Solar Physics

, 294:149 | Cite as

Intermittencies and Local Heating in Magnetic Cloud Boundary Layers

  • Zilu Zhou
  • Pingbing ZuoEmail author
  • Xueshang Feng
  • Yi Wang
  • Chaowei Jiang
  • Xiaojian Song


We perform a statistical study on the intermittency and the associated local heating in the front boundary layers (BLs) of 74 magnetic clouds (MCs). The intermittent structures are identified by the partial variance of increments (PVI) method. The probability distribution function of PVI-values reveals that the BLs are more intermittent than adjacent sheath regions, and they contain a greater concentration of strong intermittencies. These strong intermittencies are accompanied by local enhancement of the proton temperature, while the enhancement is not prominent at weaker intermittencies inside the BLs. Since the strong intermittencies are associated with magnetic reconnection (MR) processes according to previous studies, these results indicate that MR processes may account for the local heating in the MCBLs to a large extent.


Coronal mass ejections Interplanetary Turbulence Magnetic reconnection 



The authors thank the Wind/MFI, SWE, and 3DP teams and CDAWeb for making available data used in this article. This article uses data from the Heliospheric Shock Database, generated and maintained at the University of Helsinki. This work is jointly supported by the National Natural Science Foundation of China (41731067,41531073), Shenzhen Technology Project JCYJ20170307150645407, Shenzhen Technology Project JCYJ20180306171748011, and the Specialized Research Fund for State Key Laboratories of China.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Berdichevsky, D.B.: 2013, On fields and mass constraints for the uniform propagation of magnetic-flux ropes undergoing isotropic expansion. Solar Phys.284(1), 245. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Berdichevsky, D.B., Lepping, R.P., Farrugia, C.J.: 2003, Geometric considerations of the evolution of magnetic flux ropes. Phys. Rev. E67(3), 036405. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Burlaga, L.F.: 1968, Micro-scale structures in the interplanetary medium. Solar Phys.4, 67. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Burlaga, L.: 1995, Interplanetary Magnetohydrodynamics, Oxford University Press, New York. ISBN 0-19-508472-1. ADS. Google Scholar
  5. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res.86, 6673. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Chian, A.C.-L., Muñoz, P.R.: 2011, Detection of current sheets and magnetic reconnections at the turbulent leading edge of an interplanetary coronal mass ejection. Astrophys. J. Lett.733(2), L34. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys.455(1), 349. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  8. Farrugia, C.J., Burlaga, L.F., Lepping, R.P., Osherovich, V.A.: 1992, A comparative study of dynamically expanding force-free, constant-alpha magnetic configurations with applications to magnetic clouds. In: Marsch, E., Schwenn, R. (eds.) Solar Wind Seven Cospar, Pergamon, Amsterdam, 611. DOI. ADS. CrossRefGoogle Scholar
  9. Farrugia, C.J., Vasquez, B., Richardson, I.G., Torbert, R.B., Burlaga, L.F., Biernat, H.K., Mühlbachler, S., Ogilvie, K.W., Lepping, R.P., Scudder, J.D., Berdichevsky, D.E., Semenov, V.S., Kubyshkin, I.V., Phan, T.-D., Lin, R.P.: 2001, A reconnection layer associated with a magnetic cloud. Adv. Space Res.28(5), 759. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Gosling, J.T., Skoug, R.M., McComas, D.J., Smith, C.W.: 2005, Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res.110(A1), A01107. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Greco, A., Chuychai, P., Matthaeus, W.H., Servidio, S., Dmitruk, P.: 2008, Intermittent MHD structures and classical discontinuities. Geophys. Res. Lett.35, L19111. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Greco, A., Matthaeus, W.H., Servidio, S., Chuychai, P., Dmitruk, P.: 2009a, Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. Lett.691(2), L111. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Greco, A., Matthaeus, W.H., Servidio, S., Dmitruk, P.: 2009b, Waiting-time distributions of magnetic discontinuities: clustering or Poisson process? Phys. Rev. E80, 046401. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Greco, A., Matthaeus, W.H., Perri, S., Osman, K.T., Servidio, S., Wan, M., Dmitruk, P.: 2018, Partial variance of increments method in solar wind observations and plasma simulations. Space Sci. Rev.214, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Hudson, P.D.: 1970, Discontinuities in an anisotropic plasma and their identification in the solar wind. Planet. Space Sci.18, 1611. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Kilpua, E., Koskinen, H.E.J., Pulkkinen, T.I.: 2017, Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Solar Phys.14(1), 5. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Kolmogorov, A.: 1941, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR30, 301. ADS. ADSMathSciNetGoogle Scholar
  18. Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res.95, 11957. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Lepping, R.P., Wu, C.-C., McClernan, K.: 2003, Two-dimensional curvature of large angle interplanetary MHD discontinuity surfaces: IMP-8 and WIND observations. J. Geophys. Res.108(A7), 1279. DOI. ADS. CrossRefGoogle Scholar
  20. Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev.71, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of WIND magnetic clouds for years 1995 – 2003: model-fitted parameters, associated errors and classifications. Ann. Geophys.24(1), 215. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2011, Magnetic clouds at/near the 2007 – 2009 solar minimum: frequency of occurrence and some unusual properties. Solar Phys.274, 345. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2015, Wind magnetic clouds for 2010 – 2012: model parameter fittings, associated shock waves, and comparisons to earlier periods. Solar Phys.290, 2265. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2018, Wind magnetic clouds for the period 2013 – 2015: model fitting, types, associated shock waves, and comparisons to other periods. Solar Phys.293, 65. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Lin, R.P., Anderson, K.A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G.K., Rème, H., Bosqued, J.M., Coutelier, J., Cotin, F., D’Uston, C., Wenzel, K.-P., Sanderson, T.R., Henrion, J., Ronnet, J.C., Paschmann, G.: 1995, A three-dimensional plasma and energetic particle investigation for the wind spacecraft. Space Sci. Rev.71, 125. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Lopez, R.E.: 1987, Solar cycle invariance in solar wind proton temperature relationships. J. Geophys. Res.92, 11189. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Marsch, E., Tu, C.Y.: 1994, Non-Gaussian probability distributions of solar wind fluctuations. Ann. Geophys.12, 1127. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, J.E.C., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev.71, 55. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Osherovich, V.A., Farrugia, C.J., Burlaga, L.F.: 1993, Nonlinear evolution of magnetic flux ropes 1. Low-beta limit. J. Geophys. Res.98(A8), 13225. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Osherovich, V.A., Farrugia, C.J., Burlaga, L.F.: 1995, Nonlinear evolution of magnetic flux ropes. 2. Finite beta plasma. J. Geophys. Res.100(A7), 12307. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Osherovich, V.A., Fainberg, J., Stone, R.G., Fitzenreiter, R., Viñas, A.F.: 1998, Measurements of polytropic index in the January 10 – 11, 1997 magnetic cloud observed by WIND. Geophys. Res. Lett.25(15), 3003. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Osman, K.T., Matthaeus, W.H., Greco, A., Servidio, S.: 2011, Evidence for inhomogeneous heating in the solar wind. Astrophys. J.727, L11. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Osman, K.T., Matthaeus, W.H., Hnat, B., Chapman, S.C.: 2012b, Kinetic signatures and intermittent turbulence in the solar wind plasma. Phys. Rev. Lett.108, 261103. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Osman, K.T., Matthaeus, W.H., Wan, M., Rappazzo, A.F.: 2012a, Intermittency and local heating in the solar wind. Phys. Rev. Lett.108, 261102. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Osman, K.T., Matthaeus, W.H., Gosling, J.T., Greco, A., Servidio, S., Hnat, B., Chapman, S.C., Phan, T.D.: 2014, Magnetic reconnection and intermittent turbulence in the solar wind. Phys. Rev. Lett.112, 215002. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Petschek, H.E.: 1964, Magnetic field annihilation. NASASP-50, 425. ADS. ADSGoogle Scholar
  37. Ruffenach, A., Lavraud, B., Owens, M.J., Sauvaud, J.-A., Savani, N.P., Rouillard, A.P., Démoulin, P., Foullon, C., Opitz, A., Fedorov, A., Jacquey, C.J., Génot, V., Louarn, P., Luhmann, J.G., Russell, C.T., Farrugia, C.J., Galvin, A.B.: 2012, Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. J. Geophys. Res.117, A09101. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Ruffenach, A., Lavraud, B., Farrugia, C.J., Démoulin, P., Dasso, S., Owens, M.J., Sauvaud, J.-A., Rouillard, A.P., Lynnyk, A., Foullon, C., Savani, N.P., Luhmann, J.G., Galvin, A.B.: 2015, Statistical study of magnetic cloud erosion by magnetic reconnection. J. Geophys. Res.120, 43. DOI. ADS. CrossRefGoogle Scholar
  39. Servidio, S., Greco, A., Matthaeus, W.H., Osman, K.T., Dmitruk, P.: 2011, Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. J. Geophys. Res.116, A09102. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Shimazu, H., Vandas, M.: 2002, A self-similar solution of expanding cylindrical flux ropes for any polytropic index value. Earth Planets Space54, 783. ADS. ADSCrossRefGoogle Scholar
  41. Tessein, J.A., Matthaeus, W.H., Wan, M., Osman, K.T., Ruffolo, D., Giacalone, J.: 2013, Association of suprathermal particles with coherent structures and shocks. Astrophys. J.776, L8. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Tessein, J.A., Ruffolo, D., Matthaeus, W.H., Wan, M., Giacalone, J., Neugebauer, M.: 2015, Effect of coherent structures on energetic particle intensity in the solar wind at 1 AU. Astrophys. J.812, 68. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Tessein, J.A., Ruffolo, D., Matthaeus, W.H., Wan, M.: 2016, Local modulation and trapping of energetic particles by coherent magnetic structures. Geophys. Res. Lett.43, 3620. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Tsurutani, B.T., Smith, E.J.: 1979, Interplanetary discontinuities: temporal variations and the radial gradient from 1 to 8.5 AU. J. Geophys. Res.84, 2773. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I., Smith, E.J.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978-1979). J. Geophys. Res.93, 8519. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Tsurutani, B.T., Dasgupta, B., Galvan, C., Neugebauer, M., Lakhina, G.S., Arballo, J.K., Winterhalter, D., Goldstein, B.E., Buti, B.: 2002a, Phase-steepened Alfvén waves, proton perpendicular energization and the creation of magnetic holes and magnetic decreases: the ponderomotive force. Geophys. Res. Lett.29(24), 2233. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Tsurutani, B.T., Galvan, C., Arballo, J.K., Winterhalter, D., Sakurai, R., Smith, E.J., Buti, B., Lakhina, G.S., Balogh, A.: 2002b, Relationship between discontinuities, magnetic holes, magnetic decreases, and nonlinear Alfvén waves: Ulysses observations over the solar poles. Geophys. Res. Lett.29, 1528. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Tsurutani, B.T., Guarnieri, F.L., Echer, E., Lakhina, G.S., Verkhoglyadova, O.P.: 2009, Magnetic decrease formation from \(<1\) AU to-5 AU: corotating interaction region reverse shocks. J. Geophys. Res.114(A8), A08105. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Turner, J.M., Burlaga, L.F., Ness, N.F., Lemaire, J.F.: 1977, Magnetic holes in the solar wind. J. Geophys. Res.82(13), 1921. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Vasquez, B.J., Abramenko, V.I., Haggerty, D.K., Smith, C.W.: 2007, Numerous small magnetic field discontinuities of Bartels rotation 2286 and the potential role of Alfvénic turbulence. J. Geophys. Res.112, A11102. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Wan, M., Matthaeus, W.H., Karimabadi, H., Roytershteyn, V., Shay, M., Wu, P., Daughton, W., Loring, B., Chapman, S.C.: 2012, Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett.109, 195001. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Wan, M., Matthaeus, W.H., Roytershteyn, V., Karimabadi, H., Parashar, T., Wu, P., Shay, M.: 2015, Intermittent dissipation and heating in 3D kinetic plasma turbulence. Phys. Rev. Lett.114, 175002. DOI. ADS. ADSCrossRefGoogle Scholar
  53. Wang, Y., Wei, F.S., Feng, X.S., Zhang, S.H., Zuo, P.B., Sun, T.R.: 2010, Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer. Phys. Rev. Lett.105, 195007. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Wang, Y., Wei, F.S., Feng, X.S., Zuo, P.B., Guo, J.P., Xu, X.J., Li, Z.: 2012, Variations of solar electron and proton flux in magnetic cloud boundary layers and comparisons with those across the shocks and in the reconnection exhausts. Astrophys. J.749, 82. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Wang, Y., Wei, F.S., Feng, X.S., Xu, X.J., Zhang, J., Sun, T.R., Zuo, P.B.: 2015, Energy dissipation processes in solar wind turbulence. Astrophys. J. Suppl. S.221, 34. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Wei, F.: 2005, WIND observations of plasma waves inside the magnetic cloud boundary layers. Chin. Sci. Bull.50(18), 2051. DOI. ADS. CrossRefGoogle Scholar
  57. Wei, F., Liu, R., Fan, Q., Feng, X.: 2003a, Identification of the magnetic cloud boundary layers. J. Geophys. Res.108(A6), 1263. DOI. ADS. CrossRefGoogle Scholar
  58. Wei, F., Liu, R., Feng, X., Zhong, D., Yang, F.: 2003b, Magnetic structures inside boundary layers of magnetic clouds. Geophys. Res. Lett.30, 2283. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Wei, F., Feng, X., Yang, F., Zhong, D.: 2006, A new non-pressure-balanced structure in interplanetary space: boundary layers of magnetic clouds. J. Geophys. Res.111, A03102. DOI. ADS. ADSCrossRefGoogle Scholar
  60. Winslow, R.M., Lugaz, N., Schwadron, N.A., Farrugia, C.J., Yu, W., Raines, J.M., Mays, M.L., Galvin, A.B., Zurbuchen, T.H.: 2016, Longitudinal conjunction between MESSENGER and STEREO a: development of ICME complexity through stream interactions. J. Geophys. Res.121(7), 6092. DOI. ADS. CrossRefGoogle Scholar
  61. Wu, C.-C., Lepping, R.P.: 2002, Effects of magnetic clouds on the occurrence of geomagnetic storms: the first 4 years of wind. J. Geophys. Res.107, 1314. DOI. ADS. CrossRefGoogle Scholar
  62. Zhou, Z., Wei, F., Feng, X., Wang, Y., Zuo, P., Xu, X.: 2018, Observation of interplanetary slow shock pair associated with reconnection exhaust in magnetic cloud boundary layer. Astrophys. J.863, 84. DOI. ADS. ADSCrossRefGoogle Scholar
  63. Zuo, P.B., Wei, F.S., Feng, X.S.: 2006, Observations of an interplanetary slow shock associated with magnetic cloud boundary layer. Geophys. Res. Lett.33, L15107. DOI. ADS. ADSCrossRefGoogle Scholar
  64. Zuo, P.B., Wei, F.S., Feng, X.S., Yang, F.: 2007, The relationship between the magnetic cloud boundary layer and the substorm expansion phase. Solar Phys.242, 167. DOI. ADS. ADSCrossRefGoogle Scholar
  65. Zuo, P.B., Wei, F.S., Feng, X.S., Xu, X.J., Song, W.B.: 2010, Magnetic cloud boundary layer of 9 November 2004 and its associated space weather effects. J. Geophys. Res.115, A10102. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory for Space Weather Storms, Institute of Space Science and Applied TechnologyHarbin Institute of Technology, ShenzhenShenzhenChina
  2. 2.SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science CenterChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations