Solar Physics

, 294:120 | Cite as

The Calibrations for the Chang’E-2 Solar X-Ray Monitor

  • Wu-Dong Dong
  • Xiaoping ZhangEmail author
  • Yong Li
  • Chi-Long Tang
  • Aoao Xu
  • Fan Zhang


The calibrations of the Solar X-ray Monitor (SXM) on the Chinese lunar mission Chang’E-2 are presented. The SXM payload uses a solid-state silicon PIN photodiode (Si-PIN) whose detection energy ranges from 0.5 keV to 10 keV. The energy resolution of SXM is 0.3 keV (FWHM) at 5.9 keV. The solar soft X-rays are collected in 976 channels every 10 seconds. The purpose of the calibrations is to specify the performance of SXM, which enables a reliable spectral analysis of the observed solar X-ray data. The characteristic lines of Fe at \({\approx}\,6.7~\mbox{keV}\) and of the Fe/Ni complex at \({\approx}\,8.0~\mbox{keV}\) are clearly determined during a solar flare. We compare the flux measured by SXM and the Geostationary Operational Environmental Satellite (GOES) series and find consistent results. The preliminary results of the analysis of observed spectra are also presented. The spectra are measured with high energy and time resolutions, which provide additional information such as element abundances in the solar flare region. This information could be very valuable for studying the dynamic evolution of solar flares.


Soft X-ray detector Calibration Chang’E-2 



With this work, we would like to pay highest tribute to the chief scientist of the X-ray spectrometers of Chang’E 1-3 missions, Professor Wang Huanyu (Institute of High Energy Physics, Chinese Academy of Sciences), who left us recently in an academic presentation. We acknowledge the team from the Ground Application System of Lunar Exploration, National Astronomical Observatories, Chinese Academy of Sciences for providing the CE2XRS data. We thank Prof. Wenxi Peng for helpful discussions on Chang’E-2 solar X-ray data. We thank Janet Machol at NOAA National Geophysical Data Center for help with GOES flux data usage. We thank Richard Schwartz and Kim Tolbert at NASA for valuable discussions and help with OSPEX usage. We also thank the reviewer for the thoughtful comments and valuable suggestions that have helped to improve this manuscript significantly. This work is supported by the Science and Technology Development Fund (FDCT) of Macau (Grant Nos. 048/2012/A2, 020/2014/A1, 008/2017/AFJ, 119/2017/A3, 0042/2018/A2) and by the National Natural Science Foundation of China (Grant No. 11761161001).

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interest.


  1. Adler, I., Trombka, J., Gerard, J., Lowman, P., Schmadebeck, R., Blodget, H., et al.: 1972, Apollo 15 geochemical X-ray fluorescence experiment: Preliminary report. Science 175(4020), 436. DOI. ADSCrossRefGoogle Scholar
  2. Alha, L., Huovelin, J., Hackman, T., Andersson, H., Howe, C.J., Esko, E., et al.: 2008, The in-flight performance of the X-ray Solar Monitor (XSM) on-board SMART-1. Nucl. Instrum. Methods A 596(3), 317. DOI. ADSCrossRefGoogle Scholar
  3. Alha, L., Huovelin, J., Nygård, K., Andersson, H., Esko, E., Howe, C.J., et al.: 2009, Ground calibration of the Chandrayaan-1 X-ray Solar Monitor (XSM). Nucl. Instrum. Methods A 607(3), 544. DOI. ADSCrossRefGoogle Scholar
  4. Ban, C., Zheng, Y.-C., Zhu, Y.-C., Zhang, F., Xu, L., Zou, Y.-L.: 2014, Research on the inversion of elemental abundances from Chang’E-2 X-ray spectrometry data. Chin. J. Geochem. 33(3), 289. DOI. CrossRefGoogle Scholar
  5. Caspi, A., Woods, T.N., Warren, H.P.: 2015, New observations of the solar 0.5 – 5 keV soft X-ray spectrum. Astrophys. J. Lett. 802(1), L2. DOI. ADSCrossRefGoogle Scholar
  6. Clark, P.E., Trombka, J.I.: 1997, Remote X-ray spectrometry for NEAR and future missions: Modeling and analyzing X-ray production from source to surface. J. Geophys. Res. 102(E7), 16361. DOI. ADSCrossRefGoogle Scholar
  7. Cui, X.Z., Wang, H.Y., Peng, W.X., Zhang, C.M., Liang, X.H., Wang, J.Z., et al.: 2014, Observational results of the ChangE-1 Solar X-ray Monitor. Solar Phys. 289(5), 1597. DOI. ADSCrossRefGoogle Scholar
  8. Dennis, B.R., Phillips, K.J.H., Schwartz, R.A., Tolbert, A.K., Starr, R.D., Nittler, L.R.: 2015, Solar flare element abundances from the Solar Assembly for X-rays (SAX) on MESSENGER. Astrophys. J. 803(2), 67. DOI. ADSCrossRefGoogle Scholar
  9. Dong, W.-D., Zhang, X.-P., Zhu, M.-H., Xu, A.-A., Tang, Z.-S.: 2016, Global Mg/Si and Al/Si distributions on the lunar surface derived from Chang’E-2 X-ray spectrometer. Res. Astron. Astrophys. 16(1), 4. DOI. ADSCrossRefGoogle Scholar
  10. Dunkin, S.K., Grande, M., Casanova, I., Fernandes, V., Heather, D.J., Kellett, B., et al.: 2003, Scientific rationale for the D-CIXS X-ray spectrometer on board ESA’s SMART-1 mission to the Moon. Planet. Space Sci. 51(6), 435. DOI. ADSCrossRefGoogle Scholar
  11. Feldman, U., Laming, J.M.: 2000, Element abundances in the upper atmospheres of the Sun and stars: Update of observational results. Phys. Scr. 61(2), 222. DOI. ADSCrossRefGoogle Scholar
  12. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the solarsoft system. Solar Phys. 182(2), 497. DOI. ADSCrossRefGoogle Scholar
  13. Gburek, S., Sylwester, J., Kowalinski, M., Bakala, J., Kordylewski, Z., Podgorski, P., et al.: 2011, SphinX soft X-ray spectrophotometer: Science objectives, design and performance. Solar Syst. Res. 45(3), 189. DOI. ADSCrossRefGoogle Scholar
  14. Grande, M., Browning, R., Waltham, N., Parker, D., Dunkin, S.K., Kent, B., et al.: 2003, The D-CIXS X-ray mapping spectrometer on SMART-1. Planet. Space Sci. 51(6), 427. DOI. ADSCrossRefGoogle Scholar
  15. Howe, C.J., Drummond, D., Edeson, R., Maddison, B., Parker, D.J., Parker, R., et al.: 2009, Chandrayaan-1 X-ray Spectrometer (C1XS) – Instrument design and technical details. Planet. Space Sci. 57(7), 735. DOI. ADSCrossRefGoogle Scholar
  16. Huixian, S., Shuwu, D., Jianfeng, Y., Ji, W., Jingshan, J.: 2005, Scientific objectives and payloads of Chang’E-1 lunar satellite. J. Earth Syst. Sci. 114(6), 789. DOI. ADSCrossRefGoogle Scholar
  17. Klimchuk, J.A.: 2006, On solving the coronal heating problem. Solar Phys. 234(1), 41. DOI. ADSCrossRefGoogle Scholar
  18. Moore, C.S., Caspi, A., Woods, T.N., Chamberlin, P.C., Dennis, B.R., Jones, A.R., et al.: 2018, The instruments and capabilities of the Miniature X-Ray Solar Spectrometer (MinXSS) CubeSats. Solar Phys. 293(2), 21. DOI. ADSCrossRefGoogle Scholar
  19. Narendranath, S., Sreekumar, P., Alha, L., Sankarasubramanian, K., Huovelin, J., Athiray, P.S.: 2014, Elemental abundances in the solar corona as measured by the X-ray solar monitor onboard Chandrayaan-1. Solar Phys. 289(5), 1585. DOI. ADSCrossRefGoogle Scholar
  20. Nittler, L.R., Starr, R.D., Weider, S.Z., McCoy, T.J., Boynton, W.V., Ebel, D.S., et al.: 2011, The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333(6051), 1847. DOI. ADSCrossRefGoogle Scholar
  21. Ouyang, Z., Li, C., Zou, Y., Zhang, H., Lu, C., Liu, J., et al.: 2010, Chang’E-1 lunar mission: An overview and primary science results. Chin. J. Space Sci. 30(5), 392. Google Scholar
  22. Peng, W.-X.: 2009, Research on data processing method for Chang’E-1 X-ray spectrometer. PhD thesis, Chinese Academy of Sciences (in Chinese). Google Scholar
  23. Peng, W.-X., Wang, H.-Y., Zhang, C.-M., Cao, X.-L., Cui, X.-Z., Zhang, J.-Y., et al.: 2009a, Calibration of Chang’E-1 X-ray spectrometer. Nucl. Electron. Detect. Technol. 29(2), 235 (in Chinese). DOI. CrossRefGoogle Scholar
  24. Peng, W.-X., Wang, H.-Y., Zhang, C.-M., Cui, X.-Z., Cao, X.-L., Zhang, J.-Y., et al.: 2009b, Prospective results of Chang’E-2 X-ray spectrometer. Chin. Phys. C 33(10), 819. DOI. ADSCrossRefGoogle Scholar
  25. Phillips, K.J.H.: 2004, The solar flare 3.8 – 10 keV X-ray spectrum. Astrophys. J. 605(2), 921. DOI. ADSCrossRefGoogle Scholar
  26. Starr, R., Clark, P.E., Murphy, M.E., Floyd, S.R., McClanahan, T.P., Nittler, L.R., et al.: 2000, Instrument calibrations and data analysis procedures for the NEAR X-ray spectrometer. Icarus 147(2), 498. DOI. ADSCrossRefGoogle Scholar
  27. Swinyard, B.M., Joy, K.H., Kellett, B.J., Crawford, I.A., Grande, M., Howe, C.J., et al.: 2009, X-ray fluorescence observations of the moon by SMART-1/D-CIXS and the first detection of Ti K\(\alpha \) from the lunar surface. Planet. Space Sci. 57(7), 744. DOI. ADSCrossRefGoogle Scholar
  28. Weider, S.Z., Kellett, B.J., Swinyard, B.M., Crawford, I.A., Joy, K.H., Grande, M., et al.: 2012, The Chandrayaan-1 X-ray spectrometer: First results. Planet. Space Sci. 60(1), 217. DOI. ADSCrossRefGoogle Scholar
  29. Winebarger, A.R., Warren, H.P., Schmelz, J.T., Cirtain, J., Mulu-Moore, F., Golub, L., et al.: 2012, Defining the “blind spot” of Hinode EIS and XRT temperature measurements. Astrophys. J. Lett. 746(2), L17. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Lunar and Planetary SciencesMacau University of Science and TechnologyMacauChina
  2. 2.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina

Personalised recommendations