. Robbrecht, E., Berghmans, D.: 2004, Automated recognition of Coronal Mass Ejections (CMEs) in near-real-time data. Astron. Astrophys.425, 1097. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Shen, Z., Diercke, A., Denker, C.: 2018, Calibration of full-disk He i 10830 Å filtergrams of the Chromospheric Telescope. Astron. Nachr.339, 661. DOI. ADSCrossRefGoogle Scholar
  38. SILSO World Data Center: 2008 – 2019, The International Sunspot Number. International Sunspot Number Monthly Bulletin and Online Catalogue.
  39. Spörer, F.W.G.: 1889, Von den Sonnenflecken des Jahres 1888 und von der Verschiedenheit der nördlichen und südlichen Halbkugel der Sonne seit 1883. Astron. Nachr.121(7), 105. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Sun, X., Hoeksema, J.T., Liu, Y., Zhao, J.: 2015, On polar magnetic field reversal and surface flux transport during Solar Cycle 24. Astrophys. J.798(2), 114. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Svalgaard, L., Kamide, Y.: 2013, Asymmetric solar polar field reversals. Astrophys. J.763(1), 23. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Tlatov, A.G., Kuzanyan, K.M., Vasil’yeva, V.V.: 2016, Tilt angles of solar filaments over the period of 1919 – 2014. Solar Phys.291(4), 1115. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Verma, M., Denker, C.: 2014, Horizontal flow fields observed in Hinode G-band images. IV. Statistical properties of the dynamical environment around pores. Astron. Astrophys.563, A112. DOI. ADS. ADSCrossRefGoogle Scholar
  44. von der Lühe, O.: 1998, High-resolution observations with the German Vacuum Tower Telescope on Tenerife. New Astron. Rev.42, 493. DOI. ADSCrossRefGoogle Scholar
  45. Wells, D.C., Greisen, E.W., Harten, R.H.: 1981, FITS – a Flexible Image Transport System. Astron. Astrophys. Suppl. Ser.44, 363. ADSGoogle Scholar
  46. Xu, Y., Pötzi, W., Zhang, H., Huang, N., Jing, J., Wang, H.: 2018, Collective study of polar crown filaments in the past four solar cycles. Astrophys. J. Lett.862, L23. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Leibniz-Institut für Astrophysik Potsdam (AIP)PotsdamGermany
  2. 2.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany

Personalised recommendations